Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 18/2021

24.08.2021

Ion-beam lithography for fabrication of diffractive optical phase elements in silver-ion-exchanged glasses

verfasst von: Arashmid Nahal, Seyed Reza Hosseini, Masoud Mahjour-Shafiei

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 18/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the present article, ion-beam lithography in ion-exchanged glasses is used as a method for the fabrication of miniaturized phase optical diffractive elements. It is established that, as a result of the interaction of a low-energy (∼ 40 keV) He+ ion beam with silver-ion-exchanged glasses, the index of refraction of interacted area increases. In the interacted areas of the samples, the formation of neutral silver nanoparticles leads to an increase in the index of refraction. This paves the way to employ such material to produce optical phase diffractive elements such as slits, gratings, or Fresnel’s zone plates. It is found that a remarkable dispersion for the index of refraction (n = n(λ)) gives rise to the dependence of diffraction efficiency of produced elements to the wavelength of the probe beams. The produced elements are of good quality, optically effective, chemically stable, waterproof, and scratch resistant.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S.R. Friberg, P.W. Smith, Nonlinear optical glasses for ultrafast optical switches. IEEE J. Quantum Electron. QE-23, 2089–2092 (1987)CrossRef S.R. Friberg, P.W. Smith, Nonlinear optical glasses for ultrafast optical switches. IEEE J. Quantum Electron. QE-23, 2089–2092 (1987)CrossRef
2.
Zurück zum Zitat F. Caccavale, G. De Marchi, F. Gonella, P. Mazzoldi, C. Meneghini, A. Quaranta, G.W. Arnold, G. Battaglin, G. Mattei, Irradiation-induced Ag-colloid formation in ion-exchanged soda-lime glass. Nucl. Instrum. Meth. Phys. Res. 96, 382–386 (1995)CrossRef F. Caccavale, G. De Marchi, F. Gonella, P. Mazzoldi, C. Meneghini, A. Quaranta, G.W. Arnold, G. Battaglin, G. Mattei, Irradiation-induced Ag-colloid formation in ion-exchanged soda-lime glass. Nucl. Instrum. Meth. Phys. Res. 96, 382–386 (1995)CrossRef
3.
Zurück zum Zitat F. Gonella, G. Mattei, P. Mazzoldi, E. Cattaruzza, G.W. Arnold, G. Battaglin, P. Calvelli, R. Polloni, B. Bertonecello, R.F. Haglund Jr., Interaction of high-power laser light with silver nanocluster composite glasses. Appl. Phys. Lett. 69, 3101–3103 (1996)CrossRef F. Gonella, G. Mattei, P. Mazzoldi, E. Cattaruzza, G.W. Arnold, G. Battaglin, P. Calvelli, R. Polloni, B. Bertonecello, R.F. Haglund Jr., Interaction of high-power laser light with silver nanocluster composite glasses. Appl. Phys. Lett. 69, 3101–3103 (1996)CrossRef
4.
Zurück zum Zitat 5. A.L. Stepanov, V.N. Popok, D.E. Hole, A.A. Bukharaev, Interaction of high-power laser pulses with glasses containing implanted metallic nanoparticles. Phys. Solid State 43, 2192–2198 (2001)CrossRef 5. A.L. Stepanov, V.N. Popok, D.E. Hole, A.A. Bukharaev, Interaction of high-power laser pulses with glasses containing implanted metallic nanoparticles. Phys. Solid State 43, 2192–2198 (2001)CrossRef
5.
Zurück zum Zitat A. Nahal, H.R.M. Kkhalesifard, J. Mostafavi-Amjad, Photothermal-induced dichroism and micro-cluster formation in Ag+-doped glasses. Appl. Phys. B 79, 513–518 (2004)CrossRef A. Nahal, H.R.M. Kkhalesifard, J. Mostafavi-Amjad, Photothermal-induced dichroism and micro-cluster formation in Ag+-doped glasses. Appl. Phys. B 79, 513–518 (2004)CrossRef
6.
