Skip to main content

2017 | OriginalPaper | Buchkapitel

12. Slope Vulnerability and Risk Assessment Using High-Resolution Airborne Laser Scanning Data

verfasst von : Biswajeet Pradhan, Norbazlan Mohd Yusof

Erschienen in: Laser Scanning Applications in Landslide Assessment

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Natural hazards, such as landslides, earthquakes, and floods, result in considerable losses of lives and properties. Natural disasters are in fact the main cause of irrecoverable damages worldwide.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Akgun, A. (2012). A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision, and likelihood ratio methods: A case study at İzmir, Turkey. Landslides, 9(1), 93–106.CrossRef Akgun, A. (2012). A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision, and likelihood ratio methods: A case study at İzmir, Turkey. Landslides, 9(1), 93–106.CrossRef
Zurück zum Zitat Alimohammadlou, Y., Najafi, A., & Yalcin, A. (2013). Landslide process and impacts: A proposed classification method. Catena, 104, 219–232.CrossRef Alimohammadlou, Y., Najafi, A., & Yalcin, A. (2013). Landslide process and impacts: A proposed classification method. Catena, 104, 219–232.CrossRef
Zurück zum Zitat Alonso, E. E., & Pinyol, N. M. (2010). Criteria for rapid sliding I. A review of Vaiont case. Engineering Geology, 114(3), 198–210.CrossRef Alonso, E. E., & Pinyol, N. M. (2010). Criteria for rapid sliding I. A review of Vaiont case. Engineering Geology, 114(3), 198–210.CrossRef
Zurück zum Zitat Althuwaynee, O. F., Pradhan, B., & Ahmad, N. (2014a). Estimation of rainfall threshold and its use in landslide hazard mapping of Kuala Lumpur metropolitan and surrounding areas. Landslides, 12, 1–15. Althuwaynee, O. F., Pradhan, B., & Ahmad, N. (2014a). Estimation of rainfall threshold and its use in landslide hazard mapping of Kuala Lumpur metropolitan and surrounding areas. Landslides, 12, 1–15.
Zurück zum Zitat Althuwaynee, O. F., Pradhan, B., & Lee, S. (2012). Application of an evidential belief function model in landslide susceptibility mapping. Computers & Geosciences, 44, 120–135.CrossRef Althuwaynee, O. F., Pradhan, B., & Lee, S. (2012). Application of an evidential belief function model in landslide susceptibility mapping. Computers & Geosciences, 44, 120–135.CrossRef
Zurück zum Zitat Althuwaynee, O. F., Pradhan, B., Park, H. J., & Lee, J. H. (2014b). A novel ensemble bivariate statistical evidential belief function with knowledge-based analytical hierarchy process and multivariate statistical logistic regression for landslide susceptibility mapping. Catena, 114, 21–36.CrossRef Althuwaynee, O. F., Pradhan, B., Park, H. J., & Lee, J. H. (2014b). A novel ensemble bivariate statistical evidential belief function with knowledge-based analytical hierarchy process and multivariate statistical logistic regression for landslide susceptibility mapping. Catena, 114, 21–36.CrossRef
Zurück zum Zitat Ayalew, L., & Yamagishi, H. (2005). The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology, 65(1), 15–31.CrossRef Ayalew, L., & Yamagishi, H. (2005). The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology, 65(1), 15–31.CrossRef
Zurück zum Zitat Bell, R., & Glade, T. (2004). Quantitative risk analysis for landslides? Examples from Bíldudalur, NW-Iceland. Natural Hazard Earth System, 4(1), 117–131.CrossRef Bell, R., & Glade, T. (2004). Quantitative risk analysis for landslides? Examples from Bíldudalur, NW-Iceland. Natural Hazard Earth System, 4(1), 117–131.CrossRef
Zurück zum Zitat Budimir, M., Atkinson, P., & Lewis, H. (2015). A systematic review of landslide probability mapping using logistic regression. Landslides, 12(3), 1–18.CrossRef Budimir, M., Atkinson, P., & Lewis, H. (2015). A systematic review of landslide probability mapping using logistic regression. Landslides, 12(3), 1–18.CrossRef
Zurück zum Zitat Bulut, F., Boynukalin, S., Tarhan, F., & Ataoglu, E. (2000). Reliability of landslide isopleth maps. Bulletin of Engineering Geology and the Environment, 58(2), 95–98.CrossRef Bulut, F., Boynukalin, S., Tarhan, F., & Ataoglu, E. (2000). Reliability of landslide isopleth maps. Bulletin of Engineering Geology and the Environment, 58(2), 95–98.CrossRef
Zurück zum Zitat Calil, J., Beck, M. W., Gleason, M., Merrifield, M., Klausmeyer, K., & Newkirk, S. (2015). Aligning natural resource conservation and flood hazard mitigation in California. PLoS ONE, 10(7), e0132651. doi:10.1371/journal.pone.0132651 CrossRef Calil, J., Beck, M. W., Gleason, M., Merrifield, M., Klausmeyer, K., & Newkirk, S. (2015). Aligning natural resource conservation and flood hazard mitigation in California. PLoS ONE, 10(7), e0132651. doi:10.​1371/​journal.​pone.​0132651 CrossRef
Zurück zum Zitat Calvo, B., & Savi, F. (2009). A real-world application of Monte Carlo procedure for debris flow risk assessment. Computers & Geosciences, 35(5), 967–977.CrossRef Calvo, B., & Savi, F. (2009). A real-world application of Monte Carlo procedure for debris flow risk assessment. Computers & Geosciences, 35(5), 967–977.CrossRef
Zurück zum Zitat Chau, K., Sze, Y., Fung, M., Wong, W., Fong, E., & Chan, L. (2004). Landslide hazard analysis for Hong Kong using landslide inventory and GIS. Computers & Geosciences, 30(4), 429–443.CrossRef Chau, K., Sze, Y., Fung, M., Wong, W., Fong, E., & Chan, L. (2004). Landslide hazard analysis for Hong Kong using landslide inventory and GIS. Computers & Geosciences, 30(4), 429–443.CrossRef
Zurück zum Zitat Conforti, M., Pascale, S., Robustelli, G., & Sdao, F. (2014). Evaluation of prediction capability of the artificial neural networks for mapping landslide susceptibility in the Turbolo River catchment (northern Calabria, Italy). Catena, 113, 236–250.CrossRef Conforti, M., Pascale, S., Robustelli, G., & Sdao, F. (2014). Evaluation of prediction capability of the artificial neural networks for mapping landslide susceptibility in the Turbolo River catchment (northern Calabria, Italy). Catena, 113, 236–250.CrossRef
Zurück zum Zitat Corominas, J., Van Westen, C., Frattini, P., Cascini, L., Malet, J. P., Fotopoulou, S., et al. (2014). Recommendations for the quantitative analysis of landslide risk. Bulletin of Engineering Geology and the Environment, 73(2), 209–263. Corominas, J., Van Westen, C., Frattini, P., Cascini, L., Malet, J. P., Fotopoulou, S., et al. (2014). Recommendations for the quantitative analysis of landslide risk. Bulletin of Engineering Geology and the Environment, 73(2), 209–263.
