Skip to main content
Erschienen in: Wireless Personal Communications 2/2021

19.02.2021

Large-Scale Analysis for Corridors of Different Dimensions and Morphology at 10 GHz Frequency

verfasst von: Iury da S. Batalha, Andréia V. R. Lopes, Erika C. Reis, Leslye C. Eras, Bruno L. S. Castro, Fabrício J. B. Barros, Gervasio P. S. Cavalcante

Erschienen in: Wireless Personal Communications | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Within studies focused on channel modeling for 5G priority bands and indoor environments, this work aims at several large-scale channel modeling and statistical analysis regarding electromagnetic waves’ behavior within corridors to better understand the channels’ behavior. We studied five corridors with a difference in morphologies and dielectric materials. Choosing the large-scale path loss models, close-in free space reference, and floating intercept due to their high usability in the literature. The PLE, FSPL alpha, and beta parameters were determined using the minimum mean square error. We also considered the standard deviation point-to-point and standard deviation representing the random variable on the measured data for the statistical approach.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ni, Y., Liang, J., Shi, X. & Ban, D. (2019). Research on key technology in 5G mobile communication network. In 2019 International Conference on Intelligent Transportation, Big Data & Smart City (ICITBS), Changsha, China, 2019 (pp. 199-201). Ni, Y., Liang, J., Shi, X. & Ban, D. (2019). Research on key technology in 5G mobile communication network. In 2019 International Conference on Intelligent Transportation, Big Data & Smart City (ICITBS), Changsha, China, 2019 (pp. 199-201).
2.
Zurück zum Zitat Fundamentals of 5G Mobile Networks, John Wiley & Sons, United Kingdom (2015). Fundamentals of 5G Mobile Networks, John Wiley & Sons, United Kingdom (2015).
3.
Zurück zum Zitat Rappaport, T. S., Xing, Y., MacCartney, G. R., Molisch, A. F., Mellios, E., & Zhang, J. (2017). Overview of millimeter wave communications for fifth-generation (5G) wireless networks-with a focus on propagation models. IEEE Transactions on Antennas and Propagation, 65(12), 6213–6230.CrossRef Rappaport, T. S., Xing, Y., MacCartney, G. R., Molisch, A. F., Mellios, E., & Zhang, J. (2017). Overview of millimeter wave communications for fifth-generation (5G) wireless networks-with a focus on propagation models. IEEE Transactions on Antennas and Propagation, 65(12), 6213–6230.CrossRef
4.
Zurück zum Zitat Roh, W., et al. (2014). Millimeter-wave beamforming as an enabling technology for 5G cellular communications: theoretical feasibility and prototype results. IEEE Communications Magazine, 52(2), 106–113.CrossRef Roh, W., et al. (2014). Millimeter-wave beamforming as an enabling technology for 5G cellular communications: theoretical feasibility and prototype results. IEEE Communications Magazine, 52(2), 106–113.CrossRef
5.
Zurück zum Zitat Elkashlan, M. T., Duong, Q., & Chen, H. (2016). Millimeter-wave communications for 5G: fundamentals: Part I [Guest Editorial]. IEEE Communications Surveys & Tutorials, 18(2), 1018–1044.CrossRef Elkashlan, M. T., Duong, Q., & Chen, H. (2016). Millimeter-wave communications for 5G: fundamentals: Part I [Guest Editorial]. IEEE Communications Surveys & Tutorials, 18(2), 1018–1044.CrossRef
6.
Zurück zum Zitat Elkashlan, M. T., Duong, Q., & Chen, H. (2015). Millimeter-wave communications for 5G - Part 2: applications [Guest Editorial]. IEEE Communications Magazine, 53(1), 166–167.CrossRef Elkashlan, M. T., Duong, Q., & Chen, H. (2015). Millimeter-wave communications for 5G - Part 2: applications [Guest Editorial]. IEEE Communications Magazine, 53(1), 166–167.CrossRef
9.
Zurück zum Zitat 3GPP: “Channel modeling for higher frequency bands,” RP151306, Jun. 14-16 (2015). 3GPP: “Channel modeling for higher frequency bands,” RP151306, Jun. 14-16 (2015).
12.
Zurück zum Zitat Proposed Solutions for New Radio Access. (2015). METIS Deliverable, D2, 4. Proposed Solutions for New Radio Access. (2015). METIS Deliverable, D2, 4.
13.
Zurück zum Zitat Barclay, L. (2012). Propagation of Radio Waves. In London: The Institution OS Engineering and Technology. Barclay, L. (2012). Propagation of Radio Waves. In London: The Institution OS Engineering and Technology.
