Skip to main content

2017 | OriginalPaper | Buchkapitel

13. Landslide Risk Assessment Using Multi-hazard Scenario Produced by Logistic Regression and LiDAR-Based DEM

verfasst von : Biswajeet Pradhan, Waleed M. Abdulwahid

Erschienen in: Laser Scanning Applications in Landslide Assessment

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The rapid urban development and population growths worldwide push threats to the people because of landslides and other mass movements. Landslide is one of the natural disasters causing significant damages to lives and properties.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Akgun, A. (2012). A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision, and likelihood ratio methods: a case study at İzmir, Turkey. Landslides, 9(1), 93–106.CrossRef Akgun, A. (2012). A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision, and likelihood ratio methods: a case study at İzmir, Turkey. Landslides, 9(1), 93–106.CrossRef
Zurück zum Zitat Akgun, A., Kıncal, C., & Pradhan, B. (2012). Application of remote sensing data and GIS for landslide risk assessment as an environmental threat to Izmir city (west Turkey). Environmental Monitoring and Assessment, 184(9), 5453–5470.‏ Akgun, A., Kıncal, C., & Pradhan, B. (2012). Application of remote sensing data and GIS for landslide risk assessment as an environmental threat to Izmir city (west Turkey). Environmental Monitoring and Assessment, 184(9), 5453–5470.‏
Zurück zum Zitat Alimohammadlou, Y., Najafi, A., & Yalcin, A. (2013). Landslide process and impacts: A proposed classification method. Catena, 104, 219–232.CrossRef Alimohammadlou, Y., Najafi, A., & Yalcin, A. (2013). Landslide process and impacts: A proposed classification method. Catena, 104, 219–232.CrossRef
Zurück zum Zitat Althuwaynee, O. F., & Pradhan, B. (2016). Semi-quantitative landslide risk assessment using GIS-based exposure analysis in Kuala Lumpur City.‏ Althuwaynee, O. F., & Pradhan, B. (2016). Semi-quantitative landslide risk assessment using GIS-based exposure analysis in Kuala Lumpur City.‏
Zurück zum Zitat Althuwaynee, O. F., Pradhan, B., & Ahmad, N. (2014a). Estimation of rainfall threshold and its use in landslide hazard mapping of kuala lumpur metropolitan and surrounding areas. Landslides, 1–15. Althuwaynee, O. F., Pradhan, B., & Ahmad, N. (2014a). Estimation of rainfall threshold and its use in landslide hazard mapping of kuala lumpur metropolitan and surrounding areas. Landslides, 1–15.
Zurück zum Zitat Althuwaynee, O. F., Pradhan, B., Park, H.-J., & Lee, J. H. (2014b). A novel ensemble bivariate statistical evidential belief function with knowledge-based analytical hierarchy process and multivariate statistical logistic regression for landslide susceptibility mapping. Catena, 114, 21–36.CrossRef Althuwaynee, O. F., Pradhan, B., Park, H.-J., & Lee, J. H. (2014b). A novel ensemble bivariate statistical evidential belief function with knowledge-based analytical hierarchy process and multivariate statistical logistic regression for landslide susceptibility mapping. Catena, 114, 21–36.CrossRef
Zurück zum Zitat Bai, S., Wang, J., Lü, G., Zhou, P., Hou, S., & Xu, S. (2010). GIS-based logistic regression for landslide susceptibility mapping of the Zhongxian segment in the three gorges area, China. Geomorphology, 115(1), 23–31.CrossRef Bai, S., Wang, J., Lü, G., Zhou, P., Hou, S., & Xu, S. (2010). GIS-based logistic regression for landslide susceptibility mapping of the Zhongxian segment in the three gorges area, China. Geomorphology, 115(1), 23–31.CrossRef
Zurück zum Zitat Ballabio, C., & Sterlacchini, S. (2012). Support vector machines for landslide susceptibility mapping: the Staffora River Basin case study, Italy. Mathematical Geosciences, 44(1), 47–70.‏ Ballabio, C., & Sterlacchini, S. (2012). Support vector machines for landslide susceptibility mapping: the Staffora River Basin case study, Italy. Mathematical Geosciences, 44(1), 47–70.‏
Zurück zum Zitat Bell, R., & Glade, T. (2004). Quantitative risk analysis for landslides? Examples from Bíldudalur, NW-Iceland. Natural Hazards and Earth System Science, 4(1), 117–131.CrossRef Bell, R., & Glade, T. (2004). Quantitative risk analysis for landslides? Examples from Bíldudalur, NW-Iceland. Natural Hazards and Earth System Science, 4(1), 117–131.CrossRef
Zurück zum Zitat Bornaetxea, T., Antigüedad, I., & Ormaetxea, O. (2016, April). Shallow landslide susceptibility model for the Oria river basin, Gipuzkoa province (North of Spain). Application of the logistic regression and comparison with previous studies. In EGU General Assembly Conference Abstracts (Vol. 18, p. 7715).‏ Bornaetxea, T., Antigüedad, I., & Ormaetxea, O. (2016, April). Shallow landslide susceptibility model for the Oria river basin, Gipuzkoa province (North of Spain). Application of the logistic regression and comparison with previous studies. In EGU General Assembly Conference Abstracts (Vol. 18, p. 7715).‏
Zurück zum Zitat Budimir, M., Atkinson, P., & Lewis, H. (2015). A systematic review of landslide probability mapping using logistic regression. Landslides, 1–18. Budimir, M., Atkinson, P., & Lewis, H. (2015). A systematic review of landslide probability mapping using logistic regression. Landslides, 1–18.