Zurück zum Zitat Crovelli, R. A. (2000). Probability models for estimation of number and costs of landslides. Reston, VA: US Geological Survey. Crovelli, R. A. (2000). Probability models for estimation of number and costs of landslides. Reston, VA: US Geological Survey.
Zurück zum Zitat Crozier, M. J., & Glade, T. (2006). Landslide hazard and risk: Issues, concepts and approach. Landslide Hazard and Risk (Wiley, West Sussex), 14, 1–40. Crozier, M. J., & Glade, T. (2006). Landslide hazard and risk: Issues, concepts and approach. Landslide Hazard and Risk (Wiley, West Sussex), 14, 1–40.
Zurück zum Zitat Cui, P., Zhu, Y. Y., Han, Y. S., Chen, X. Q., & Zhuang, J. Q. (2009). The 12 May Wenchuan earthquake-induced landslide lakes: Distribution and preliminary risk evaluation. Landslides, 6(3), 209–223.CrossRef Cui, P., Zhu, Y. Y., Han, Y. S., Chen, X. Q., & Zhuang, J. Q. (2009). The 12 May Wenchuan earthquake-induced landslide lakes: Distribution and preliminary risk evaluation. Landslides, 6(3), 209–223.CrossRef
Zurück zum Zitat Dai, F., Lee, C., & Ngai, Y. Y. (2002). Landslide risk assessment and management: An overview. Engineering Geology, 64(1), 65–87.CrossRef Dai, F., Lee, C., & Ngai, Y. Y. (2002). Landslide risk assessment and management: An overview. Engineering Geology, 64(1), 65–87.CrossRef
Zurück zum Zitat Dang, N. M., Babel, M. S., & Luong, H. T. (2011). Evaluation of food risk parameters in the Day River flood diversion area, Red River delta, Vietnam. Natural Hazards, 56(1), 169–194.CrossRef Dang, N. M., Babel, M. S., & Luong, H. T. (2011). Evaluation of food risk parameters in the Day River flood diversion area, Red River delta, Vietnam. Natural Hazards, 56(1), 169–194.CrossRef
Zurück zum Zitat Das, I., Sahoo, S., van Westen, C., Stein, A., & Hack, R. (2010). Landslide susceptibility assessment using logistic regression and its comparison with a rock mass classification system, along a road section in the northern Himalayas (India). Geomorphology, 114(4), 627–637.CrossRef Das, I., Sahoo, S., van Westen, C., Stein, A., & Hack, R. (2010). Landslide susceptibility assessment using logistic regression and its comparison with a rock mass classification system, along a road section in the northern Himalayas (India). Geomorphology, 114(4), 627–637.CrossRef
Zurück zum Zitat Demir, G., Aytekin, M., & Akgun, A. (2015). Landslide susceptibility mapping by frequency ratio and logistic regression methods: An example from Niksar-Resadiye (Tokat, Turkey). Arabian Journal of Geosciences, 8(3), 1801–1812.CrossRef Demir, G., Aytekin, M., & Akgun, A. (2015). Landslide susceptibility mapping by frequency ratio and logistic regression methods: An example from Niksar-Resadiye (Tokat, Turkey). Arabian Journal of Geosciences, 8(3), 1801–1812.CrossRef
Zurück zum Zitat Devkota, K. C., Regmi, A. D., Pourghasemi, H. R., Yoshida, K., Pradhan, B., Ryu, I. C., et al. (2013). Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling-Narayanghat road section in Nepal Himalaya. Natural Hazards, 65(1), 135–165.CrossRef Devkota, K. C., Regmi, A. D., Pourghasemi, H. R., Yoshida, K., Pradhan, B., Ryu, I. C., et al. (2013). Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling-Narayanghat road section in Nepal Himalaya. Natural Hazards, 65(1), 135–165.CrossRef
Zurück zum Zitat Dou, J., Bui, D. T., Yunus, A. P., Jia, K., Song, X., Revhaug, I., et al. (2015). Optimization of causative factors for landslide susceptibility evaluation using remote sensing and GIS data in parts of Niigata, Japan. PloS One, 10(7), e0133262. doi:10.1371/journal.pone.0133262 CrossRef Dou, J., Bui, D. T., Yunus, A. P., Jia, K., Song, X., Revhaug, I., et al. (2015). Optimization of causative factors for landslide susceptibility evaluation using remote sensing and GIS data in parts of Niigata, Japan. PloS One, 10(7), e0133262. doi:10.​1371/​journal.​pone.​0133262 CrossRef
Zurück zum Zitat Dou, J., Oguchi, T., Hayakawa, Y. S., Uchiyama, S., Saito, H., & Paudel, U. (2014). GIS-based landslide susceptibility mapping using a certainty factor model and its validation in the Chuetsu Area, Central Japan. Landslide Science for a Safer Geoenvironment (pp. 419–424). Berlin: Springer. Dou, J., Oguchi, T., Hayakawa, Y. S., Uchiyama, S., Saito, H., & Paudel, U. (2014). GIS-based landslide susceptibility mapping using a certainty factor model and its validation in the Chuetsu Area, Central Japan. Landslide Science for a Safer Geoenvironment (pp. 419–424). Berlin: Springer.