14.
Zurück zum Zitat Oyie, N. O., & Afullo, T. J. O. (2018). Measurements and analysis of large-scale path loss model at 14 and 22 GHz in indoor corridor. IEEE Access, 6, 17205–17214.CrossRef Oyie, N. O., & Afullo, T. J. O. (2018). Measurements and analysis of large-scale path loss model at 14 and 22 GHz in indoor corridor. IEEE Access, 6, 17205–17214.CrossRef
15.
Zurück zum Zitat Al-Samman et al, A. M. (2018). Indoor Corridor Wideband radio propagation measurements and Channel models for 5G millimeter wave Wireless Communications at 19, 28 and 38 GHz bands. In Wireless Communications and Mobile Computing, vol. 2018, Article ID 6369517, 12 pages. Al-Samman et al, A. M. (2018). Indoor Corridor Wideband radio propagation measurements and Channel models for 5G millimeter wave Wireless Communications at 19, 28 and 38 GHz bands. In Wireless Communications and Mobile Computing, vol. 2018, Article ID 6369517, 12 pages.
16.
Zurück zum Zitat Al-Samman, A. M., Rahamn, T. A., Azmi, M. H., Hindia, M. N., Khan, I., & Hanafi, E. (2016). Statistical modeling and characterization of experimental mmwWave Indoor Cahnnels for Future 5G Wireless Communications networks. PLoS ONE, 11(9), 0163034.CrossRef Al-Samman, A. M., Rahamn, T. A., Azmi, M. H., Hindia, M. N., Khan, I., & Hanafi, E. (2016). Statistical modeling and characterization of experimental mmwWave Indoor Cahnnels for Future 5G Wireless Communications networks. PLoS ONE, 11(9), 0163034.CrossRef
17.
Zurück zum Zitat Deryck, L. (1978). Natural propagation of electromagnetic waves in tunnels. IEEE Transactions on Vehicular Technology, 27(3), 145–150.CrossRef Deryck, L. (1978). Natural propagation of electromagnetic waves in tunnels. IEEE Transactions on Vehicular Technology, 27(3), 145–150.CrossRef
18.
Zurück zum Zitat Oyie, N. O., & Afullo, T. J. O. (2018). An empirical approach to omnidirectional path loss and line-of-sight probability models at 18 GHz for 5G networks, in, progress in electromagnetics research symposium (PIERS-Toyama). Toyama, 2018, 129–136. Oyie, N. O., & Afullo, T. J. O. (2018). An empirical approach to omnidirectional path loss and line-of-sight probability models at 18 GHz for 5G networks, in, progress in electromagnetics research symposium (PIERS-Toyama). Toyama, 2018, 129–136.
19.
Zurück zum Zitat Hrovat, A., Kandus, G., & Javornik, T. (2014). A survey of radio propagation modeling for tunnels. IEEE Communications Surveys & Tutorials, 16(2), 658–669.CrossRef Hrovat, A., Kandus, G., & Javornik, T. (2014). A survey of radio propagation modeling for tunnels. IEEE Communications Surveys & Tutorials, 16(2), 658–669.CrossRef
20.
Zurück zum Zitat Fuschini, F., & Falciasecca, G. (2012). A mixed rays-modes approach to the propagation in real road and railway tunnels. IEEE Transactions on Antennas and Propagation, 60(2), 1095–1105.MathSciNetCrossRef Fuschini, F., & Falciasecca, G. (2012). A mixed rays-modes approach to the propagation in real road and railway tunnels. IEEE Transactions on Antennas and Propagation, 60(2), 1095–1105.MathSciNetCrossRef
21.
Zurück zum Zitat Katuiski, R. J., & Kiedrowski, A. (2008). Calculation of the propagation loss in urban radio-access systems. IEEE Antennas and Propagation Magazine, 50(6), 65–70.CrossRef Katuiski, R. J., & Kiedrowski, A. (2008). Calculation of the propagation loss in urban radio-access systems. IEEE Antennas and Propagation Magazine, 50(6), 65–70.CrossRef
22.
Zurück zum Zitat Rappaport, T. S., et al. (2013). Millimeter wave mobile communications for 5g cellular: It will work! IEEE Access, 1, 335–349.CrossRef Rappaport, T. S., et al. (2013). Millimeter wave mobile communications for 5g cellular: It will work! IEEE Access, 1, 335–349.CrossRef
23.
