Skip to main content
Erschienen in: Medical & Biological Engineering & Computing 7/2012

01.07.2012 | Original Article

Is it possible to detect dendrite currents using presently available magnetic resonance imaging techniques?

verfasst von: William I. Jay, Ranjith S. Wijesinghe, Brain D. Dolasinski, Bradley J. Roth

Erschienen in: Medical & Biological Engineering & Computing | Ausgabe 7/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The action currents of a dendrite, peripheral nerve or skeletal muscle create their own magnetic field. Many investigators have attempted to detect neural and dendritic currents directly using magnetic resonance imaging that can cause the phase of the spins to change. Our goal in this paper is to use the calculated magnetic field of a dendrite to estimate the resulting phase shift in the magnetic resonance signal. The field produced by a dense collection of simultaneously active dendrites may be just detectable under the most ideal circumstances, but in almost every realistic case the field cannot be detected using current MRI technology.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bandettini PA, Petridou N, Boduraka J (2005) Direct detection of neuronal activity with MRI: fantasy, possibility, or reality? Appl Magn Reson 29:65–88CrossRef Bandettini PA, Petridou N, Boduraka J (2005) Direct detection of neuronal activity with MRI: fantasy, possibility, or reality? Appl Magn Reson 29:65–88CrossRef
2.
Zurück zum Zitat Bandettini PA, Wong EC, Hinks RS, Tikofsky RS, Hyde JS (1992) Time course EPI of human brain function during task activation. Magn Reson Med 25:390–397PubMedCrossRef Bandettini PA, Wong EC, Hinks RS, Tikofsky RS, Hyde JS (1992) Time course EPI of human brain function during task activation. Magn Reson Med 25:390–397PubMedCrossRef
3.
Zurück zum Zitat Bodurka J, Bandettini PA (2002) Toward direct mapping of neuronal activity: MRI detection of ultraweak transient magnetic field changes. Magn Reson Med 47:1052–1058PubMedCrossRef Bodurka J, Bandettini PA (2002) Toward direct mapping of neuronal activity: MRI detection of ultraweak transient magnetic field changes. Magn Reson Med 47:1052–1058PubMedCrossRef
4.
Zurück zum Zitat Bodurka J, Jesmanowicz A, Hyde JS, Xu H, Estkowski L, Li SJ (1999) Current-induced magnetic resonance phase imaging. J Magn Reson 137:265–271PubMedCrossRef Bodurka J, Jesmanowicz A, Hyde JS, Xu H, Estkowski L, Li SJ (1999) Current-induced magnetic resonance phase imaging. J Magn Reson 137:265–271PubMedCrossRef
5.
Zurück zum Zitat Callaghan PT (1990) Susceptibility-limited resolution in nuclear magnetic resonance microscopy. J Magn Reson 87:304–318 Callaghan PT (1990) Susceptibility-limited resolution in nuclear magnetic resonance microscopy. J Magn Reson 87:304–318
6.
Zurück zum Zitat Cassara AM, Hagberg GE, Bianciardi M, Migliore M, Maraviglia B (2008) Realistic simulations of neuronal activity: A contribution to the debate on direct detection of neuronal currents by MRI. NeuroImage 39:87–106PubMedCrossRef Cassara AM, Hagberg GE, Bianciardi M, Migliore M, Maraviglia B (2008) Realistic simulations of neuronal activity: A contribution to the debate on direct detection of neuronal currents by MRI. NeuroImage 39:87–106PubMedCrossRef
7.
Zurück zum Zitat Cassara AM, Maraviglia B (2008) Microscopic investigation of the resonant mechanism for the implementation of nc-MRI at ultra-low field MRI. NeuroImage 41:1228–1241PubMedCrossRef Cassara AM, Maraviglia B (2008) Microscopic investigation of the resonant mechanism for the implementation of nc-MRI at ultra-low field MRI. NeuroImage 41:1228–1241PubMedCrossRef
8.