Zurück zum Zitat Dragićević, S., Lai, T., & Balram, S. (2015). GIS-based multicriteria evaluation with multiscale analysis to characterize urban landslide susceptibility in data-scarce environments. Habitat International, 45, 114–125.CrossRef Dragićević, S., Lai, T., & Balram, S. (2015). GIS-based multicriteria evaluation with multiscale analysis to characterize urban landslide susceptibility in data-scarce environments. Habitat International, 45, 114–125.CrossRef
Zurück zum Zitat Feizizadeh, B., & Blaschke, T. (2013). GIS-multicriteria decision analysis for landslide susceptibility mapping: Comparing three methods for the Urmia lake basin, Iran. Natural Hazards, 65(3), 2105–2128.CrossRef Feizizadeh, B., & Blaschke, T. (2013). GIS-multicriteria decision analysis for landslide susceptibility mapping: Comparing three methods for the Urmia lake basin, Iran. Natural Hazards, 65(3), 2105–2128.CrossRef
Zurück zum Zitat Fuchs, S., Heiss, K., & Hübl, J. (2007). Towards an empirical vulnerability function for use in debris flow risk assessment. Natural Hazard Earth Systems, 7(5), 495–506.CrossRef Fuchs, S., Heiss, K., & Hübl, J. (2007). Towards an empirical vulnerability function for use in debris flow risk assessment. Natural Hazard Earth Systems, 7(5), 495–506.CrossRef
Zurück zum Zitat Galli, M., & Guzzetti, F. (2007). Landslide vulnerability criteria: A case study from Umbria, Central Italy. Environmental Management, 40(4), 649–665.CrossRef Galli, M., & Guzzetti, F. (2007). Landslide vulnerability criteria: A case study from Umbria, Central Italy. Environmental Management, 40(4), 649–665.CrossRef
Zurück zum Zitat Glade, T., Crozier, M., & Smith, P. (2000). Applying probability determination to refine landslide-triggering rainfall thresholds using an empirical “Antecedent Daily Rainfall Model”. Pure and Applied Geophysics, 157(6–8), 1059–1079.CrossRef Glade, T., Crozier, M., & Smith, P. (2000). Applying probability determination to refine landslide-triggering rainfall thresholds using an empirical “Antecedent Daily Rainfall Model”. Pure and Applied Geophysics, 157(6–8), 1059–1079.CrossRef
Zurück zum Zitat Guzzetti, F., Carrara, A., Cardinali, M., & Reichenbach, P. (1999). Landslide hazard evaluation: A review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology, 31(1), 181–216.CrossRef Guzzetti, F., Carrara, A., Cardinali, M., & Reichenbach, P. (1999). Landslide hazard evaluation: A review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology, 31(1), 181–216.CrossRef
Zurück zum Zitat Guzzetti, F., Peruccacci, S., Rossi, M., & Stark, C. P. (2008). The rainfall intensity–duration control of shallow landslides and debris flows: An update. Landslides, 5(1), 3–17.CrossRef Guzzetti, F., Peruccacci, S., Rossi, M., & Stark, C. P. (2008). The rainfall intensity–duration control of shallow landslides and debris flows: An update. Landslides, 5(1), 3–17.CrossRef
Zurück zum Zitat Haneberg, W. C. (2004). A rational probabilistic method for spatially distributed landslide hazard assessment. Environmental and Engineering Geoscience, 10(1), 27–43.CrossRef Haneberg, W. C. (2004). A rational probabilistic method for spatially distributed landslide hazard assessment. Environmental and Engineering Geoscience, 10(1), 27–43.CrossRef
Zurück zum Zitat He, X., Hong, Y., Yu, X., Cerato, A. B., Zhang, X., & Komac, M. (2014). Landslides susceptibility mapping in Oklahoma state using GIS-based weighted linear combination method. In Landslide science for a safer geoenvironment (pp. 371–377). He, X., Hong, Y., Yu, X., Cerato, A. B., Zhang, X., & Komac, M. (2014). Landslides susceptibility mapping in Oklahoma state using GIS-based weighted linear combination method. In Landslide science for a safer geoenvironment (pp. 371–377).