Zurück zum Zitat Mariage, P., Degauque, P., & Baranowski, S. (1991). Theoretical and experimental approach of the propagation of high frequency waves inside building corridors. In Proceedings of the 6th Mediterranean electrotechnical conference Ljubljana, Slovenia, May 22–24 (pp. 629–632). Mariage, P., Degauque, P., & Baranowski, S. (1991). Theoretical and experimental approach of the propagation of high frequency waves inside building corridors. In Proceedings of the 6th Mediterranean electrotechnical conference Ljubljana, Slovenia, May 22–24 (pp. 629–632).
24.
Zurück zum Zitat Batalha, I. S., Lopes, A. V. R., Araújo, J. P. L., Castro, B. L. S., Barros, F. J. B., Cavalcante, G. P. S., & Pelaes, E. G. (2019). Indoor corridor and office propagation measurements and channel models at 8, 9, 10, and 11 GHz. IEEE Access, 7, 55005–55021.CrossRef Batalha, I. S., Lopes, A. V. R., Araújo, J. P. L., Castro, B. L. S., Barros, F. J. B., Cavalcante, G. P. S., & Pelaes, E. G. (2019). Indoor corridor and office propagation measurements and channel models at 8, 9, 10, and 11 GHz. IEEE Access, 7, 55005–55021.CrossRef
25.
Zurück zum Zitat Yue, G., Yu, D., Qiu, H., Guan, K., Yang, L., & Lv, Q. (2019). Measurements and ray tracing simulations for non-line-of-sight millimeter-wave channels in a confined corridor environment. IEEE Access, 7, 85066–85081.CrossRef Yue, G., Yu, D., Qiu, H., Guan, K., Yang, L., & Lv, Q. (2019). Measurements and ray tracing simulations for non-line-of-sight millimeter-wave channels in a confined corridor environment. IEEE Access, 7, 85066–85081.CrossRef
26.
Zurück zum Zitat Batalha, I.S., Lopes, A.V.R ., Araújo, J.P.L., Castro, B.L.S., Barros, F.J.B., Cavalcante, G.P.S., & Pelaes, E.G. (2019). Large-scale channel modeling and measurements for 10 GHz in indoor environments. In International Journal of Antennas and Propagation, vol. 2019, Article ID 9454271, 10 pages Batalha, I.S., Lopes, A.V.R ., Araújo, J.P.L., Castro, B.L.S., Barros, F.J.B., Cavalcante, G.P.S., & Pelaes, E.G. (2019). Large-scale channel modeling and measurements for 10 GHz in indoor environments. In International Journal of Antennas and Propagation, vol. 2019, Article ID 9454271, 10 pages
27.
Zurück zum Zitat Catherwood, P. A., & Scanlon, W. G. (2019). Statitical modeling comparison of weareble UWB signal propagation in antithetical corridor environments. IET Microwaves, Antennas & Propagation, 13(2), 263–268.CrossRef Catherwood, P. A., & Scanlon, W. G. (2019). Statitical modeling comparison of weareble UWB signal propagation in antithetical corridor environments. IET Microwaves, Antennas & Propagation, 13(2), 263–268.CrossRef
28.
Zurück zum Zitat Majed, M. B., Rahman, T. A., Aziz, O. A., Hindia, M. N. & Hanafi, E. (2018). Channel characterization and path loss modeling in indoor environment at 4.5, 28 and 38 GHz for 5G Cellular Networks. In International Journal and Antennas and Propagation vol. 2018, Article ID 9142367, 17 pages. Majed, M. B., Rahman, T. A., Aziz, O. A., Hindia, M. N. & Hanafi, E. (2018). Channel characterization and path loss modeling in indoor environment at 4.5, 28 and 38 GHz for 5G Cellular Networks. In International Journal and Antennas and Propagation vol. 2018, Article ID 9142367, 17 pages.
29.
Zurück zum Zitat Li, S., Liu, Y., Lin, L., Sun, X., Yang, S., & Sun, D. (2018). Millimeter-wave channel simulation and statitical channel model in the cross-corridor environment at 28 GHz for 5G wireless system, ’ ’ in 2018 international conference on microwave and millimeter wave technology (ICMMT). China: Chengdu. Li, S., Liu, Y., Lin, L., Sun, X., Yang, S., & Sun, D. (2018). Millimeter-wave channel simulation and statitical channel model in the cross-corridor environment at 28 GHz for 5G wireless system, ’ ’ in 2018 international conference on microwave and millimeter wave technology (ICMMT). China: Chengdu.
30.
