Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 2/2021

12.01.2021

Lamellar Pearlite as an Initial Microstructure for Austenite Reversion Treatment

verfasst von: Dezhen Yang, Chao Zhang, Xingwang Cheng, Zhiping Xiong

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Through carbon and manganese partitioning to austenite from polygonal ferrite, bainite and martensite, retained austenite (RA) could be stabilized at room temperature in advanced high-strength steels. Alternatively, the present study utilized lamellar pearlite as an initial microstructure for austenite reversion treatment at 750 °C and successfully produced the microstructure consisting of film RA and lath martensite. This heat treatment is named as pearlitic reversed austenitization. The austenite formed from cementite was enriched in manganese and, in turn, was retained at room temperature; whereas, the austenite formed from ferrite was depleted in manganese and, in turn, transformed to martensite during cooling to room temperature. Different holding times at 750 °C led to different microstructures and RA fractions. After tempering 1 min at 300 °C, a high ultimate tensile strength of 1791 MPa and a decent total elongation of 8.1% were achieved due to tempered martensite matrix and transformation-induced plasticity effect. These tensile properties are comparable to C250 maraging steel. This investigation opens a new avenue to produce high-strength and good ductility steels based on pearlite.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J. Zhao and Z. Jiang, Thermomechanical Processing of Advanced High Strength Steels, Prog. Mater Sci., 2018, 94, p 174–242CrossRef J. Zhao and Z. Jiang, Thermomechanical Processing of Advanced High Strength Steels, Prog. Mater Sci., 2018, 94, p 174–242CrossRef
2.
Zurück zum Zitat I.B. Timokhina, P.D. Hodgson, and E.V. Pereloma, Effect of Microstructure on the Stability of Retained Austenite in Transformation-Induced-Plasticity Steels, Metall. Mater. Trans. A, 2004, 35A, p 2331–2341CrossRef I.B. Timokhina, P.D. Hodgson, and E.V. Pereloma, Effect of Microstructure on the Stability of Retained Austenite in Transformation-Induced-Plasticity Steels, Metall. Mater. Trans. A, 2004, 35A, p 2331–2341CrossRef
3.
Zurück zum Zitat E.V. Pereloma, A.A. Gazder, and I.B. Timokhina, Retained Austenite: Transformation-induced Plasticity, in Encyclopedia of Iron, Steel and Their Alloys, R. Colas and G.E. Totten, Ed., Taylor and Francis, Inc., New York, 2016, p 3088–3103CrossRef E.V. Pereloma, A.A. Gazder, and I.B. Timokhina, Retained Austenite: Transformation-induced Plasticity, in Encyclopedia of Iron, Steel and Their Alloys, R. Colas and G.E. Totten, Ed., Taylor and Francis, Inc., New York, 2016, p 3088–3103CrossRef
4.
Zurück zum Zitat C. Zhao, C. Zhang, W. Cao, Z. Yang, H. Dong, and Y. Weng, Austenite Thermal Stabilization Through the Concentration of Manganese and Carbon in the 0.2C-5Mn Steel, ISIJ Int., 2014, 54, p 2875–2880CrossRef C. Zhao, C. Zhang, W. Cao, Z. Yang, H. Dong, and Y. Weng, Austenite Thermal Stabilization Through the Concentration of Manganese and Carbon in the 0.2C-5Mn Steel, ISIJ Int., 2014, 54, p 2875–2880CrossRef
5.
Zurück zum Zitat E. De Moor, D.K. Matlock, J.G. Speera, and M.J. Merwin, Austenite Stabilization through Manganese Enrichment, Scr. Mater., 2011, 64, p 185–188CrossRef E. De Moor, D.K. Matlock, J.G. Speera, and M.J. Merwin, Austenite Stabilization through Manganese Enrichment, Scr. Mater., 2011, 64, p 185–188CrossRef
6.
Zurück zum Zitat P.J. Jacques, Transformation-Induced Plasticity for High Strength Formable Steels, Curr. Opin. Solid State Mater. Sci., 2004, 8, p 259–265CrossRef P.J. Jacques, Transformation-Induced Plasticity for High Strength Formable Steels, Curr. Opin. Solid State Mater. Sci., 2004, 8, p 259–265CrossRef
7.
Zurück zum Zitat F.G. Caballero, H.K.D.H. Bhadeshia, K.J.A. Mawella, D.G. Jones, and P. Brown, Very Strong Low Temperature Bainite, Mater. Sci. Technol., 2002, 18, p 279–284CrossRef F.G. Caballero, H.K.D.H. Bhadeshia, K.J.A. Mawella, D.G. Jones, and P. Brown, Very Strong Low Temperature Bainite, Mater. Sci. Technol., 2002, 18, p 279–284CrossRef
8.