Zurück zum Zitat Bui, D. T., Tuan, T. A., Klempe, H., Pradhan, B., & Revhaug, I. (2016). Spatial prediction models for shallow landslide hazards: A comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides, 13(2), 361–378.‏ Bui, D. T., Tuan, T. A., Klempe, H., Pradhan, B., & Revhaug, I. (2016). Spatial prediction models for shallow landslide hazards: A comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression, and logistic model tree. Landslides, 13(2), 361–378.‏
Zurück zum Zitat Calvo, B., & Savi, F. (2009). A real-world application of monte carlo procedure for debris flow risk assessment. Computers & Geosciences, 35(5), 967–977.CrossRef Calvo, B., & Savi, F. (2009). A real-world application of monte carlo procedure for debris flow risk assessment. Computers & Geosciences, 35(5), 967–977.CrossRef
Zurück zum Zitat Chung, C. F., & Fabbri, A. G. (2003). Validation of spatial prediction models for landslide hazard mapping. Natural Hazards, 30(3), 451–472.CrossRef Chung, C. F., & Fabbri, A. G. (2003). Validation of spatial prediction models for landslide hazard mapping. Natural Hazards, 30(3), 451–472.CrossRef
Zurück zum Zitat Corominas, J., Van Westen, C., Frattini, P., Cascini, L., Malet, J.-P., Fotopoulou, S., et al. (2014). Recommendations for the quantitative analysis of landslide risk. Bulletin of Engineering Geology and the Environment, 73(2), 209–263. Corominas, J., Van Westen, C., Frattini, P., Cascini, L., Malet, J.-P., Fotopoulou, S., et al. (2014). Recommendations for the quantitative analysis of landslide risk. Bulletin of Engineering Geology and the Environment, 73(2), 209–263.
Zurück zum Zitat Costanzo, D., Chacón, J., Conoscenti, C., Irigaray, C., & Rotigliano, E. (2014). Forward logistic regression for earth-flow landslide susceptibility assessment in the Platani river basin (southern Sicily, Italy). Landslides, 11(4), 639–653.‏ Costanzo, D., Chacón, J., Conoscenti, C., Irigaray, C., & Rotigliano, E. (2014). Forward logistic regression for earth-flow landslide susceptibility assessment in the Platani river basin (southern Sicily, Italy). Landslides, 11(4), 639–653.‏
Zurück zum Zitat Demir, G., Aytekin, M., & Akgun, A. (2015). Landslide susceptibility mapping by frequency ratio and logistic regression methods: An example from Niksar-Resadiye (Tokat, Turkey). Arabian Journal of Geosciences, 8(3), 1801–1812.CrossRef Demir, G., Aytekin, M., & Akgun, A. (2015). Landslide susceptibility mapping by frequency ratio and logistic regression methods: An example from Niksar-Resadiye (Tokat, Turkey). Arabian Journal of Geosciences, 8(3), 1801–1812.CrossRef
Zurück zum Zitat Devkota, K. C., Regmi, A. D., Pourghasemi, H. R., Yoshida, K., Pradhan, B., Ryu, I. C., et al. (2013). Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling–Narayanghat road section in Nepal Himalaya. Natural Hazards, 65(1), 135–165.‏ Devkota, K. C., Regmi, A. D., Pourghasemi, H. R., Yoshida, K., Pradhan, B., Ryu, I. C., et al. (2013). Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling–Narayanghat road section in Nepal Himalaya. Natural Hazards, 65(1), 135–165.‏
Zurück zum Zitat Dilley, M. (2005). Natural disaster hotspots: A global risk analysis. World Bank Publications. Dilley, M. (2005). Natural disaster hotspots: A global risk analysis. World Bank Publications.