Zurück zum Zitat Huang, J., Lyamin, A., Griffiths, D., Krabbenhoft, K., & Sloan, S. (2013). Quantitative risk assessment of landslide by limit analysis and random fields. Computers and Geotechnics, 53, 60–67.CrossRef Huang, J., Lyamin, A., Griffiths, D., Krabbenhoft, K., & Sloan, S. (2013). Quantitative risk assessment of landslide by limit analysis and random fields. Computers and Geotechnics, 53, 60–67.CrossRef
Zurück zum Zitat Jaiswal, P., van Westen, C. J., & Jetten, V. (2010). Quantitative landslide hazard assessment along a transportation corridor in southern India. Engineering Geology, 116(3), 236–250.CrossRef Jaiswal, P., van Westen, C. J., & Jetten, V. (2010). Quantitative landslide hazard assessment along a transportation corridor in southern India. Engineering Geology, 116(3), 236–250.CrossRef
Zurück zum Zitat Jaiswal, P., van Westen, C. J., & Jetten, V. (2011). Quantitative assessment of landslide hazard along transportation lines using historical records. Landslides, 8(3), 279–291.CrossRef Jaiswal, P., van Westen, C. J., & Jetten, V. (2011). Quantitative assessment of landslide hazard along transportation lines using historical records. Landslides, 8(3), 279–291.CrossRef
Zurück zum Zitat Jakob, M., Stein, D., & Ulmi, M. (2012). Vulnerability of buildings to debris flow impact. Natural Hazards, 60(2), 241–261.CrossRef Jakob, M., Stein, D., & Ulmi, M. (2012). Vulnerability of buildings to debris flow impact. Natural Hazards, 60(2), 241–261.CrossRef
Zurück zum Zitat Jebur, M. N., Pradhan, B., & Tehrany, M. S. (2014). Optimization of landslide conditioning factors using very high-resolution airborne laser scanning (LiDAR) data at catchment scale. Remote Sensing of Environment, 152, 150–165.CrossRef Jebur, M. N., Pradhan, B., & Tehrany, M. S. (2014). Optimization of landslide conditioning factors using very high-resolution airborne laser scanning (LiDAR) data at catchment scale. Remote Sensing of Environment, 152, 150–165.CrossRef
Zurück zum Zitat Jebur, M. N., Pradhan, B., & Tehrany, M. S. (2015). Manifestation of LiDAR-derived parameters in the spatial prediction of landslides using novel ensemble evidential belief functions and support vector machine models in GIS. IEEE J-STARS, 8(2), 674–690. Jebur, M. N., Pradhan, B., & Tehrany, M. S. (2015). Manifestation of LiDAR-derived parameters in the spatial prediction of landslides using novel ensemble evidential belief functions and support vector machine models in GIS. IEEE J-STARS, 8(2), 674–690.
Zurück zum Zitat Joshi, C., de Leeuw, J., & van Duren, I. C. (Eds.) (2004). Remote sensing and GIS applications for mapping and spatial modelling of invasive species. In Proceedings of ISPRS. Joshi, C., de Leeuw, J., & van Duren, I. C. (Eds.) (2004). Remote sensing and GIS applications for mapping and spatial modelling of invasive species. In Proceedings of ISPRS.
Zurück zum Zitat Kanungo, D., Arora, M., Gupta, R., & Sarkar, S. (2008). Landslide risk assessment using concepts of danger pixels and fuzzy set theory in Darjeeling Himalayas. Landslides, 5(4), 407–416.CrossRef Kanungo, D., Arora, M., Gupta, R., & Sarkar, S. (2008). Landslide risk assessment using concepts of danger pixels and fuzzy set theory in Darjeeling Himalayas. Landslides, 5(4), 407–416.CrossRef
Zurück zum Zitat Kappes, M. S., Keiler, M., von Elverfeldt, K., & Glade, T. (2012). Challenges of analyzing multi-hazard risk: A review. Natural Hazards, 64(2), 1925–1958.CrossRef Kappes, M. S., Keiler, M., von Elverfeldt, K., & Glade, T. (2012). Challenges of analyzing multi-hazard risk: A review. Natural Hazards, 64(2), 1925–1958.CrossRef
Zurück zum Zitat Kavzoglu, T., Sahin, E. K., & Colkesen, I. (2014). Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression. Landslides, 11(3), 425–439.CrossRef Kavzoglu, T., Sahin, E. K., & Colkesen, I. (2014). Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression. Landslides, 11(3), 425–439.CrossRef
Zurück zum Zitat Kia, M. B., Pirasteh, S., Pradhan, B., Mahmud, A. R., Sulaiman, W. N. A., & Moradi, A. (2012). An artificial neural network model for flood simulation using GIS: Johor River Basin, Malaysia. Environmental Earth Science, 67(1), 251–264.CrossRef Kia, M. B., Pirasteh, S., Pradhan, B., Mahmud, A. R., Sulaiman, W. N. A., & Moradi, A. (2012). An artificial neural network model for flood simulation using GIS: Johor River Basin, Malaysia. Environmental Earth Science, 67(1), 251–264.CrossRef
Zurück zum Zitat Kobal, M., Bertoncelj, I., Pirotti, F., Dakskobler, I., & Kutnar, L. (2015). Using LiDAR data to analyse Sinkhole characteristics relevant for understory vegetation under forest cover-case study of a high Karst Area in the Dinaric Mountains. PLoS ONE, 10(3), e0122070. doi:10.1371/journal.pone.0122070 CrossRef Kobal, M., Bertoncelj, I., Pirotti, F., Dakskobler, I., & Kutnar, L. (2015). Using LiDAR data to analyse Sinkhole characteristics relevant for understory vegetation under forest cover-case study of a high Karst Area in the Dinaric Mountains. PLoS ONE, 10(3), e0122070. doi:10.​1371/​journal.​pone.​0122070 CrossRef
Zurück zum Zitat Kovač, B., & Žalik, B. (2010). Visualization of LiDAR datasets using point-based rendering technique. Computers & Geosciences, 36(11), 1443–1450.CrossRef Kovač, B., & Žalik, B. (2010). Visualization of LiDAR datasets using point-based rendering technique. Computers & Geosciences, 36(11), 1443–1450.CrossRef
Zurück zum Zitat Kritikos, T., & Davies, T. (2014). Assessment of rainfall-generated shallow landslide/debris-flow susceptibility and runout using a GIS-based approach: application to western Southern Alps of New Zealand. Landslides, 15, 1–25. Kritikos, T., & Davies, T. (2014). Assessment of rainfall-generated shallow landslide/debris-flow susceptibility and runout using a GIS-based approach: application to western Southern Alps of New Zealand. Landslides, 15, 1–25.