Zurück zum Zitat J. Speer, D.K. Matlock, B.C. de Cooman, and J.G. Schroth, Carbon Partitioning into Austenite after Martensite Transformation, Acta Mater., 2003, 51, p 2611–2622CrossRef J. Speer, D.K. Matlock, B.C. de Cooman, and J.G. Schroth, Carbon Partitioning into Austenite after Martensite Transformation, Acta Mater., 2003, 51, p 2611–2622CrossRef
9.
Zurück zum Zitat D.V. Edmonds, K. He, F.C. Rizzo, B.C. de Cooman, D.K. Matlock, and J.G. Speer, Quenching and Partitioning Martensite—A Novel Steel Heat Treatment, Mater. Sci. Eng., A, 2006, 438–440, p 25–34CrossRef D.V. Edmonds, K. He, F.C. Rizzo, B.C. de Cooman, D.K. Matlock, and J.G. Speer, Quenching and Partitioning Martensite—A Novel Steel Heat Treatment, Mater. Sci. Eng., A, 2006, 438–440, p 25–34CrossRef
10.
Zurück zum Zitat S.M.K. Hosseini, A. Zaeri-Hanzaki, and S. Yue, Effect of Austenite Deformation in Non-recrystallization Region on Microstructure Development in Low-Silicon Content TRIP-Assisted Steels, Mater. Sci. Eng., A, 2014, 618, p 63–70CrossRef S.M.K. Hosseini, A. Zaeri-Hanzaki, and S. Yue, Effect of Austenite Deformation in Non-recrystallization Region on Microstructure Development in Low-Silicon Content TRIP-Assisted Steels, Mater. Sci. Eng., A, 2014, 618, p 63–70CrossRef
11.
Zurück zum Zitat A. Zarei-Hanzaki and S. Yue, Ferrite Formation Characteristics in Si-Mn TRIP Steels, ISIJ Int., 1997, 37, p 583–589CrossRef A. Zarei-Hanzaki and S. Yue, Ferrite Formation Characteristics in Si-Mn TRIP Steels, ISIJ Int., 1997, 37, p 583–589CrossRef
12.
Zurück zum Zitat S. Li, Z.N. Yang, M. Enomoto, and Z.G. Yang, Study of Partition to Non-partition Transition of Austenite Growth along Pearlite Lamellae in Near-Eutectoid Fe-C-Mn Alloy, Acta Mater., 2019, 177, p 198–208CrossRef S. Li, Z.N. Yang, M. Enomoto, and Z.G. Yang, Study of Partition to Non-partition Transition of Austenite Growth along Pearlite Lamellae in Near-Eutectoid Fe-C-Mn Alloy, Acta Mater., 2019, 177, p 198–208CrossRef
13.
Zurück zum Zitat Z.-D. Li, G. Miyamoto, Z.-G. Yang, and T. Furuhara, Kinetics of Reverse Transformation from Pearlite to Austenite in an Fe-0.6 Mass pct C Alloy and the Effects of Alloying Elements, Metall. Mater. Trans. A, 2011, 42, p 1586–1596CrossRef Z.-D. Li, G. Miyamoto, Z.-G. Yang, and T. Furuhara, Kinetics of Reverse Transformation from Pearlite to Austenite in an Fe-0.6 Mass pct C Alloy and the Effects of Alloying Elements, Metall. Mater. Trans. A, 2011, 42, p 1586–1596CrossRef
14.
Zurück zum Zitat W.W. Sun, Y.X. Wu, S.C. Yang, and C.R. Hutchinson, Advanced High Strength Steel (AHSS) Development through Chemical Patterning of Austenite, Scr. Mater., 2018, 146, p 60–63CrossRef W.W. Sun, Y.X. Wu, S.C. Yang, and C.R. Hutchinson, Advanced High Strength Steel (AHSS) Development through Chemical Patterning of Austenite, Scr. Mater., 2018, 146, p 60–63CrossRef
15.
Zurück zum Zitat Y. Tomota, K. Kuroki, T. Mori, and I. Tamura, Tensile Deformation of Two-Ductile-Phase Alloys: Flow Curves of α-γ Fe-Cr-Ni Alloys, Mater. Sci. Eng., 1976, 24, p 85–94CrossRef Y. Tomota, K. Kuroki, T. Mori, and I. Tamura, Tensile Deformation of Two-Ductile-Phase Alloys: Flow Curves of α-γ Fe-Cr-Ni Alloys, Mater. Sci. Eng., 1976, 24, p 85–94CrossRef
16.