Zurück zum Zitat Chu R, de Zwart J, van Gelderen P, Fukunaga M, Kellman P, Holroyd T, Duyn JH (2004) Hunting for neuronal currents: absence of rapid MRI signal changes during visual-evoked response. Neuroimage 23:1059–1067PubMedCrossRef Chu R, de Zwart J, van Gelderen P, Fukunaga M, Kellman P, Holroyd T, Duyn JH (2004) Hunting for neuronal currents: absence of rapid MRI signal changes during visual-evoked response. Neuroimage 23:1059–1067PubMedCrossRef
9.
Zurück zum Zitat Gielen FLH, Roth BJ, Wikswo JP (1986) Capabilities of a toroid-amplifier system for magnetic measurement of current in biological tissue. IEEE Trans Biomed Eng 33:910–921PubMedCrossRef Gielen FLH, Roth BJ, Wikswo JP (1986) Capabilities of a toroid-amplifier system for magnetic measurement of current in biological tissue. IEEE Trans Biomed Eng 33:910–921PubMedCrossRef
10.
Zurück zum Zitat Gielen FLH, Friedman RN, Wikswo JP (1991) In vivo magnetic and electric recordings from nerve bundles and single motor units in mammalian skeletal muscle. J Gen Physiol 98:1043–1061PubMedCrossRef Gielen FLH, Friedman RN, Wikswo JP (1991) In vivo magnetic and electric recordings from nerve bundles and single motor units in mammalian skeletal muscle. J Gen Physiol 98:1043–1061PubMedCrossRef
11.
Zurück zum Zitat Hagberg GE, Bianciardi M, Maraviglia B (2006) Challenges for detection of neuronal currents by MRI. Magn Reson Med 24:483–493 Hagberg GE, Bianciardi M, Maraviglia B (2006) Challenges for detection of neuronal currents by MRI. Magn Reson Med 24:483–493
12.
Zurück zum Zitat Hennig J, Zhong K, Speck O (2008) MR-encephalography: fast multi-channel monitoring of brain physiology with magnetic resonance. NeuroImage 39:310–317CrossRef Hennig J, Zhong K, Speck O (2008) MR-encephalography: fast multi-channel monitoring of brain physiology with magnetic resonance. NeuroImage 39:310–317CrossRef
13.
Zurück zum Zitat Johnston D, Magee JC, Colbert CM, Christie BR (1996) Active properties of neuronal dendrites. Annu Rev Neurosci 19:165–186PubMedCrossRef Johnston D, Magee JC, Colbert CM, Christie BR (1996) Active properties of neuronal dendrites. Annu Rev Neurosci 19:165–186PubMedCrossRef
14.
Zurück zum Zitat Kamei H, Iramina K, Yoshlkawa K, Ueno S (1999) Neuronal current distribution imaging using magnetic resonance. IEEE Trans Magn 35:4109–4111CrossRef Kamei H, Iramina K, Yoshlkawa K, Ueno S (1999) Neuronal current distribution imaging using magnetic resonance. IEEE Trans Magn 35:4109–4111CrossRef
15.
Zurück zum Zitat Kaufman L, Kaufman JH, Wang J-Z (1991) On cortical folds and neuromagnetic fields. Electroenceph Clin Neurophysiol 79:211–229PubMedCrossRef Kaufman L, Kaufman JH, Wang J-Z (1991) On cortical folds and neuromagnetic fields. Electroenceph Clin Neurophysiol 79:211–229PubMedCrossRef
16.
Zurück zum Zitat Konn D, Gowland P, Bowtell R (2003) MRI detection of weak magnetic fields due to an extended current dipole in a conduction sphere: A model for direct detection of neuronal currents in the brain. Magn Reson Med 50:40–49PubMedCrossRef Konn D, Gowland P, Bowtell R (2003) MRI detection of weak magnetic fields due to an extended current dipole in a conduction sphere: A model for direct detection of neuronal currents in the brain. Magn Reson Med 50:40–49PubMedCrossRef
17.
Zurück zum Zitat Kraus RH, Volegov P, Matlachov A, Espy M (2008) Toward direct neural current imaging by resonant mechanisms at ultra-low field. Neuroimage. 39:310–317PubMedCrossRef Kraus RH, Volegov P, Matlachov A, Espy M (2008) Toward direct neural current imaging by resonant mechanisms at ultra-low field. Neuroimage. 39:310–317PubMedCrossRef
18.