Zurück zum Zitat Dou, J., Oguchi, T., Hayakawa, Y. S., Uchiyama, S., Saito, H., & Paudel, U. (2014). GIS-based landslide susceptibility mapping using a certainty factor model and its validation in the Chuetsu area, Central Japan. In Landslide science for a safer geoenvironment (pp. 419–424). Berlin: Springer. Dou, J., Oguchi, T., Hayakawa, Y. S., Uchiyama, S., Saito, H., & Paudel, U. (2014). GIS-based landslide susceptibility mapping using a certainty factor model and its validation in the Chuetsu area, Central Japan. In Landslide science for a safer geoenvironment (pp. 419–424). Berlin: Springer.
Zurück zum Zitat Dragićević, S., Lai, T., & Balram, S. (2015). GIS-based multicriteria evaluation with multiscale analysis to characterize urban landslide susceptibility in data-scarce environments. Habitat International, 45, 114–125.CrossRef Dragićević, S., Lai, T., & Balram, S. (2015). GIS-based multicriteria evaluation with multiscale analysis to characterize urban landslide susceptibility in data-scarce environments. Habitat International, 45, 114–125.CrossRef
Zurück zum Zitat Erener, A., & Düzgün, H. S. (2013). A regional scale quantitative risk assessment for landslides: Case of Kumluca watershed in Bartin, Turkey. Landslides, 10(1), 55–73.CrossRef Erener, A., & Düzgün, H. S. (2013). A regional scale quantitative risk assessment for landslides: Case of Kumluca watershed in Bartin, Turkey. Landslides, 10(1), 55–73.CrossRef
Zurück zum Zitat Erener, A., Mutlu, A., & Düzgün, H. S. (2016). A comparative study for landslide susceptibility mapping using GIS-based multi-criteria decision analysis (MCDA), logistic regression (LR) and association rule mining (ARM). Engineering Geology, 203, 45–55.‏ Erener, A., Mutlu, A., & Düzgün, H. S. (2016). A comparative study for landslide susceptibility mapping using GIS-based multi-criteria decision analysis (MCDA), logistic regression (LR) and association rule mining (ARM). Engineering Geology, 203, 45–55.‏
Zurück zum Zitat Falaschi, F., Giacomelli, F., Federici, P., Puccinelli, A., Avanzi, G., Pochini, A., et al. (2009). Logistic regression versus artificial neural networks: Landslide susceptibility evaluation in a sample area of the Serchio river valley, Italy. Natural Hazards, 50(3), 551–569.CrossRef Falaschi, F., Giacomelli, F., Federici, P., Puccinelli, A., Avanzi, G., Pochini, A., et al. (2009). Logistic regression versus artificial neural networks: Landslide susceptibility evaluation in a sample area of the Serchio river valley, Italy. Natural Hazards, 50(3), 551–569.CrossRef
Zurück zum Zitat Fell, R., Corominas, J., Bonnard, C., Cascini, L., Leroi, E., & Savage, W. Z. (2008). Guidelines for landslide susceptibility, hazard and risk zoning for land-use planning. Engineering Geology, 102(3), 99–111.CrossRef Fell, R., Corominas, J., Bonnard, C., Cascini, L., Leroi, E., & Savage, W. Z. (2008). Guidelines for landslide susceptibility, hazard and risk zoning for land-use planning. Engineering Geology, 102(3), 99–111.CrossRef
Zurück zum Zitat Fell, R., Ho, K. K., Lacasse, S., & Leroi, E. (2005). A framework for landslide risk assessment and management. Landslide Risk Management, 3–25. Fell, R., Ho, K. K., Lacasse, S., & Leroi, E. (2005). A framework for landslide risk assessment and management. Landslide Risk Management, 3–25.