Zurück zum Zitat A. Nahal, J. Mostafavi-Amjad, A. Ghods, M.R.H. Khajehpour, S.N.S. Reihani, M.R. Kolahchi, Laser-induced dendritic microstructures on the surface of Ag+-doped glass. J. Appl. Phys. 100, 053503 (2006)CrossRef A. Nahal, J. Mostafavi-Amjad, A. Ghods, M.R.H. Khajehpour, S.N.S. Reihani, M.R. Kolahchi, Laser-induced dendritic microstructures on the surface of Ag+-doped glass. J. Appl. Phys. 100, 053503 (2006)CrossRef
7.
Zurück zum Zitat A. Pinchuk, A. Hilger, G. von Plessen, U. Kreibig, Substrate effect on the optical response of silver nanoparticles. Nanotechnology 15, 1890–1896 (2004)CrossRef A. Pinchuk, A. Hilger, G. von Plessen, U. Kreibig, Substrate effect on the optical response of silver nanoparticles. Nanotechnology 15, 1890–1896 (2004)CrossRef
8.
Zurück zum Zitat M.C. Gupta, J. Ballato, The Handbook of Photonics (CRC Press, Taylor & Francis Group, Boca Raton, 2007) M.C. Gupta, J. Ballato, The Handbook of Photonics (CRC Press, Taylor & Francis Group, Boca Raton, 2007)
9.
Zurück zum Zitat S.I. Najaf, Introduction to Glass Integrated Optics (Artech House, Norwood, 1992) S.I. Najaf, Introduction to Glass Integrated Optics (Artech House, Norwood, 1992)
10.
Zurück zum Zitat U. Kriebig, M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, Heidelberg, New York, 1995)CrossRef U. Kriebig, M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, Heidelberg, New York, 1995)CrossRef
11.
Zurück zum Zitat P.L. Inácio, B.J. Barreto, F. Horowitz, R.R.B. Correia, M.B. Pereira, Silver migration at the surface of ion-exchange waveguides: a plasmonic template. Opt. Mater. Express 3, 390–399 (2013)CrossRef P.L. Inácio, B.J. Barreto, F. Horowitz, R.R.B. Correia, M.B. Pereira, Silver migration at the surface of ion-exchange waveguides: a plasmonic template. Opt. Mater. Express 3, 390–399 (2013)CrossRef
12.
Zurück zum Zitat A. Nahal, A. Jalehdoost, Kh Hassani, A. Farokhniaee, Variation of index of refraction in the ion-exchanged glasses with the evolution of ionic and neutral silver nano-clusters. Eur. Phys. J. Appl. Phys. 53, 10701 (2011)CrossRef A. Nahal, A. Jalehdoost, Kh Hassani, A. Farokhniaee, Variation of index of refraction in the ion-exchanged glasses with the evolution of ionic and neutral silver nano-clusters. Eur. Phys. J. Appl. Phys. 53, 10701 (2011)CrossRef
13.
Zurück zum Zitat A. Nahal, K. Shapoori, Linear dichroism, produced by thermoelectric alignment of silver nanoparticles on the surface of ion-exchanged glass. Appl. Surf. Sci. 255, 7946–7950 (2009)CrossRef A. Nahal, K. Shapoori, Linear dichroism, produced by thermoelectric alignment of silver nanoparticles on the surface of ion-exchanged glass. Appl. Surf. Sci. 255, 7946–7950 (2009)CrossRef
14.
Zurück zum Zitat A. Nahal, R. Talebi, M.F. Miri, Thermo-electric-induced dichroism in ion-exchanged glasses: a candidate mechanism for the alignment of silver nanoparticles. Appl. Phys. A 106, 941–947 (2012)CrossRef A. Nahal, R. Talebi, M.F. Miri, Thermo-electric-induced dichroism in ion-exchanged glasses: a candidate mechanism for the alignment of silver nanoparticles. Appl. Phys. A 106, 941–947 (2012)CrossRef
15.
Zurück zum Zitat A. Nahal, H.R.M. Khalesifard, Beam power-dependent laser induced fluorescence radiation quenching of silver-ion-exchanged glasses. Opt. Mater. 29, 987–994 (2007)CrossRef A. Nahal, H.R.M. Khalesifard, Beam power-dependent laser induced fluorescence radiation quenching of silver-ion-exchanged glasses. Opt. Mater. 29, 987–994 (2007)CrossRef
16.
Zurück zum Zitat A. Nahal, F. Moslehirad, Laser-induced anisotropy in Ag+-doped glasses. J. Mater. Sci. 42(12), 9075–9082 (2007)CrossRef A. Nahal, F. Moslehirad, Laser-induced anisotropy in Ag+-doped glasses. J. Mater. Sci. 42(12), 9075–9082 (2007)CrossRef
17.