Zurück zum Zitat R. Ranjan, H. Beladi, S.B. Singh, and P.D. Hodgson, Thermo-mechanical Processing of TRIP-Aided Steels, Metall. Mater. Trans. A, 2015, 46, p 3232–3247CrossRef R. Ranjan, H. Beladi, S.B. Singh, and P.D. Hodgson, Thermo-mechanical Processing of TRIP-Aided Steels, Metall. Mater. Trans. A, 2015, 46, p 3232–3247CrossRef
17.
Zurück zum Zitat N. Takayama, G. Miyamoto, and T. Furuhara, Effects of Transformation Temperature on Variant Pairing of Bainitic Ferrite in Low Carbon Steel, Acta Mater., 2012, 60, p 2387–2396CrossRef N. Takayama, G. Miyamoto, and T. Furuhara, Effects of Transformation Temperature on Variant Pairing of Bainitic Ferrite in Low Carbon Steel, Acta Mater., 2012, 60, p 2387–2396CrossRef
18.
Zurück zum Zitat Z.P. Xiong, A.G. Kostryzhev, L. Chen, and E.V. Pereloma, Microstructure and Mechanical Properties of Strip Cast TRIP Steel Subjected to Thermo-mechanical Simulation, Mater. Sci. Eng., A, 2016, 677, p 356–366CrossRef Z.P. Xiong, A.G. Kostryzhev, L. Chen, and E.V. Pereloma, Microstructure and Mechanical Properties of Strip Cast TRIP Steel Subjected to Thermo-mechanical Simulation, Mater. Sci. Eng., A, 2016, 677, p 356–366CrossRef
19.
Zurück zum Zitat Z.P. Xiong, A.G. Kostryzhev, A.A. Saleh, L. Chen, and E.V. Pereloma, Microstructures and Mechanical Properties of TRIP Steel Produced by Strip Casting Simulated in the Laboratory, Mater. Sci. Eng., A, 2016, 664, p 26–42CrossRef Z.P. Xiong, A.G. Kostryzhev, A.A. Saleh, L. Chen, and E.V. Pereloma, Microstructures and Mechanical Properties of TRIP Steel Produced by Strip Casting Simulated in the Laboratory, Mater. Sci. Eng., A, 2016, 664, p 26–42CrossRef
20.
Zurück zum Zitat Z.P. Xiong, P.J. Jacques, A. Perlade, and T. Pardoen, Characterization and Control of the Compromise between Tensile Properties and Fracture Toughness in a Quenched and Partitioned Steel, Metall. Mater. Trans. A, 2019, 50, p 3502–3513CrossRef Z.P. Xiong, P.J. Jacques, A. Perlade, and T. Pardoen, Characterization and Control of the Compromise between Tensile Properties and Fracture Toughness in a Quenched and Partitioned Steel, Metall. Mater. Trans. A, 2019, 50, p 3502–3513CrossRef
21.
Zurück zum Zitat E. Navara, B. Bengtsson, and K.E. Easterling, Austenite Formation in Manganese-Partitioning Dual-Phase Steel, Mater. Sci. Technol., 1986, 2, p 1196–1201CrossRef E. Navara, B. Bengtsson, and K.E. Easterling, Austenite Formation in Manganese-Partitioning Dual-Phase Steel, Mater. Sci. Technol., 1986, 2, p 1196–1201CrossRef
22.
Zurück zum Zitat Z.P. Xiong, A.A. Saleh, R.K.W. Marceau, A.S. Taylor, N.E. Stanford, A.G. Kostryzhev, and E.V. Pereloma, Site-Specific Atomic-Scale Characterisation of Retained Austenite in a Strip Cast TRIP Steel, Acta Mater., 2017, 134, p 1–15CrossRef Z.P. Xiong, A.A. Saleh, R.K.W. Marceau, A.S. Taylor, N.E. Stanford, A.G. Kostryzhev, and E.V. Pereloma, Site-Specific Atomic-Scale Characterisation of Retained Austenite in a Strip Cast TRIP Steel, Acta Mater., 2017, 134, p 1–15CrossRef
23.
Zurück zum Zitat L. Luo, W. Li, S. Liu, L. Wang, and X. Jin, Effect of Intermediate Temperature Annealing on the Stability of Retained Austenite and Mechanical Properties of Medium Mn-TRIP Steel, Mater. Sci. Eng., A, 2019, 742, p 69–77CrossRef L. Luo, W. Li, S. Liu, L. Wang, and X. Jin, Effect of Intermediate Temperature Annealing on the Stability of Retained Austenite and Mechanical Properties of Medium Mn-TRIP Steel, Mater. Sci. Eng., A, 2019, 742, p 69–77CrossRef
24.
