Skip to main content
Erschienen in: Neural Computing and Applications 11/2018

26.10.2016 | Original Article

Learning sparse partial differential equations for vector-valued images

verfasst von: Yuanyuan Jiao, Xiaogang Pan, Zhenyu Zhao, Chenping Hou

Erschienen in: Neural Computing and Applications | Ausgabe 11/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Learning partial differential equations (LPDEs) from training data for particular tasks has been successfully applied to many image processing problems. In this paper, we propose a more effective LPDEs model for vector-valued image tasks. The PDEs are also formulated as a linear combination of fundamental differential invariants, but have several distinctions. First, we simplify the current LPDEs system by omitting a PDE which works as an indicate function in current ones. Second, instead of using \(L_2\)-norm, we use the \(L_1\)-norm to regularize the coefficients with respect to the fundamental differential invariants. Third, as the objective function is not smooth, we resort to the alternating direction method to optimize it. We illustrate the properties of our LPDEs system by several examples in denoising and demosaicking of RGB color images. The experiments demonstrate the advantage of the proposed method over other PDE-based methods.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
The images are padded with zeros of several pixels width around them, so that the Dirichlet boundary conditions \(u_{m}(x,y,t)=0, v_{m}(x,y,t)=0, (x,y,t)\in \varGamma\), are naturally fulfilled.
 
2
The images are padded with zeros of several pixels width around them such that the Dirichlet boundary conditions \(u^c_{m}(x,y,t)=0, (x,y,t)\in \varGamma\), are naturally fulfilled.
 