Zurück zum Zitat Kwong K, Brady T, Rosen B (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA 89:5675–5679PubMedCrossRef Kwong K, Brady T, Rosen B (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA 89:5675–5679PubMedCrossRef
19.
Zurück zum Zitat Nunez PL, Srinivasan R (2006) Electric Fields of the Brain the Neurophysics of EEG, 2nd edn. Oxford University Press, New YorkCrossRef Nunez PL, Srinivasan R (2006) Electric Fields of the Brain the Neurophysics of EEG, 2nd edn. Oxford University Press, New YorkCrossRef
20.
Zurück zum Zitat Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependence on blood oxygenation. Proc Natl Acad Sci USA 87:9868–9872PubMedCrossRef Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependence on blood oxygenation. Proc Natl Acad Sci USA 87:9868–9872PubMedCrossRef
21.
Zurück zum Zitat Paley MNJ, Chow LS, Whitby EW, Cook GG (2009) Modeling of axonal fields in the optic nerve for direct MR detection studies. Image Vision Comput 27:331–341CrossRef Paley MNJ, Chow LS, Whitby EW, Cook GG (2009) Modeling of axonal fields in the optic nerve for direct MR detection studies. Image Vision Comput 27:331–341CrossRef
22.
Zurück zum Zitat Park TS, Lee SY (2007) Effects of neuronal magnetic field on MRI: Numerical analysis with axon and dendrite models. NeuroImage 35:531–538PubMedCrossRef Park TS, Lee SY (2007) Effects of neuronal magnetic field on MRI: Numerical analysis with axon and dendrite models. NeuroImage 35:531–538PubMedCrossRef
23.
Zurück zum Zitat Roth BJ, Wikswo JP (1985) The magnetic field of a single nerve axon: a comparison of theory and experiment. Biophys J 48:93–109PubMedCrossRef Roth BJ, Wikswo JP (1985) The magnetic field of a single nerve axon: a comparison of theory and experiment. Biophys J 48:93–109PubMedCrossRef
24.
Zurück zum Zitat Sundaram P, Wells WM, Mulkern RV, Bubrick EJ, Bromfield EB, Munch M, Orbach DB (2010) Fast human brain magnetic resonance responses associated with epileptiform spikes. Magn Reson Med 64:1728–1738PubMedCrossRef Sundaram P, Wells WM, Mulkern RV, Bubrick EJ, Bromfield EB, Munch M, Orbach DB (2010) Fast human brain magnetic resonance responses associated with epileptiform spikes. Magn Reson Med 64:1728–1738PubMedCrossRef
25.
Zurück zum Zitat Swinney KR, Wikswo JP (1980) A calculation of the magnetic field of a nerve action potential. Biophys J 32:719–732PubMedCrossRef Swinney KR, Wikswo JP (1980) A calculation of the magnetic field of a nerve action potential. Biophys J 32:719–732PubMedCrossRef
26.
Zurück zum Zitat Truong TK, Song AW (2006) Finding neuroelectric activity under magnetic field oscillations (NAMO) with magnetic resonance imaging in vivo. Proc Natl Acad Sci USA 103:12598–12601PubMedCrossRef Truong TK, Song AW (2006) Finding neuroelectric activity under magnetic field oscillations (NAMO) with magnetic resonance imaging in vivo. Proc Natl Acad Sci USA 103:12598–12601PubMedCrossRef
27.
Zurück zum Zitat van Egeraat JM, Friedman RN, Wikswo JP (1990) Magnetic field of a single muscle fiber: First measurement and a core conductor model. Biophys J 57:663–667PubMedCrossRef van Egeraat JM, Friedman RN, Wikswo JP (1990) Magnetic field of a single muscle fiber: First measurement and a core conductor model. Biophys J 57:663–667PubMedCrossRef
28.
Zurück zum Zitat van Egeraat JM, Wikswo JP (1993) A model for axonal propagation incorporating both radial and axial ionic transport. Biophys J 64:1287–1298PubMedCrossRef van Egeraat JM, Wikswo JP (1993) A model for axonal propagation incorporating both radial and axial ionic transport. Biophys J 64:1287–1298PubMedCrossRef
29.