Zurück zum Zitat I.B. Timokhina, P.D. Hodgson, and E.V. Pereloma, Transmission Electron Microscopy Characterization of the Bake-Hardening Behavior of Transformation-Induced Plasticity and Dual-Phase Steels, Metall. Mater. Trans. A, 2007, 38, p 2442–2454CrossRef I.B. Timokhina, P.D. Hodgson, and E.V. Pereloma, Transmission Electron Microscopy Characterization of the Bake-Hardening Behavior of Transformation-Induced Plasticity and Dual-Phase Steels, Metall. Mater. Trans. A, 2007, 38, p 2442–2454CrossRef
25.
Zurück zum Zitat G. Krauss, Tempering of Lath Martensite in Low and Medium Carbon Steels: Assessment and Challenges, Steel Res. Int., 2017, 88, p 1700038CrossRef G. Krauss, Tempering of Lath Martensite in Low and Medium Carbon Steels: Assessment and Challenges, Steel Res. Int., 2017, 88, p 1700038CrossRef
26.
Zurück zum Zitat Y.J. Zhao, X.P. Ren, Z.L. Hu, Z.P. Xiong, J.M. Zeng, and B.Y. Hou, Effect of Tempering on Microstructure and Mechanical Properties of 3Mn-Si-Ni Martensitic Steel, Mater. Sci. Eng., A, 2018, 711, p 397–404CrossRef Y.J. Zhao, X.P. Ren, Z.L. Hu, Z.P. Xiong, J.M. Zeng, and B.Y. Hou, Effect of Tempering on Microstructure and Mechanical Properties of 3Mn-Si-Ni Martensitic Steel, Mater. Sci. Eng., A, 2018, 711, p 397–404CrossRef
27.
Zurück zum Zitat S.C. Kennett, G. Krauss, and K.O. Findley, Prior Austenite Grain Size and Tempering Effects on the Dislocation Density of low-C Nb-Ti Microalloyed Lath Martensite, Scr. Mater., 2015, 107, p 123–126CrossRef S.C. Kennett, G. Krauss, and K.O. Findley, Prior Austenite Grain Size and Tempering Effects on the Dislocation Density of low-C Nb-Ti Microalloyed Lath Martensite, Scr. Mater., 2015, 107, p 123–126CrossRef
28.
Zurück zum Zitat L.R.C. Malheiros, E.A.P. Rodriguez, and A. Arlazarov, Mechanical Behavior of Tempered Martensite: Characterization and Modeling, Mater. Sci. Eng., A, 2017, 706, p 38–47CrossRef L.R.C. Malheiros, E.A.P. Rodriguez, and A. Arlazarov, Mechanical Behavior of Tempered Martensite: Characterization and Modeling, Mater. Sci. Eng., A, 2017, 706, p 38–47CrossRef
29.
Zurück zum Zitat P.D. Hodgson and R.K. Gibbs, A Mathematical Model to Predict the Mechanical Properties of Hot Rolled C-Mn and Microalloyed Steels, ISIJ Int., 1992, 32, p 1329–1338CrossRef P.D. Hodgson and R.K. Gibbs, A Mathematical Model to Predict the Mechanical Properties of Hot Rolled C-Mn and Microalloyed Steels, ISIJ Int., 1992, 32, p 1329–1338CrossRef
30.
Zurück zum Zitat J.J. Sun, Y.N. Liu, Y.T. Zhu, F.L. Lian, H.J. Liu, T. Jiang, S.W. Guo, W.Q. Liu, and X.B. Ren, Super-Strong Dislocation-Structured High-Carbon Martensite Steel, Sci. Rep., 2017, 7, p 6596CrossRef J.J. Sun, Y.N. Liu, Y.T. Zhu, F.L. Lian, H.J. Liu, T. Jiang, S.W. Guo, W.Q. Liu, and X.B. Ren, Super-Strong Dislocation-Structured High-Carbon Martensite Steel, Sci. Rep., 2017, 7, p 6596CrossRef
31.
Zurück zum Zitat Z.P. Xiong, P.J. Jacques, A. Perlade, and T. Pardoen, Ductile and Intergranular Brittle Fracture in a Two-Step Quenching and Partitioning Steel, Scr. Mater., 2018, 157, p 6–9CrossRef Z.P. Xiong, P.J. Jacques, A. Perlade, and T. Pardoen, Ductile and Intergranular Brittle Fracture in a Two-Step Quenching and Partitioning Steel, Scr. Mater., 2018, 157, p 6–9CrossRef
Metadaten
Titel
Lamellar Pearlite as an Initial Microstructure for Austenite Reversion Treatment
verfasst von
Dezhen Yang
Chao Zhang
Xingwang Cheng
Zhiping Xiong
Publikationsdatum
12.01.2021
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 2/2021
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-020-05418-0

Weitere Artikel der Ausgabe 2/2021

Journal of Materials Engineering and Performance 2/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.