Zurück zum Zitat G. Sathiyapriya, K.A. Naseer, K. Marimuthu, E. Kavaz, A. Alalawi, M.S. Al-Buriahi, Structural, optical and nuclear radiation shielding properties of strontium barium borate glasses doped with dysprosium and niobium. J. Mater. Sci. Mater. Electron. 32, 8570–8592 (2021)CrossRef G. Sathiyapriya, K.A. Naseer, K. Marimuthu, E. Kavaz, A. Alalawi, M.S. Al-Buriahi, Structural, optical and nuclear radiation shielding properties of strontium barium borate glasses doped with dysprosium and niobium. J. Mater. Sci. Mater. Electron. 32, 8570–8592 (2021)CrossRef
18.
Zurück zum Zitat K.S. Shaaban, Y.B. Saddeek, Effect of MoO3 content on structural, thermal, mechanical and optical properties of (B2O3–SiO2– Bi2O3–Na2O–Fe2O3) glass system. Silicon 9(5), 785–793 (2017)CrossRef K.S. Shaaban, Y.B. Saddeek, Effect of MoO3 content on structural, thermal, mechanical and optical properties of (B2O3–SiO2– Bi2O3–Na2O–Fe2O3) glass system. Silicon 9(5), 785–793 (2017)CrossRef
19.
Zurück zum Zitat A. Nahal, M. Mahjour-Shafei, S.R. Hosseini, Index of refraction variation and photoluminescence quenching in silver ion exchanged glasses, due to interaction with low energy He+ beam. J. Mater. Sci.: Mater. Electron. 31, 5499–5510 (2020) A. Nahal, M. Mahjour-Shafei, S.R. Hosseini, Index of refraction variation and photoluminescence quenching in silver ion exchanged glasses, due to interaction with low energy He+ beam. J. Mater. Sci.: Mater. Electron. 31, 5499–5510 (2020)
20.
Zurück zum Zitat A. Nahal, F. Moslehirad, Laser-induced anisotropy in Ag+-doped glasses. J. Mater. Sci. 42(12), 9075–9082 (2007)CrossRef A. Nahal, F. Moslehirad, Laser-induced anisotropy in Ag+-doped glasses. J. Mater. Sci. 42(12), 9075–9082 (2007)CrossRef
21.
Zurück zum Zitat I. Antonov, F. Bass, Y. Kaganovskii, M. Rosenbluh, Fabrication of microlenses in Ag-doped glasses by a focused continuous wave laser beam. J. Appl. Phys. 93, 2343 (2003)CrossRef I. Antonov, F. Bass, Y. Kaganovskii, M. Rosenbluh, Fabrication of microlenses in Ag-doped glasses by a focused continuous wave laser beam. J. Appl. Phys. 93, 2343 (2003)CrossRef
22.
Zurück zum Zitat M. Heinz, J. Meinertz, M. Dubiel, J. Ihlemann, Excimer laser induced spatially resolved formation and implantation of plasmonic particles in glass. Nanomaterials 8, 1035 (2018)CrossRef M. Heinz, J. Meinertz, M. Dubiel, J. Ihlemann, Excimer laser induced spatially resolved formation and implantation of plasmonic particles in glass. Nanomaterials 8, 1035 (2018)CrossRef
23.
Zurück zum Zitat L.A.H. Fleming, S. Wackerow, A.C. Hourd, W.A. Gillespie, G. Seifert, A. Abdolvand, Diffractive optical element embedded in silver doped nanocomposite glass. Opt. Express 20, 22580 (2012)CrossRef L.A.H. Fleming, S. Wackerow, A.C. Hourd, W.A. Gillespie, G. Seifert, A. Abdolvand, Diffractive optical element embedded in silver doped nanocomposite glass. Opt. Express 20, 22580 (2012)CrossRef
24.
Zurück zum Zitat H. Hofmeister, S. Thiel, M. Dubiel, E. Schurig, Synthesis of nanosized silver particles in ion-exchanged glass by electron beam irradiation. Appl. Phys. Lett. 70, 1694 (1997)CrossRef H. Hofmeister, S. Thiel, M. Dubiel, E. Schurig, Synthesis of nanosized silver particles in ion-exchanged glass by electron beam irradiation. Appl. Phys. Lett. 70, 1694 (1997)CrossRef
25.
Zurück zum Zitat R. Kumar, M. Chauhan, M.G. Moinuddin, S.K. Sharma, K.E. Gonsalves, Development of nickel-based negative tone metal oxide cluster resists for sub-10 nm electron beam and helium ion beam lithography. ACS Appl. Mater. Interfaces 12, 19616–19624 (2020)CrossRef R. Kumar, M. Chauhan, M.G. Moinuddin, S.K. Sharma, K.E. Gonsalves, Development of nickel-based negative tone metal oxide cluster resists for sub-10 nm electron beam and helium ion beam lithography. ACS Appl. Mater. Interfaces 12, 19616–19624 (2020)CrossRef
26.