Zurück zum Zitat Al-Samman, A. M., Rahman, T. A., Hadri, M., Khan, I., & Chua, T. H. (2017). Experimental UWB indoor channel characterization in stationary and mobility scheme. Elsevier Measurement, 111, 333–339.CrossRef Al-Samman, A. M., Rahman, T. A., Hadri, M., Khan, I., & Chua, T. H. (2017). Experimental UWB indoor channel characterization in stationary and mobility scheme. Elsevier Measurement, 111, 333–339.CrossRef
31.
Zurück zum Zitat Wu, T., Wang, H., Yu, C., & Hong, W. (2017). Wideband channel fading characteristics in corridor environment at millimeter-wave bands’’, in 2017 11th European conference on antennas and propagation (EUCAP). Paris: France. Wu, T., Wang, H., Yu, C., & Hong, W. (2017). Wideband channel fading characteristics in corridor environment at millimeter-wave bands’’, in 2017 11th European conference on antennas and propagation (EUCAP). Paris: France.
32.
Zurück zum Zitat Zhang, P., Wang, H., Wang, H., & Bai, R. (2017). Millimeter-wave channel measurement and spatial characteristics for indoor environments, in, international applied computational electromagnetics society symposium (ACES). Suzhou, 2017, 1–2. Zhang, P., Wang, H., Wang, H., & Bai, R. (2017). Millimeter-wave channel measurement and spatial characteristics for indoor environments, in, international applied computational electromagnetics society symposium (ACES). Suzhou, 2017, 1–2.
33.
Zurück zum Zitat Zhou, X., et al. (2017). Indoor wideband channel measurements and analysis at 11 and 14 GHz. IET Microwaves, Antennas & Propagation, 11(10), 1393–1400.CrossRef Zhou, X., et al. (2017). Indoor wideband channel measurements and analysis at 11 and 14 GHz. IET Microwaves, Antennas & Propagation, 11(10), 1393–1400.CrossRef
34.
Zurück zum Zitat Zhang, P., Wang, H., Wang, H., Sun, X., & Zhou, Y. (2017). Cluster-based analysis of wideband millimeter-wave channel for corridor environment, in 2017 Sixth Asia-Pacific conference on antennas and propagation (APCAP). China: Shaanxi. Zhang, P., Wang, H., Wang, H., Sun, X., & Zhou, Y. (2017). Cluster-based analysis of wideband millimeter-wave channel for corridor environment, in 2017 Sixth Asia-Pacific conference on antennas and propagation (APCAP). China: Shaanxi.
35.
Zurück zum Zitat Zhou, L., Xiao, L., Li, J., Yang, Z., & Zhou, S. (2016). Path loss model based on cluster at 28GHz in the office and corridor environments, in 2016 IEEE 84th vehicular technology conference (VTC-Fall). QC, Canada: Montreal. Zhou, L., Xiao, L., Li, J., Yang, Z., & Zhou, S. (2016). Path loss model based on cluster at 28GHz in the office and corridor environments, in 2016 IEEE 84th vehicular technology conference (VTC-Fall). QC, Canada: Montreal.
36.
Zurück zum Zitat Liu, Y., Xiong, L., Bian, X., Zhou, X., Tian, F., & Zhou, T. (2016). Radio propagation characteristics in corridor for wireless communications based on FEKO, in 2016 19th international symposium on wireless personal multimedia communications (WPMC). China: Shenzhen. Liu, Y., Xiong, L., Bian, X., Zhou, X., Tian, F., & Zhou, T. (2016). Radio propagation characteristics in corridor for wireless communications based on FEKO, in 2016 19th international symposium on wireless personal multimedia communications (WPMC). China: Shenzhen.
37.
Zurück zum Zitat MacCartney, G. R., et al. (2015). Indoor office wideband millimeter-wave propagation measurements and channel models at 28 and 73 GHz for ultra-dense 5g wireless networks. IEEE Access, 3, 2388–2424.CrossRef MacCartney, G. R., et al. (2015). Indoor office wideband millimeter-wave propagation measurements and channel models at 28 and 73 GHz for ultra-dense 5g wireless networks. IEEE Access, 3, 2388–2424.CrossRef
38.
Zurück zum Zitat Zhao, X., Geng, S., & Coulibaly, B. M. (2013). Path-loss model including LOS-NLOS transition regions for indoor corridors at 5 GHz. IEEE Antennas and Propagation Magazine, 55(3), 217–223.CrossRef Zhao, X., Geng, S., & Coulibaly, B. M. (2013). Path-loss model including LOS-NLOS transition regions for indoor corridors at 5 GHz. IEEE Antennas and Propagation Magazine, 55(3), 217–223.CrossRef
39.