Zurück zum Zitat Lee, M. L., Ng, K. Y., Huang, Y. F., & Li, W. C. (2014). Rainfall-induced landslides in Hulu Kelang area, Malaysia. Natural Hazards, 70(1), 353–375.CrossRef Lee, M. L., Ng, K. Y., Huang, Y. F., & Li, W. C. (2014). Rainfall-induced landslides in Hulu Kelang area, Malaysia. Natural Hazards, 70(1), 353–375.CrossRef
Zurück zum Zitat Leone, F., Asté, J., & Leroi, E. (1996). Vulnerability assessment of elements exposed to mass-movement: Working toward a better risk perception. Landslides-Glissements de Terrain Balkema, Rotterdam, 7, 263–270. Leone, F., Asté, J., & Leroi, E. (1996). Vulnerability assessment of elements exposed to mass-movement: Working toward a better risk perception. Landslides-Glissements de Terrain Balkema, Rotterdam, 7, 263–270.
Zurück zum Zitat Ma, R. (2004). Building model reconstruction from LiDAR data and aerial photographs. The Ohio State University. Ma, R. (2004). Building model reconstruction from LiDAR data and aerial photographs. The Ohio State University.
Zurück zum Zitat Martha, T. R., van Westen, C. J., Kerle, N., Jetten, V., & Kumar, K. V. (2013). Landslide hazard and risk assessment using semi-automatically created landslide inventories. Geomorphology, 184, 139–150.CrossRef Martha, T. R., van Westen, C. J., Kerle, N., Jetten, V., & Kumar, K. V. (2013). Landslide hazard and risk assessment using semi-automatically created landslide inventories. Geomorphology, 184, 139–150.CrossRef
Zurück zum Zitat Moonjun, R. (2007). Application of artificial neural network and decision tree in a GIS–based predictive soil mapping for landslide vulnerability study: A case study of Hoi Num Rin sub–Watershed, Thailand, ITC. Enschede, 104, 16–32. Moonjun, R. (2007). Application of artificial neural network and decision tree in a GIS–based predictive soil mapping for landslide vulnerability study: A case study of Hoi Num Rin sub–Watershed, Thailand, ITC. Enschede, 104, 16–32.
Zurück zum Zitat Moreiras, S. M. (2015). Landslides as climate indicators in Argentinean Central Andes (32° S). In Engineering geology for society and territory (Vol. 1, pp. 443–447). Moreiras, S. M. (2015). Landslides as climate indicators in Argentinean Central Andes (32° S). In Engineering geology for society and territory (Vol. 1, pp. 443–447).
Zurück zum Zitat Muhammad, R. F. (2010). The geomorphology and origin of Gua Tempurung, Perak, West Malaysia. Bulletin of the Geological Society of Malaysia, 56, 127–132. Muhammad, R. F. (2010). The geomorphology and origin of Gua Tempurung, Perak, West Malaysia. Bulletin of the Geological Society of Malaysia, 56, 127–132.
Zurück zum Zitat Murillo-García, F., Rossi, M., Fiorucci, F., & Alcántara-Ayala, I. (2015). Population Landslide vulnerability evaluation: The case of the indigenous population of Pahuatlán-Puebla, Mexico. In Engineering geology for society and territory (Vol. 2, pp. 1793–1797). Murillo-García, F., Rossi, M., Fiorucci, F., & Alcántara-Ayala, I. (2015). Population Landslide vulnerability evaluation: The case of the indigenous population of Pahuatlán-Puebla, Mexico. In Engineering geology for society and territory (Vol. 2, pp. 1793–1797).
Zurück zum Zitat Muthukumar, M. (2013). GIS based geosystem response modelling for landslide vulnerability mapping parts of Nilgiris, South India. Disaster Advances, 6(7), 58–66. Muthukumar, M. (2013). GIS based geosystem response modelling for landslide vulnerability mapping parts of Nilgiris, South India. Disaster Advances, 6(7), 58–66.
Zurück zum Zitat Nandi, A., & Shakoor, A. (2010). A GIS-based landslide susceptibility evaluation using bivariate and multivariate statistical analyses. Engineering Geology, 110(1), 11–20.CrossRef Nandi, A., & Shakoor, A. (2010). A GIS-based landslide susceptibility evaluation using bivariate and multivariate statistical analyses. Engineering Geology, 110(1), 11–20.CrossRef
Zurück zum Zitat Ohlmacher, G. C., & Davis, J. C. (2003). Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas, USA. Engineering Geology, 69(3), 331–343.CrossRef Ohlmacher, G. C., & Davis, J. C. (2003). Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas, USA. Engineering Geology, 69(3), 331–343.CrossRef
Zurück zum Zitat Opolot, E. (2013). Application of remote sensing and geographical information systems in flood management: A review. Research Journal of Applied Sciences Engineering and Technology, 6, 1884–1894. Opolot, E. (2013). Application of remote sensing and geographical information systems in flood management: A review. Research Journal of Applied Sciences Engineering and Technology, 6, 1884–1894.