Zurück zum Zitat Ghosh, S., van Westen, C. J., Carranza, E. J. M., Jetten, V. G., Cardinali, M., Rossi, M., et al. (2012). Generating event-based landslide maps in a data-scarce Himalayan environment for estimating temporal and magnitude probabilities. Engineering Geology, 128, 49–62.CrossRef Ghosh, S., van Westen, C. J., Carranza, E. J. M., Jetten, V. G., Cardinali, M., Rossi, M., et al. (2012). Generating event-based landslide maps in a data-scarce Himalayan environment for estimating temporal and magnitude probabilities. Engineering Geology, 128, 49–62.CrossRef
Zurück zum Zitat Glade, T., Crozier, M., & Smith, P. (2000). Applying probability determination to refine landslide-triggering rainfall thresholds using an empirical “Antecedent Daily Rainfall Model”. Pure and Applied Geophysics, 157(6–8), 1059–1079.CrossRef Glade, T., Crozier, M., & Smith, P. (2000). Applying probability determination to refine landslide-triggering rainfall thresholds using an empirical “Antecedent Daily Rainfall Model”. Pure and Applied Geophysics, 157(6–8), 1059–1079.CrossRef
Zurück zum Zitat Guzzetti, F., Ardizzone, F., Cardinali, M., Galli, M., Reichenbach, P., & Rossi, M. (2008). Distribution of landslides in the Upper Tiber River basin, Central Italy. Geomorphology, 96(1), 105–122.CrossRef Guzzetti, F., Ardizzone, F., Cardinali, M., Galli, M., Reichenbach, P., & Rossi, M. (2008). Distribution of landslides in the Upper Tiber River basin, Central Italy. Geomorphology, 96(1), 105–122.CrossRef
Zurück zum Zitat Guzzetti, F., Galli, M., Reichenbach, P., Ardizzone, F., & Cardinali, M. (2006). Landslide hazard assessment in the Collazzone area, Umbria, Central Italy. Natural Hazards and Earth System Science, 6(1), 115–131.CrossRef Guzzetti, F., Galli, M., Reichenbach, P., Ardizzone, F., & Cardinali, M. (2006). Landslide hazard assessment in the Collazzone area, Umbria, Central Italy. Natural Hazards and Earth System Science, 6(1), 115–131.CrossRef
Zurück zum Zitat Haneberg, W. C. (2004). A rational probabilistic method for spatially distributed landslide hazard assessment. Environmental and Engineering Geoscience, 10(1), 27–43.CrossRef Haneberg, W. C. (2004). A rational probabilistic method for spatially distributed landslide hazard assessment. Environmental and Engineering Geoscience, 10(1), 27–43.CrossRef
Zurück zum Zitat Hong, H., Pradhan, B., Bui, D. T., Xu, C., Youssef, A. M., & Chen, W. (2016). Comparison of four kernel functions used in support vector machines for landslide susceptibility mapping: A case study at Suichuan area (China). Geomatics, Natural Hazards and Risk, 1–26.‏ Hong, H., Pradhan, B., Bui, D. T., Xu, C., Youssef, A. M., & Chen, W. (2016). Comparison of four kernel functions used in support vector machines for landslide susceptibility mapping: A case study at Suichuan area (China). Geomatics, Natural Hazards and Risk, 1–26.‏
Zurück zum Zitat Huang, J., Lyamin, A., Griffiths, D., Krabbenhoft, K., & Sloan, S. (2013). Quantitative risk assessment of landslide by limit analysis and random fields. Computers and Geotechnics, 53, 60–67.CrossRef Huang, J., Lyamin, A., Griffiths, D., Krabbenhoft, K., & Sloan, S. (2013). Quantitative risk assessment of landslide by limit analysis and random fields. Computers and Geotechnics, 53, 60–67.CrossRef
Zurück zum Zitat Jebur, M. N., Pradhan, B., & Tehrany, M. S. (2014). Optimization of landslide conditioning factors using very high-resolution airborne laser scanning (LiDAR) data at catchment scale. Remote Sensing of Environment, 152, 150–165.CrossRef Jebur, M. N., Pradhan, B., & Tehrany, M. S. (2014). Optimization of landslide conditioning factors using very high-resolution airborne laser scanning (LiDAR) data at catchment scale. Remote Sensing of Environment, 152, 150–165.CrossRef
Zurück zum Zitat Jebur, M. N., Pradhan, B., & Tehrany, M. S. (2015). Using ALOS PALSAR derived high-resolution DInSAR to detect slow-moving landslides in tropical forest: Cameron Highlands, Malaysia. Geomatics, Natural Hazards and Risk, 6(8), 741–759.CrossRef Jebur, M. N., Pradhan, B., & Tehrany, M. S. (2015). Using ALOS PALSAR derived high-resolution DInSAR to detect slow-moving landslides in tropical forest: Cameron Highlands, Malaysia. Geomatics, Natural Hazards and Risk, 6(8), 741–759.CrossRef
Zurück zum Zitat Kanungo, D., Arora, M., Gupta, R., & Sarkar, S. (2008). Landslide risk assessment using concepts of danger pixels and fuzzy set theory in Darjeeling Himalayas. Landslides, 5(4), 407–416.CrossRef Kanungo, D., Arora, M., Gupta, R., & Sarkar, S. (2008). Landslide risk assessment using concepts of danger pixels and fuzzy set theory in Darjeeling Himalayas. Landslides, 5(4), 407–416.CrossRef
Zurück zum Zitat Kavzoglu, T., Sahin, E. K., & Colkesen, I. (2014). Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression. Landslides, 11(3), 425–439.‏ Kavzoglu, T., Sahin, E. K., & Colkesen, I. (2014). Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression. Landslides, 11(3), 425–439.‏
Zurück zum Zitat Kritikos, T., & Davies, T. (2014). Assessment of rainfall-generated shallow landslide/debris-flow susceptibility and runout using a GIS-based approach: Application to western southern Alps of New Zealand. Landslides, 1-25. Kritikos, T., & Davies, T. (2014). Assessment of rainfall-generated shallow landslide/debris-flow susceptibility and runout using a GIS-based approach: Application to western southern Alps of New Zealand. Landslides, 1-25.