Zurück zum Zitat M. Mahjour-Shafei, H. Noori, A.H. Ranjbar, Influence of magnetic field on the electric breakdown in penning ion source. Rev. Sci. Instrum. 82, 113502 (2011)CrossRef M. Mahjour-Shafei, H. Noori, A.H. Ranjbar, Influence of magnetic field on the electric breakdown in penning ion source. Rev. Sci. Instrum. 82, 113502 (2011)CrossRef
27.
Zurück zum Zitat A.S. Sonal, S. Aggarwal, Optical investigation of soda lime glass with buried silver nanoparticles synthesized by ion implantation. J. Non-Crystal. Sol. 485, 57–65 (2018)CrossRef A.S. Sonal, S. Aggarwal, Optical investigation of soda lime glass with buried silver nanoparticles synthesized by ion implantation. J. Non-Crystal. Sol. 485, 57–65 (2018)CrossRef
28.
Zurück zum Zitat J. Garcia Sole, L.E. Bausa, D. Jaque, An Introduction to the Optical Spectroscopy of Inorganic Solids (Wiley, England, 2005)CrossRef J. Garcia Sole, L.E. Bausa, D. Jaque, An Introduction to the Optical Spectroscopy of Inorganic Solids (Wiley, England, 2005)CrossRef
29.
Zurück zum Zitat M. Fox, Optical Properties of Solids (Oxford University Press, Oxford, 2001) M. Fox, Optical Properties of Solids (Oxford University Press, Oxford, 2001)
30.
Zurück zum Zitat R.C. Jaeger “Lithography”. Introduction to Microelectronic Fabrication (2nd edn.) (Upper Saddle River: Prentice Hall, 2002) R.C. Jaeger “Lithography”. Introduction to Microelectronic Fabrication (2nd edn.) (Upper Saddle River: Prentice Hall, 2002)
31.
Zurück zum Zitat J.C.M. Garnett, Colours in metal glasses and in metallic films. Philos. Trans. R. Soc. Lond. 203, 385–420 (1904)CrossRef J.C.M. Garnett, Colours in metal glasses and in metallic films. Philos. Trans. R. Soc. Lond. 203, 385–420 (1904)CrossRef
32.
Zurück zum Zitat D.A.G. Bruggeman, Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Ann. Phys. Leipzig 24, 636–664 (1935). (in German)CrossRef D.A.G. Bruggeman, Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Ann. Phys. Leipzig 24, 636–664 (1935). (in German)CrossRef
33.
Zurück zum Zitat G.A. Niklasson, C.G. Granqvist, O. Hunderi, Effective medium models for the optical properties of inhomogeneous materials. Appl. Opt. 20(1), 26–30 (1981)CrossRef G.A. Niklasson, C.G. Granqvist, O. Hunderi, Effective medium models for the optical properties of inhomogeneous materials. Appl. Opt. 20(1), 26–30 (1981)CrossRef
34.
Zurück zum Zitat B.E.A. Saleh, M.C. Teich, Fundamentals of Photonics, 3rd edn. (Wiley, Hoboken, 2019) B.E.A. Saleh, M.C. Teich, Fundamentals of Photonics, 3rd edn. (Wiley, Hoboken, 2019)
35.
Zurück zum Zitat A.Y. Meshalkin, V.V. Podlipnov, A.V. Ustinov, E.A. Achimova, Analysis of diffraction efficiency of phase gratings in dependence of duty cycle and depth. J. Phys.: Conf. Ser. 1368(2), 022047 (2019) A.Y. Meshalkin, V.V. Podlipnov, A.V. Ustinov, E.A. Achimova, Analysis of diffraction efficiency of phase gratings in dependence of duty cycle and depth. J. Phys.: Conf. Ser. 1368(2), 022047 (2019)
36.
Zurück zum Zitat F. Pedrotti, L. Pedrotti, L. Pedrotti, Introduction to Optics, 3rd edn. (Cambridge University Press, Cambridge, 2017)CrossRef F. Pedrotti, L. Pedrotti, L. Pedrotti, Introduction to Optics, 3rd edn. (Cambridge University Press, Cambridge, 2017)CrossRef
Metadaten
Titel
Ion-beam lithography for fabrication of diffractive optical phase elements in silver-ion-exchanged glasses
verfasst von
Arashmid Nahal
Seyed Reza Hosseini
Masoud Mahjour-Shafiei
Publikationsdatum
24.08.2021
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 18/2021
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-021-06819-0

Weitere Artikel der Ausgabe 18/2021

Journal of Materials Science: Materials in Electronics 18/2021 Zur Ausgabe

Neuer Inhalt