Literatur
2.
Zurück zum Zitat Aubert G, Kornprobst P (2006) Mathematical problems in image processing: partial differential equations and the calculus of variations, vol 147. Springer, New YorkMATH Aubert G, Kornprobst P (2006) Mathematical problems in image processing: partial differential equations and the calculus of variations, vol 147. Springer, New YorkMATH
3.
Zurück zum Zitat Beauchemin SS, Barron JL (1995) The computation of optical flow. ACM Comput Surv (CSUR) 27(3):433–466CrossRef Beauchemin SS, Barron JL (1995) The computation of optical flow. ACM Comput Surv (CSUR) 27(3):433–466CrossRef
4.
Zurück zum Zitat Beck A, Teboulle M (2009) A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J Imaging Sci 2(1):183–202MathSciNetCrossRefMATH Beck A, Teboulle M (2009) A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J Imaging Sci 2(1):183–202MathSciNetCrossRefMATH
5.
Zurück zum Zitat Bingsheng H, Xiaoming Y (2013) Linearized alternating direction method of multipliers with Gaussian back substitution for separable convex programming. Numer Algebra Control Opt 22(2):313–340MathSciNetMATH Bingsheng H, Xiaoming Y (2013) Linearized alternating direction method of multipliers with Gaussian back substitution for separable convex programming. Numer Algebra Control Opt 22(2):313–340MathSciNetMATH
6.
Zurück zum Zitat Blomgren P, Chan TF (1998) Color TV: total variation methods for restoration of vector-valued images. IEEE Trans Image Process 7(3):304–309CrossRef Blomgren P, Chan TF (1998) Color TV: total variation methods for restoration of vector-valued images. IEEE Trans Image Process 7(3):304–309CrossRef
7.
Zurück zum Zitat Boyd S, Parikh N, Chu E, Peleato B, Eckstein J (2011) Distributed optimization and statistical learning via the alternating direction method of multipliers. Found Trends Mach Learn 3(1):1–122CrossRefMATH Boyd S, Parikh N, Chu E, Peleato B, Eckstein J (2011) Distributed optimization and statistical learning via the alternating direction method of multipliers. Found Trends Mach Learn 3(1):1–122CrossRefMATH
8.
Zurück zum Zitat Chan TF, Esedoglu S (2005) Aspects of total variation regularized \({L}^1\) function approximation. SIAM J Appl Math 65(5):1817–1837MathSciNetCrossRefMATH Chan TF, Esedoglu S (2005) Aspects of total variation regularized \({L}^1\) function approximation. SIAM J Appl Math 65(5):1817–1837MathSciNetCrossRefMATH
9.
10.
Zurück zum Zitat Deng W, Yin W (2016) On the global and linear convergence of the generalized alternating direction method of multipliers. J Sci Comput 66(3):1–28MathSciNetCrossRefMATH Deng W, Yin W (2016) On the global and linear convergence of the generalized alternating direction method of multipliers. J Sci Comput 66(3):1–28MathSciNetCrossRefMATH
12.
13.
Zurück zum Zitat Esser E (2009) Applications of Lagrangian-based alternating direction methods and connections to split Bregman. Cam Report Esser E (2009) Applications of Lagrangian-based alternating direction methods and connections to split Bregman. Cam Report
15.
Zurück zum Zitat Figueiredo MA, Nowak RD, Wright SJ (2007) Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE J Select Top Signal Process 1(4):586–597CrossRef Figueiredo MA, Nowak RD, Wright SJ (2007) Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE J Select Top Signal Process 1(4):586–597CrossRef
16.
17.
Zurück zum Zitat Gunturk BK, Altunbasak Y, Mersereau RM (2002) Color plane interpolation using alternating projections. IEEE Trans Image Process Publ IEEE Signal Process Soc 11(9):997–1013CrossRef Gunturk BK, Altunbasak Y, Mersereau RM (2002) Color plane interpolation using alternating projections. IEEE Trans Image Process Publ IEEE Signal Process Soc 11(9):997–1013CrossRef
18.
Zurück zum Zitat Li C, Xu C, Gui C, Fox MD (2005) Level set evolution without re-initialization: a new variational formulation. In: Computer vision and pattern recognition, 2005. CVPR 2005. IEEE Computer Society Conference on. vol 1, pp 430–436. IEEE Li C, Xu C, Gui C, Fox MD (2005) Level set evolution without re-initialization: a new variational formulation. In: Computer vision and pattern recognition, 2005. CVPR 2005. IEEE Computer Society Conference on. vol 1, pp 430–436. IEEE
19.
Zurück zum Zitat Lin Z, Liu R, Su Z (2011) Linearized alternating direction method with adaptive penalty for low-rank representation. Advances in neural information processing systems, pp 612–620 Lin Z, Liu R, Su Z (2011) Linearized alternating direction method with adaptive penalty for low-rank representation. Advances in neural information processing systems, pp 612–620
20.