Zurück zum Zitat van Egeraat JM, Stasaski R, Barach JP, Friedman RN, Wikswo JP (1993) The biomagnetic signature of a crushed axon: A comparison of theory and experiment. Biophys J 64:1299–1305PubMedCrossRef van Egeraat JM, Stasaski R, Barach JP, Friedman RN, Wikswo JP (1993) The biomagnetic signature of a crushed axon: A comparison of theory and experiment. Biophys J 64:1299–1305PubMedCrossRef
30.
Zurück zum Zitat Wijesinghe RS, Gielen FLH, Wikswo JP (1991) A model for compound action potentials and currents in a nerve bundle III: A comparison of the conduction velocity distributions calculated from compound action currents and potentials. Ann Biomed Eng 18:97–121CrossRef Wijesinghe RS, Gielen FLH, Wikswo JP (1991) A model for compound action potentials and currents in a nerve bundle III: A comparison of the conduction velocity distributions calculated from compound action currents and potentials. Ann Biomed Eng 18:97–121CrossRef
31.
Zurück zum Zitat Wijesinghe RS, Roth BJ (2009) Detection of peripheral nerve and skeletal muscle action currents using magnetic resonance imaging. Ann Biomed Eng 37(11):2402–2406PubMedCrossRef Wijesinghe RS, Roth BJ (2009) Detection of peripheral nerve and skeletal muscle action currents using magnetic resonance imaging. Ann Biomed Eng 37(11):2402–2406PubMedCrossRef
32.
Zurück zum Zitat Wikswo JP, van Egeraat JM (1991) Cellular magnetic fields: Fundamental and applied measurements on nerve axons, peripheral nerve bundles, and skeletal muscle. J Clin Neurophysiol 8:170–188PubMedCrossRef Wikswo JP, van Egeraat JM (1991) Cellular magnetic fields: Fundamental and applied measurements on nerve axons, peripheral nerve bundles, and skeletal muscle. J Clin Neurophysiol 8:170–188PubMedCrossRef
33.
Zurück zum Zitat Wikswo JP, Barach JP, Freeman JA (1980) Magnetic field of a nerve impulse: First measurements. Science 208:53–55PubMedCrossRef Wikswo JP, Barach JP, Freeman JA (1980) Magnetic field of a nerve impulse: First measurements. Science 208:53–55PubMedCrossRef
34.
Zurück zum Zitat Wikswo JP, Henry WP, Freidman RN, Kilroy WA, Wijesinghe RS, van Egeraat JM, Milek MA (1990) Intraoperative recording of the magnetic field of a human nerve. In: Williamson SJ, Hoke M, Stroink G, Kotani M (eds) Advances in biomagnetism. Plenum, New York, pp 137–140 Wikswo JP, Henry WP, Freidman RN, Kilroy WA, Wijesinghe RS, van Egeraat JM, Milek MA (1990) Intraoperative recording of the magnetic field of a human nerve. In: Williamson SJ, Hoke M, Stroink G, Kotani M (eds) Advances in biomagnetism. Plenum, New York, pp 137–140
35.
Zurück zum Zitat Woosley JK, Roth BJ, Wikswo JP (1985) The magnetic field of a single axon: a volume conductor model. Math Biosci 76:1–36CrossRef Woosley JK, Roth BJ, Wikswo JP (1985) The magnetic field of a single axon: a volume conductor model. Math Biosci 76:1–36CrossRef
36.
Zurück zum Zitat Xue X, Chen X, Grabowski T, Xiong J (2009) Direct MRI mapping of neuronal activity evoked by electrical stimulation of the median nerve at the right wrist. Magn Reson Med 61:1073–1082PubMedCrossRef Xue X, Chen X, Grabowski T, Xiong J (2009) Direct MRI mapping of neuronal activity evoked by electrical stimulation of the median nerve at the right wrist. Magn Reson Med 61:1073–1082PubMedCrossRef
Metadaten
Titel
Is it possible to detect dendrite currents using presently available magnetic resonance imaging techniques?
verfasst von
William I. Jay
Ranjith S. Wijesinghe
Brain D. Dolasinski
Bradley J. Roth
Publikationsdatum
01.07.2012
Verlag
Springer-Verlag
Erschienen in
Medical & Biological Engineering & Computing / Ausgabe 7/2012
Print ISSN: 0140-0118
Elektronische ISSN: 1741-0444
DOI
https://doi.org/10.1007/s11517-012-0899-3

Weitere Artikel der Ausgabe 7/2012

Medical & Biological Engineering & Computing 7/2012 Zur Ausgabe

Premium Partner