Zurück zum Zitat Lee, E., & Jones, D. (2004). Landslide risk assessment. Lee, E., & Jones, D. (2004). Landslide risk assessment.
Zurück zum Zitat Lee, M. L., Ng, K. Y., Huang, Y. F., & Li, W. C. (2014). Rainfall-induced landslides in Hulu Kelang area, Malaysia. Natural hazards, 70(1), 353–375.CrossRef Lee, M. L., Ng, K. Y., Huang, Y. F., & Li, W. C. (2014). Rainfall-induced landslides in Hulu Kelang area, Malaysia. Natural hazards, 70(1), 353–375.CrossRef
Zurück zum Zitat Li, Z., Nadim, F., Huang, H., Uzielli, M., & Lacasse, S. (2010). Quantitative vulnerability estimation for scenario-based landslide hazards. Landslides, 7(2), 125–134.CrossRef Li, Z., Nadim, F., Huang, H., Uzielli, M., & Lacasse, S. (2010). Quantitative vulnerability estimation for scenario-based landslide hazards. Landslides, 7(2), 125–134.CrossRef
Zurück zum Zitat Moreiras, S. M., & Sepúlveda, S. A. (2015). Megalandslides in the Andes of central Chile and Argentina (32°–34° S) and potential hazards. Geological Society, London, Special Publications, 399(1), 329–344.CrossRef Moreiras, S. M., & Sepúlveda, S. A. (2015). Megalandslides in the Andes of central Chile and Argentina (32°–34° S) and potential hazards. Geological Society, London, Special Publications, 399(1), 329–344.CrossRef
Zurück zum Zitat Muthukumar, M. (2013). GIS based Geosystem response modeling for landslide vulnerability mapping parts of Nilgiris, South India. Disaster Advances, 6(7), 58–66. Muthukumar, M. (2013). GIS based Geosystem response modeling for landslide vulnerability mapping parts of Nilgiris, South India. Disaster Advances, 6(7), 58–66.
Zurück zum Zitat Nandi, A., & Shakoor, A. (2010). A GIS-based landslide susceptibility evaluation using bivariate and multivariate statistical analyses. Engineering Geology, 110(1), 11–20.CrossRef Nandi, A., & Shakoor, A. (2010). A GIS-based landslide susceptibility evaluation using bivariate and multivariate statistical analyses. Engineering Geology, 110(1), 11–20.CrossRef
Zurück zum Zitat Opolot, E. (2013). Application of remote sensing and geographical information systems in flood management: A review. Research Journal of Applied Sciences, Engineering and Technology, 5(10), 1884–1894. Opolot, E. (2013). Application of remote sensing and geographical information systems in flood management: A review. Research Journal of Applied Sciences, Engineering and Technology, 5(10), 1884–1894.
Zurück zum Zitat Ozdemir, A., & Altural, T. (2013). A comparative study of frequency ratio, weights of evidence and logistic regression methods for landslide susceptibility mapping: Sultan Mountains, SW Turkey. Journal of Asian Earth Sciences, 64, 180–197.‏ Ozdemir, A., & Altural, T. (2013). A comparative study of frequency ratio, weights of evidence and logistic regression methods for landslide susceptibility mapping: Sultan Mountains, SW Turkey. Journal of Asian Earth Sciences, 64, 180–197.‏
Zurück zum Zitat Pedrazzini, A., Humair, F., Jaboyedoff, M., & Tonini, M. (2015). Characterisation and spatial distribution of gravitational slope deformation in the upper rhone catchment (western Swiss Alps). Landslides, 1–19. Pedrazzini, A., Humair, F., Jaboyedoff, M., & Tonini, M. (2015). Characterisation and spatial distribution of gravitational slope deformation in the upper rhone catchment (western Swiss Alps). Landslides, 1–19.