Zurück zum Zitat Pan, W. S., Lu, Y. D., & Guo, J. Y. (2014). Risk assessment and management of geological disaster based on risk period analysis and GIS in Loess Areas. In Applied mechanics and materials (Vol. 675, pp. 1184–1191). Pan, W. S., Lu, Y. D., & Guo, J. Y. (2014). Risk assessment and management of geological disaster based on risk period analysis and GIS in Loess Areas. In Applied mechanics and materials (Vol. 675, pp. 1184–1191).
Zurück zum Zitat Papathoma-Köhle, M., Zischg, A., Fuchs, S., Glade, T., & Keiler, M. (2015). Loss estimation for landslides in mountain areas–An integrated toolbox for vulnerability assessment and damage documentation. Environment Modelling and Software, 63, 156–169.CrossRef Papathoma-Köhle, M., Zischg, A., Fuchs, S., Glade, T., & Keiler, M. (2015). Loss estimation for landslides in mountain areas–An integrated toolbox for vulnerability assessment and damage documentation. Environment Modelling and Software, 63, 156–169.CrossRef
Zurück zum Zitat Park, S., Choi, C., Kim, B., & Kim, J. (2013). Landslide susceptibility mapping using frequency ratio, analytic hierarchy process, logistic regression, and artificial neural network methods at the Inje area, Korea. Environmental Earth Sciences, 68(5), 1443–1464.CrossRef Park, S., Choi, C., Kim, B., & Kim, J. (2013). Landslide susceptibility mapping using frequency ratio, analytic hierarchy process, logistic regression, and artificial neural network methods at the Inje area, Korea. Environmental Earth Sciences, 68(5), 1443–1464.CrossRef
Zurück zum Zitat Pedrazzini, A., Humair, F., Jaboyedoff, M., & Tonini, M. (2015). Characterisation and spatial distribution of gravitational slope deformation in the Upper Rhone catchment (Western Swiss Alps). Landslides, 8, 1–19. Pedrazzini, A., Humair, F., Jaboyedoff, M., & Tonini, M. (2015). Characterisation and spatial distribution of gravitational slope deformation in the Upper Rhone catchment (Western Swiss Alps). Landslides, 8, 1–19.
Zurück zum Zitat Pradhan, B. (2010). Landslide susceptibility mapping of a catchment area using frequency ratio, fuzzy logic and multivariate logistic regression approaches. Journal of the Indian Society of Remote Sensing, 38(2), 301–320.CrossRef Pradhan, B. (2010). Landslide susceptibility mapping of a catchment area using frequency ratio, fuzzy logic and multivariate logistic regression approaches. Journal of the Indian Society of Remote Sensing, 38(2), 301–320.CrossRef
Zurück zum Zitat Pradhan, B. (2011). Manifestation of an advanced fuzzy logic model coupled with Geo-information techniques to landslide susceptibility mapping and their comparison with logistic regression modelling. Environmental and Ecological Statistics, 18(3), 471–493.CrossRef Pradhan, B. (2011). Manifestation of an advanced fuzzy logic model coupled with Geo-information techniques to landslide susceptibility mapping and their comparison with logistic regression modelling. Environmental and Ecological Statistics, 18(3), 471–493.CrossRef
Zurück zum Zitat Pradhan, B., Hagemann, U., Tehrany, M. S., & Prechtel, N. (2014). An easy to use ArcMap based texture analysis program for extraction of flooded areas from TerraSAR-X satellite image. Computers & Geosciences, 63, 34–43.CrossRef Pradhan, B., Hagemann, U., Tehrany, M. S., & Prechtel, N. (2014). An easy to use ArcMap based texture analysis program for extraction of flooded areas from TerraSAR-X satellite image. Computers & Geosciences, 63, 34–43.CrossRef
Zurück zum Zitat Pradhan, B., & Lee, S. (2009). Landslide risk analysis using artificial neural network model focusing on different training sites. International Journal of Physical Sciences, 3(11), 1–15. Pradhan, B., & Lee, S. (2009). Landslide risk analysis using artificial neural network model focusing on different training sites. International Journal of Physical Sciences, 3(11), 1–15.