Zurück zum Zitat Kim, M., Konishi, Y., Chang, Y., & Takada, J. (2014). Large scale parameters and double-directional characterization of indoor wideband radio multipath channels at 11 GHz. IEEE Transactions on Antennas and Propagation, 62(1), 430–441.CrossRef Kim, M., Konishi, Y., Chang, Y., & Takada, J. (2014). Large scale parameters and double-directional characterization of indoor wideband radio multipath channels at 11 GHz. IEEE Transactions on Antennas and Propagation, 62(1), 430–441.CrossRef
40.
Zurück zum Zitat Geng, S., & Vainikainen, P. (2009). Millimeter-wave propagation in indoor corridors. IEEE Antennas and Wireless Propagation Letters, 8, 1242–1245.CrossRef Geng, S., & Vainikainen, P. (2009). Millimeter-wave propagation in indoor corridors. IEEE Antennas and Wireless Propagation Letters, 8, 1242–1245.CrossRef
41.
Zurück zum Zitat Iskander, M. F. Propagation prediction models for wireless communications systems. In IEEE Transactions on Microwave and Techniques, vol. 50, no. 3. Iskander, M. F. Propagation prediction models for wireless communications systems. In IEEE Transactions on Microwave and Techniques, vol. 50, no. 3.
42.
Zurück zum Zitat Pi, Z., & Khan, F. (2011). An introduction to millimeter-wave mobile broadband systems. IEEE Communications Magazine, 49(6), 101–107.CrossRef Pi, Z., & Khan, F. (2011). An introduction to millimeter-wave mobile broadband systems. IEEE Communications Magazine, 49(6), 101–107.CrossRef
43.
Zurück zum Zitat Rappaport, T. S., MacCartney, G. R., Samimi, M. K., & Sun, S. (2015). Wideband millimeter-wave propagation measurements and channel models for future wireless communication system design. IEEE Transactions on Communications, 63(9), 3029–3056.CrossRef Rappaport, T. S., MacCartney, G. R., Samimi, M. K., & Sun, S. (2015). Wideband millimeter-wave propagation measurements and channel models for future wireless communication system design. IEEE Transactions on Communications, 63(9), 3029–3056.CrossRef
44.
Zurück zum Zitat Liu, D., et al. (2014). User association in 5G networks: A survey and an outlook. IEEE Communications Magazine, 52(9), 52–54.CrossRef Liu, D., et al. (2014). User association in 5G networks: A survey and an outlook. IEEE Communications Magazine, 52(9), 52–54.CrossRef
45.
Zurück zum Zitat Abhayawardhana, V.S., Wassell, I.J., Crosby, D., Sellars, M.P., & Brown, M.G. (2005). Comparison of empirical propagation path loss models for fixed wireless access systems. In 2005 IEEE 61st Vehicular Technology Conference, Stockholm, Vol. 1 (pp. 73–77). Abhayawardhana, V.S., Wassell, I.J., Crosby, D., Sellars, M.P., & Brown, M.G. (2005). Comparison of empirical propagation path loss models for fixed wireless access systems. In 2005 IEEE 61st Vehicular Technology Conference, Stockholm, Vol. 1 (pp. 73–77).
46.
Zurück zum Zitat Karttunen, A. et al. (2016). Path loss models with distance-dependent weighted fitting and estimation of censored path loss data. In IET Microwaves, Antennas & Propagation, vol. 10, no. 14, pp. 1467-1474, 19 11. Karttunen, A. et al. (2016). Path loss models with distance-dependent weighted fitting and estimation of censored path loss data. In IET Microwaves, Antennas & Propagation, vol. 10, no. 14, pp. 1467-1474, 19 11.
47.
Zurück zum Zitat Hur, S. et al. (2015). Wideband spatial channel model in an urban cellular environments at 28 GHz. In 2015 9th European conference on antennas and propagation (EuCAP), Lisbon (pp. 1-5). Hur, S. et al. (2015). Wideband spatial channel model in an urban cellular environments at 28 GHz. In 2015 9th European conference on antennas and propagation (EuCAP), Lisbon (pp. 1-5).
Metadaten
Titel
Large-Scale Analysis for Corridors of Different Dimensions and Morphology at 10 GHz Frequency
verfasst von
Iury da S. Batalha
Andréia V. R. Lopes
Erika C. Reis
Leslye C. Eras
Bruno L. S. Castro
Fabrício J. B. Barros
Gervasio P. S. Cavalcante
Publikationsdatum
19.02.2021
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 2/2021
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-021-08254-0

Weitere Artikel der Ausgabe 2/2021

Wireless Personal Communications 2/2021 Zur Ausgabe

Neuer Inhalt