Zurück zum Zitat Pourghasemi, H. R., Jirandeh, A. G., Pradhan, B., Xu, C., & Gokceoglu, C. (2013). Landslide susceptibility mapping using support vector machine and GIS at the Golestan Province, Iran. Journal of Earth System Science, 122(2), 349–369.‏ Pourghasemi, H. R., Jirandeh, A. G., Pradhan, B., Xu, C., & Gokceoglu, C. (2013). Landslide susceptibility mapping using support vector machine and GIS at the Golestan Province, Iran. Journal of Earth System Science, 122(2), 349–369.‏
Zurück zum Zitat Pradhan, B. (2013). A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Computers & Geosciences, 51, 350–365.‏ Pradhan, B. (2013). A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Computers & Geosciences, 51, 350–365.‏
Zurück zum Zitat Pradhan, B., Abokharima, M. H., Jebur, M. N., & Tehrany, M. S. (2014). Land subsidence susceptibility mapping at Kinta Valley (Malaysia) using the evidential belief function model in GIS. Natural Hazards, 73(2), 1019–1042.‏ Pradhan, B., Abokharima, M. H., Jebur, M. N., & Tehrany, M. S. (2014). Land subsidence susceptibility mapping at Kinta Valley (Malaysia) using the evidential belief function model in GIS. Natural Hazards, 73(2), 1019–1042.‏
Zurück zum Zitat Pradhan, B., & Lee, S. (2009). Landslide risk analysis using artificial neural network model focusing on different training sites. International Journal of Physical Sciences, 3(11), 1–15. Pradhan, B., & Lee, S. (2009). Landslide risk analysis using artificial neural network model focusing on different training sites. International Journal of Physical Sciences, 3(11), 1–15.
Zurück zum Zitat Pradhan, B., & Lee, S. (2010). Delineation of landslide hazard areas on Penang island, Malaysia, by using frequency ratio, logistic regression, and artificial neural network models. Environmental Earth Sciences, 60(5), 1037–1054.CrossRef Pradhan, B., & Lee, S. (2010). Delineation of landslide hazard areas on Penang island, Malaysia, by using frequency ratio, logistic regression, and artificial neural network models. Environmental Earth Sciences, 60(5), 1037–1054.CrossRef
Zurück zum Zitat Pradhan, B., & Youssef, A. M. (2010). Manifestation of remote sensing data and GIS on landslide hazard analysis using spatial-based statistical models. Arabian Journal of Geosciences, 3(3), 319–326.CrossRef Pradhan, B., & Youssef, A. M. (2010). Manifestation of remote sensing data and GIS on landslide hazard analysis using spatial-based statistical models. Arabian Journal of Geosciences, 3(3), 319–326.CrossRef
Zurück zum Zitat Regmi, N. R., Giardino, J. R., McDonald, E. V., & Vitek, J. D. (2014). A comparison of logistic regression-based models of susceptibility to landslides in western Colorado, USA. Landslides, 11(2), 247–262.‏ Regmi, N. R., Giardino, J. R., McDonald, E. V., & Vitek, J. D. (2014). A comparison of logistic regression-based models of susceptibility to landslides in western Colorado, USA. Landslides, 11(2), 247–262.‏
Zurück zum Zitat Regmi, N. R., Giardino, J. R., & Vitek, J. D. (2010). Modeling susceptibility to landslides using the weight of evidence approach: Western Colorado, USA. Geomorphology, 115(1), 172–187.CrossRef Regmi, N. R., Giardino, J. R., & Vitek, J. D. (2010). Modeling susceptibility to landslides using the weight of evidence approach: Western Colorado, USA. Geomorphology, 115(1), 172–187.CrossRef
Zurück zum Zitat Solaimani, K., Mousavi, S. Z., & Kavian, A. (2013). Landslide susceptibility mapping based on frequency ratio and logistic regression models. Arabian Journal of Geosciences, 6(7), 2557–2569.CrossRef Solaimani, K., Mousavi, S. Z., & Kavian, A. (2013). Landslide susceptibility mapping based on frequency ratio and logistic regression models. Arabian Journal of Geosciences, 6(7), 2557–2569.CrossRef
Zurück zum Zitat Tehrany, M. S., Pradhan, B., & Jebur, M. N. (2013). Spatial prediction of flood susceptible areas using rule based decision tree (DT) and a novel ensemble bivariate and multivariate statistical models in GIS. Journal of Hydrology, 504, 69–79.CrossRef Tehrany, M. S., Pradhan, B., & Jebur, M. N. (2013). Spatial prediction of flood susceptible areas using rule based decision tree (DT) and a novel ensemble bivariate and multivariate statistical models in GIS. Journal of Hydrology, 504, 69–79.CrossRef