Zurück zum Zitat Pradhan, B., & Lee, S. (2010). Delineation of landslide hazard areas on Penang Island, Malaysia, by using frequency ratio, logistic regression, and artificial neural network models. Environmental Earth Sciences, 60(5), 1037–1054.CrossRef Pradhan, B., & Lee, S. (2010). Delineation of landslide hazard areas on Penang Island, Malaysia, by using frequency ratio, logistic regression, and artificial neural network models. Environmental Earth Sciences, 60(5), 1037–1054.CrossRef
Zurück zum Zitat Regmi, N. R., Giardino, J. R., McDonald, E. V., & Vitek, J. D. (2014). A comparison of logistic regression-based models of susceptibility to landslides in western Colorado, USA. Landslides, 11(2), 247–262.CrossRef Regmi, N. R., Giardino, J. R., McDonald, E. V., & Vitek, J. D. (2014). A comparison of logistic regression-based models of susceptibility to landslides in western Colorado, USA. Landslides, 11(2), 247–262.CrossRef
Zurück zum Zitat Romeo, R. W., Mari, M., & Pappafico, G. (2013). A performance-based approach to landslide risk analysis and management. In C. Margottini, P. Canuti, & K. Sassa (Eds.), Landslide science and practice (pp. 91–95). Berlin: Springer.CrossRef Romeo, R. W., Mari, M., & Pappafico, G. (2013). A performance-based approach to landslide risk analysis and management. In C. Margottini, P. Canuti, & K. Sassa (Eds.), Landslide science and practice (pp. 91–95). Berlin: Springer.CrossRef
Zurück zum Zitat Saito, H., Nakayama, D., & Matsuyama, H. (2009). Comparison of landslide susceptibility based on a decision-tree model and actual landslide occurrence: The Akaishi Mountains, Japan. Geomorphology, 109(3), 108–121.CrossRef Saito, H., Nakayama, D., & Matsuyama, H. (2009). Comparison of landslide susceptibility based on a decision-tree model and actual landslide occurrence: The Akaishi Mountains, Japan. Geomorphology, 109(3), 108–121.CrossRef
Zurück zum Zitat Sarkar, S., Kanungo, D. P., Patra, A., & Kumar, P. (2008). GIS based spatial data analysis for landslide susceptibility mapping. Journal of Mountain Science-England, 5(1), 52–62.CrossRef Sarkar, S., Kanungo, D. P., Patra, A., & Kumar, P. (2008). GIS based spatial data analysis for landslide susceptibility mapping. Journal of Mountain Science-England, 5(1), 52–62.CrossRef
Zurück zum Zitat Sattenpalli, S., & Parkash, S. (2013). Landslides, land use systems and food security. In C. Margottini, P. Canuti, & K. Sassa (Eds.), Landslide science and practice (pp. 151–161). Berlin: Springer.CrossRef Sattenpalli, S., & Parkash, S. (2013). Landslides, land use systems and food security. In C. Margottini, P. Canuti, & K. Sassa (Eds.), Landslide science and practice (pp. 151–161). Berlin: Springer.CrossRef
Zurück zum Zitat Shaharom, S., Huat, L. T., & Othman, M. A. (2014). Area based landslide hazard and risk assessment for Penang Island Malaysia. In K. Sassa, P. Canuti, & Y. Yin (Eds.), Landslide Science for a Safer Geoenvironment (pp. 513–519). Shaharom, S., Huat, L. T., & Othman, M. A. (2014). Area based landslide hazard and risk assessment for Penang Island Malaysia. In K. Sassa, P. Canuti, & Y. Yin (Eds.), Landslide Science for a Safer Geoenvironment (pp. 513–519).
Zurück zum Zitat Stoffel, M. (2010). Magnitude–frequency relationships of debris flows—A case study based on field surveys and tree-ring records. Geomorphology, 116(1), 67–76.CrossRef Stoffel, M. (2010). Magnitude–frequency relationships of debris flows—A case study based on field surveys and tree-ring records. Geomorphology, 116(1), 67–76.CrossRef
Zurück zum Zitat Tehrany, M. S., Pradhan, B., & Jebur, M. N. (2013). Spatial prediction of flood susceptible areas using rule based decision tree (DT) and a novel ensemble bivariate and multivariate statistical models in GIS. Journal of Hydrology, 504, 69–79.CrossRef Tehrany, M. S., Pradhan, B., & Jebur, M. N. (2013). Spatial prediction of flood susceptible areas using rule based decision tree (DT) and a novel ensemble bivariate and multivariate statistical models in GIS. Journal of Hydrology, 504, 69–79.CrossRef
Zurück zum Zitat Tehrany, M. S., Pradhan, B., & Jebur, M. N. (2014). Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS. Journal of Hydrology, 512, 332–343.CrossRef Tehrany, M. S., Pradhan, B., & Jebur, M. N. (2014). Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS. Journal of Hydrology, 512, 332–343.CrossRef
Zurück zum Zitat Tierney, K. J., Lindell, M. K., & Perry, R. W. (2001). Facing the unexpected: Disaster preparedness and response in the United States. USA: Joseph Henry Press. Tierney, K. J., Lindell, M. K., & Perry, R. W. (2001). Facing the unexpected: Disaster preparedness and response in the United States. USA: Joseph Henry Press.
Zurück zum Zitat Tournadour, E., Mulder, T., Borgomano, J., Hanquiez, V., Ducassou, E., & Gillet, H. (2015). Origin and architecture of a mass transport complex on the northwest slope of Little Bahama Bank (Bahamas): Relations between off-bank transport, bottom current sedimentation and submarine landslides. Sediment Geology, 317, 9–26.CrossRef Tournadour, E., Mulder, T., Borgomano, J., Hanquiez, V., Ducassou, E., & Gillet, H. (2015). Origin and architecture of a mass transport complex on the northwest slope of Little Bahama Bank (Bahamas): Relations between off-bank transport, bottom current sedimentation and submarine landslides. Sediment Geology, 317, 9–26.CrossRef
Zurück zum Zitat Umar, Z., Pradhan, B., Ahmad, A., Jebur, M. N., & Tehrany, M. S. (2014). Earthquake induced landslide susceptibility mapping using an integrated ensemble frequency ratio and logistic regression models in West Sumatera Province, Indonesia. Catena, 118, 124–135.CrossRef Umar, Z., Pradhan, B., Ahmad, A., Jebur, M. N., & Tehrany, M. S. (2014). Earthquake induced landslide susceptibility mapping using an integrated ensemble frequency ratio and logistic regression models in West Sumatera Province, Indonesia. Catena, 118, 124–135.CrossRef
Zurück zum Zitat Uzielli, M., Nadim, F., Lacasse, S., & Kaynia, A. M. (2008). A conceptual framework for quantitative estimation of physical vulnerability to landslides. Engineering Geology, 102(3), 251–256.CrossRef Uzielli, M., Nadim, F., Lacasse, S., & Kaynia, A. M. (2008). A conceptual framework for quantitative estimation of physical vulnerability to landslides. Engineering Geology, 102(3), 251–256.CrossRef
Zurück zum Zitat Van Westen, C. J., Castellanos, E., & Kuriakose, S. L. (2008). Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview. Engineering Geology, 102(3), 112–131.CrossRef Van Westen, C. J., Castellanos, E., & Kuriakose, S. L. (2008). Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview. Engineering Geology, 102(3), 112–131.CrossRef
Zurück zum Zitat Varoonchotikul, P. (2003). Flood forecasting using artificial neural networks. The Netherlands: CRC Press. Varoonchotikul, P. (2003). Flood forecasting using artificial neural networks. The Netherlands: CRC Press.