Zurück zum Zitat Lin Z, Zhang W, Tang X (2008) Learning partial differential equations for computer vision. Tech. rep., Technical report, Microsoft Research, MSR-TR-2008-189 Lin Z, Zhang W, Tang X (2008) Learning partial differential equations for computer vision. Tech. rep., Technical report, Microsoft Research, MSR-TR-2008-189
21.
Zurück zum Zitat Lin Z, Zhang W, Tang X (2009) Designing partial differential equations for image processing by combining differential invariants. Tech. rep., Technical report, Microsoft Research, MSR-TR-2009-192 Lin Z, Zhang W, Tang X (2009) Designing partial differential equations for image processing by combining differential invariants. Tech. rep., Technical report, Microsoft Research, MSR-TR-2009-192
22.
Zurück zum Zitat Lions JL (1971) Optimal control of systems governed by partial differential equations. Springer, New YorkCrossRefMATH Lions JL (1971) Optimal control of systems governed by partial differential equations. Springer, New YorkCrossRefMATH
23.
Zurück zum Zitat Liu R, Cao J, Lin Z, Shan S (2014) Adaptive partial differential equation learning for visual saliency detection. In: CVPR Liu R, Cao J, Lin Z, Shan S (2014) Adaptive partial differential equation learning for visual saliency detection. In: CVPR
24.
Zurück zum Zitat Liu R, Lin Z, Zhang W, Tang K, Su Z (2010) Learning PDEs for image restoration via optimal control. In: ECCV Liu R, Lin Z, Zhang W, Tang K, Su Z (2010) Learning PDEs for image restoration via optimal control. In: ECCV
25.
Zurück zum Zitat Liu R, Lin Z, Zhang W, Tang K, Su Z (2013) Toward designing intelligent PDES for computer vision: an optimal control approach. Image Vis Comput 31(1):43–56CrossRef Liu R, Lin Z, Zhang W, Tang K, Su Z (2013) Toward designing intelligent PDES for computer vision: an optimal control approach. Image Vis Comput 31(1):43–56CrossRef
27.
Zurück zum Zitat Malioutov DM, Cetin M, Willsky AS (2005) Homotopy continuation for sparse signal representation. In: ICASSP. vol 5, pp v-733. IEEE Malioutov DM, Cetin M, Willsky AS (2005) Homotopy continuation for sparse signal representation. In: ICASSP. vol 5, pp v-733. IEEE
28.
Zurück zum Zitat Martin B, Andrea CM, Stanley O, Martin R (2013) Level set and PDE based reconstruction methods in imaging. Springer, New York Martin B, Andrea CM, Stanley O, Martin R (2013) Level set and PDE based reconstruction methods in imaging. Springer, New York
29.
Zurück zum Zitat Osher S, Rudin LI (1990) Feature-oriented image enhancement using shock filters. SIAM J Numer Anal 27(4):919–940CrossRefMATH Osher S, Rudin LI (1990) Feature-oriented image enhancement using shock filters. SIAM J Numer Anal 27(4):919–940CrossRefMATH
30.
Zurück zum Zitat Perona P, Malik J (1990) Scale-space and edge detection using anisotropic diffusion. Pattern Anal Mach Intell IEEE Trans 12(7):629–639CrossRef Perona P, Malik J (1990) Scale-space and edge detection using anisotropic diffusion. Pattern Anal Mach Intell IEEE Trans 12(7):629–639CrossRef
31.
32.
Zurück zum Zitat Sapiro G (2006) Geometric partial differential equations and image analysis. Cambridge University Press, CambridgeMATH Sapiro G (2006) Geometric partial differential equations and image analysis. Cambridge University Press, CambridgeMATH
33.
34.
Zurück zum Zitat Tao M (2014) Some parallel splitting methods for separable convex programming with the \(o(1/t)\) convergence rate. Pacif J Opt 10(2):359–384MathSciNetMATH Tao M (2014) Some parallel splitting methods for separable convex programming with the \(o(1/t)\) convergence rate. Pacif J Opt 10(2):359–384MathSciNetMATH
35.
Zurück zum Zitat Yang J, Yuan X (2011) Linearized augmented Lagrangian and alternating direction methods for nuclear norm minimization. Math Comput 82(281):301–329MathSciNetCrossRefMATH Yang J, Yuan X (2011) Linearized augmented Lagrangian and alternating direction methods for nuclear norm minimization. Math Comput 82(281):301–329MathSciNetCrossRefMATH
36.
Zurück zum Zitat Zhao Z, Fang C, Lin Z, Wu Y (2015) A robust hybrid method for text detection in natural scenes by learning-based partial differential equations. Neurocomputing 168:23–34CrossRef Zhao Z, Fang C, Lin Z, Wu Y (2015) A robust hybrid method for text detection in natural scenes by learning-based partial differential equations. Neurocomputing 168:23–34CrossRef
Metadaten
Titel
Learning sparse partial differential equations for vector-valued images
verfasst von
Yuanyuan Jiao
Xiaogang Pan
Zhenyu Zhao
Chenping Hou
Publikationsdatum
26.10.2016
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 11/2018
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-016-2623-y

Weitere Artikel der Ausgabe 11/2018

Neural Computing and Applications 11/2018 Zur Ausgabe

Premium Partner