Zurück zum Zitat Tehrany, M. S., Pradhan, B., & Jebuv, M. N. (2014). A comparative assessment between object and pixel-based classification approaches for land use/land cover mapping using SPOT 5 imagery. Geocarto International, 29(4), 351–369.CrossRef Tehrany, M. S., Pradhan, B., & Jebuv, M. N. (2014). A comparative assessment between object and pixel-based classification approaches for land use/land cover mapping using SPOT 5 imagery. Geocarto International, 29(4), 351–369.CrossRef
Zurück zum Zitat Tournadour, E., Mulder, T., Borgomano, J., Hanquiez, V., Ducassou, E., & Gillet, H. (2015). Origin and architecture of a mass transport complex on the northwest slope of little Bahama Bank (Bahamas): Relations between off-bank transport, bottom current sedimentation and submarine landslides. Sedimentary Geology, 317, 9–26.CrossRef Tournadour, E., Mulder, T., Borgomano, J., Hanquiez, V., Ducassou, E., & Gillet, H. (2015). Origin and architecture of a mass transport complex on the northwest slope of little Bahama Bank (Bahamas): Relations between off-bank transport, bottom current sedimentation and submarine landslides. Sedimentary Geology, 317, 9–26.CrossRef
Zurück zum Zitat Umar, Z., Pradhan, B., Ahmad, A., Jebur, M. N., & Tehrany, M. S. (2014). Earthquake induced landslide susceptibility mapping using an integrated ensemble frequency ratio and logistic regression models in West Sumatera Province, Indonesia. Catena, 118, 124–135.CrossRef Umar, Z., Pradhan, B., Ahmad, A., Jebur, M. N., & Tehrany, M. S. (2014). Earthquake induced landslide susceptibility mapping using an integrated ensemble frequency ratio and logistic regression models in West Sumatera Province, Indonesia. Catena, 118, 124–135.CrossRef
Zurück zum Zitat van Westen, C. J., Castellanos, E., & Kuriakose, S. L. (2008). Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview. Engineering Geology, 102(3), 112–131.CrossRef van Westen, C. J., Castellanos, E., & Kuriakose, S. L. (2008). Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview. Engineering Geology, 102(3), 112–131.CrossRef
Zurück zum Zitat Varnes, D. J. (1984). Landslide hazard zonation: A review of principles and practice (No. 3).‏ Varnes, D. J. (1984). Landslide hazard zonation: A review of principles and practice (No. 3).‏
Zurück zum Zitat Vranken, L., Vantilt, G., Van Den Eeckhaut, M., Vandekerckhove, L., & Poesen, J. (2015). Landslide risk assessment in a densely populated hilly area. Landslides, 12(4), 787–798.‏ Vranken, L., Vantilt, G., Van Den Eeckhaut, M., Vandekerckhove, L., & Poesen, J. (2015). Landslide risk assessment in a densely populated hilly area. Landslides, 12(4), 787–798.‏
Zurück zum Zitat Wang, L., Sawada, K., & Moriguchi, S. (2013). Landslide susceptibility analysis with logistic regression model based on FCM sampling strategy. Computers & Geosciences, 57, 81–92.CrossRef Wang, L., Sawada, K., & Moriguchi, S. (2013). Landslide susceptibility analysis with logistic regression model based on FCM sampling strategy. Computers & Geosciences, 57, 81–92.CrossRef
Zurück zum Zitat Wu, X., Ren, F., & Niu, R. (2014). Landslide susceptibility assessment using object mapping units, decision tree, and support vector machine models in the Three Gorges of China. Environmental Earth Sciences, 71(11), 4725–4738.‏ Wu, X., Ren, F., & Niu, R. (2014). Landslide susceptibility assessment using object mapping units, decision tree, and support vector machine models in the Three Gorges of China. Environmental Earth Sciences, 71(11), 4725–4738.‏
Zurück zum Zitat Xu, C., Dai, F., Xu, X., & Lee, Y. H. (2012). GIS-based support vector machine modeling of earthquake-triggered landslide susceptibility in the Jianjiang River watershed, China. Geomorphology, 145, 70–80.CrossRef Xu, C., Dai, F., Xu, X., & Lee, Y. H. (2012). GIS-based support vector machine modeling of earthquake-triggered landslide susceptibility in the Jianjiang River watershed, China. Geomorphology, 145, 70–80.CrossRef