Zurück zum Zitat Wang, L. J., Sawada, K., & Moriguchi, S. (2013). Landslide susceptibility analysis with logistic regression model based on FCM sampling strategy. Computers & Geosciences, 57, 81–92.CrossRef Wang, L. J., Sawada, K., & Moriguchi, S. (2013). Landslide susceptibility analysis with logistic regression model based on FCM sampling strategy. Computers & Geosciences, 57, 81–92.CrossRef
Zurück zum Zitat Winter, M., Smith, J., Fotopoulou, S., Pitilakis, K., Mavrouli, O., Corominas, J., et al. (2014). An expert judgement approach to determining the physical vulnerability of roads to debris flow. Bulletin of Engineering Geology and the Environment, 73(2), 291–305.CrossRef Winter, M., Smith, J., Fotopoulou, S., Pitilakis, K., Mavrouli, O., Corominas, J., et al. (2014). An expert judgement approach to determining the physical vulnerability of roads to debris flow. Bulletin of Engineering Geology and the Environment, 73(2), 291–305.CrossRef
Zurück zum Zitat Xu, C., Dai, F., Xu, X., & Lee, Y. H. (2012). GIS-based support vector machine modeling of earthquake-triggered landslide susceptibility in the Jianjiang River watershed, China. Geomorphology, 145, 70–80.CrossRef Xu, C., Dai, F., Xu, X., & Lee, Y. H. (2012). GIS-based support vector machine modeling of earthquake-triggered landslide susceptibility in the Jianjiang River watershed, China. Geomorphology, 145, 70–80.CrossRef
Zurück zum Zitat Xu, C., Xu, X., Yao, X., & Dai, F. (2014). Three (nearly) complete inventories of landslides triggered by the May 12, 2008 Wenchuan Mw 7.9 earthquake of China and their spatial distribution statistical analysis. Landslides, 11(3), 441–461.CrossRef Xu, C., Xu, X., Yao, X., & Dai, F. (2014). Three (nearly) complete inventories of landslides triggered by the May 12, 2008 Wenchuan Mw 7.9 earthquake of China and their spatial distribution statistical analysis. Landslides, 11(3), 441–461.CrossRef
Zurück zum Zitat Yalcin, A., Reis, S., Aydinoglu, A., & Yomralioglu, T. (2011). A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey. Catena, 85(3), 274–287.CrossRef Yalcin, A., Reis, S., Aydinoglu, A., & Yomralioglu, T. (2011). A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey. Catena, 85(3), 274–287.CrossRef
Zurück zum Zitat Yesilnacar, E., & Topal, T. (2005). Landslide susceptibility mapping: A comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey). Engineering Geology, 79(3), 251–266.CrossRef Yesilnacar, E., & Topal, T. (2005). Landslide susceptibility mapping: A comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey). Engineering Geology, 79(3), 251–266.CrossRef
Zurück zum Zitat Yilmaz, I. (2009). Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: A case study from Kat landslides (Tokat-Turkey). Computers & Geosciences, 35(6), 1125–1138.CrossRef Yilmaz, I. (2009). Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: A case study from Kat landslides (Tokat-Turkey). Computers & Geosciences, 35(6), 1125–1138.CrossRef
Zurück zum Zitat Yuan, R. M., Tang, C. L., & Deng, Q. H. (2015). Effect of the acceleration component normal to the sliding surface on earthquake-induced landslide triggering. Landslides, 12(2), 335–344.CrossRef Yuan, R. M., Tang, C. L., & Deng, Q. H. (2015). Effect of the acceleration component normal to the sliding surface on earthquake-induced landslide triggering. Landslides, 12(2), 335–344.CrossRef
Zurück zum Zitat Yusof, N. M., Pradhan, B., Shafri, H. Z. M., Jebur, M. N., & Yusoff, Z. (2015). Spatial landslide hazard assessment along the Jelapang Corridor of the North–South expressway in Malaysia using high resolution airborne LiDAR data. Arabian Journal of Geoscience, 8, 1–12.CrossRef Yusof, N. M., Pradhan, B., Shafri, H. Z. M., Jebur, M. N., & Yusoff, Z. (2015). Spatial landslide hazard assessment along the Jelapang Corridor of the North–South expressway in Malaysia using high resolution airborne LiDAR data. Arabian Journal of Geoscience, 8, 1–12.CrossRef
Zurück zum Zitat Zare, M., Pourghasemi, H. R., Vafakhah, M., & Pradhan, B. (2013). Landslide susceptibility mapping at Vaz Watershed (Iran) using an artificial neural network model: A comparison between multilayer perceptron (MLP) and radial basic function (RBF) algorithms. Arabian Journal of Geoscience, 6(8), 2873–2888.CrossRef Zare, M., Pourghasemi, H. R., Vafakhah, M., & Pradhan, B. (2013). Landslide susceptibility mapping at Vaz Watershed (Iran) using an artificial neural network model: A comparison between multilayer perceptron (MLP) and radial basic function (RBF) algorithms. Arabian Journal of Geoscience, 6(8), 2873–2888.CrossRef
Metadaten
Titel
Slope Vulnerability and Risk Assessment Using High-Resolution Airborne Laser Scanning Data
verfasst von
Biswajeet Pradhan
Norbazlan Mohd Yusof
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-55342-9_12