Zurück zum Zitat Xu, J., Nyerges, T. L., & Nie, G. (2014). Modeling and representation for earthquake emergency response knowledge: perspective for working with geo-ontology. International Journal of Geographical Information Science, 28(1), 185–205.CrossRef Xu, J., Nyerges, T. L., & Nie, G. (2014). Modeling and representation for earthquake emergency response knowledge: perspective for working with geo-ontology. International Journal of Geographical Information Science, 28(1), 185–205.CrossRef
Zurück zum Zitat Xu, C., Xu, X., Dai, F., Wu, Z., He, H., Shi, F., et al. (2013). Application of an incomplete landslide inventory, logistic regression model and its validation for landslide susceptibility mapping related to the May 12, 2008 Wenchuan earthquake of China. Natural Hazards, 68(2), 883–900.CrossRef Xu, C., Xu, X., Dai, F., Wu, Z., He, H., Shi, F., et al. (2013). Application of an incomplete landslide inventory, logistic regression model and its validation for landslide susceptibility mapping related to the May 12, 2008 Wenchuan earthquake of China. Natural Hazards, 68(2), 883–900.CrossRef
Zurück zum Zitat Yang, W., Peng, Z., Wang, B., Li, Z., & Yuan, S. (2015). Velocity contrast along the rupture zone of the 2010 Mw6. 9 Yushu, China, earthquake from fault zone head waves. Earth and Planetary Science Letters, 416, 91–97.CrossRef Yang, W., Peng, Z., Wang, B., Li, Z., & Yuan, S. (2015). Velocity contrast along the rupture zone of the 2010 Mw6. 9 Yushu, China, earthquake from fault zone head waves. Earth and Planetary Science Letters, 416, 91–97.CrossRef
Zurück zum Zitat Yang, M., Wu, M., & Liu, J. (2014). Estimating landslide-induced riverbed roughness variation by using lidar data. Journal of Marine Science and Technology, 22(4), 424–429. Yang, M., Wu, M., & Liu, J. (2014). Estimating landslide-induced riverbed roughness variation by using lidar data. Journal of Marine Science and Technology, 22(4), 424–429.
Zurück zum Zitat Yao, X., & Dai, F. (2006). Support vector machine modeling of landslide susceptibility using a GIS: A case study. IAEG, 2006, 793. Yao, X., & Dai, F. (2006). Support vector machine modeling of landslide susceptibility using a GIS: A case study. IAEG, 2006, 793.
Zurück zum Zitat Yao, X., Tham, L., & Dai, F. (2008). Landslide susceptibility mapping based on support vector machine: A case study on natural slopes of Hong Kong, China. Geomorphology, 101(4), 572–582.CrossRef Yao, X., Tham, L., & Dai, F. (2008). Landslide susceptibility mapping based on support vector machine: A case study on natural slopes of Hong Kong, China. Geomorphology, 101(4), 572–582.CrossRef
Zurück zum Zitat Youssef, A. M., Al-Kathery, M., & Pradhan, B. (2015). Landslide susceptibility mapping at Al-Hasher Area, Jizan (Saudi Arabia) using GIS-based frequency ratio and index of entropy models. Geosciences Journal, 19(1), 113–134.‏ Youssef, A. M., Al-Kathery, M., & Pradhan, B. (2015). Landslide susceptibility mapping at Al-Hasher Area, Jizan (Saudi Arabia) using GIS-based frequency ratio and index of entropy models. Geosciences Journal, 19(1), 113–134.‏
Zurück zum Zitat Yusof, N. M., Pradhan, B., Shafri, H. Z. M., Jebur, M. N., & Yusoff, Z. (2015). Spatial landslide hazard assessment along the jelapang corridor of the north-south expressway in Malaysia using high-resolution airborne LiDAR data. Arabian Journal of Geosciences, 1–12. Yusof, N. M., Pradhan, B., Shafri, H. Z. M., Jebur, M. N., & Yusoff, Z. (2015). Spatial landslide hazard assessment along the jelapang corridor of the north-south expressway in Malaysia using high-resolution airborne LiDAR data. Arabian Journal of Geosciences, 1–12.
Zurück zum Zitat Zhang, M., Cao, X., Peng, L., & Niu, R. (2016). Landslide susceptibility mapping based on global and local logistic regression models in Three Gorges Reservoir area, China. Environmental Earth Sciences, 75(11), 1–11.‏ Zhang, M., Cao, X., Peng, L., & Niu, R. (2016). Landslide susceptibility mapping based on global and local logistic regression models in Three Gorges Reservoir area, China. Environmental Earth Sciences, 75(11), 1–11.‏
Metadaten
Titel
Landslide Risk Assessment Using Multi-hazard Scenario Produced by Logistic Regression and LiDAR-Based DEM
verfasst von
Biswajeet Pradhan
Waleed M. Abdulwahid
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-55342-9_13