Skip to main content
Erschienen in: Neural Computing and Applications 11/2018

27.10.2016 | Original Article

Neural network-based discrete-time Z-type model of high accuracy in noisy environments for solving dynamic system of linear equations

verfasst von: Long Jin, Yunong Zhang, Binbin Qiu

Erschienen in: Neural Computing and Applications | Ausgabe 11/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

To solve dynamic system of linear equations with square or rectangular system matrices in real time, a discrete-time Z-type model based on neural network is proposed and investigated. It is developed from and studied with the aid of a unified continuous-time Z-type model. Note that the framework of such a unified continuous-time Z-type model is generic and has a wide range of applications, such as robotic redundancy resolution with quadratic programming formulations. To do so, a one-step-ahead numerical differentiation formula and its optimal sampling-gap rule in noisy environments are presented. We compare the Z-type model extensively with E-type and N-type models. Theoretical results on stability and convergence are provided which show that the maximal steady-state residual errors of the Z-type, E-type and N-type models have orders \(O(\tau ^3)\), \(O(\tau ^2)\) and \(O(\tau )\), respectively, where \(\tau \) is the sampling gap. We also prove that the residual error of any static method that does not exploit the time-derivative information of a time-dependent system of linear equations has order \(O(\tau )\) when applied to solve discrete real-time dynamic system of linear equations. Finally, several illustrative numerical experiments in noisy environments as well as two application examples to the inverse-kinematics control of redundant manipulators are provided and illustrated. Our analysis substantiates the efficacy of the Z-type model for solving the dynamic system of linear equations in real time.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Jiang M, Wang G (2003) Convergence studies on iterative algorithms for image reconstruction. IEEE Trans Med Imaging 22:569–579CrossRef Jiang M, Wang G (2003) Convergence studies on iterative algorithms for image reconstruction. IEEE Trans Med Imaging 22:569–579CrossRef
2.
Zurück zum Zitat Donoho DL, Tsaig Y, Drori I, Starck JL (2012) Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit. IEEE Trans Inf Theory 58:1094–1120MathSciNetCrossRefMATH Donoho DL, Tsaig Y, Drori I, Starck JL (2012) Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit. IEEE Trans Inf Theory 58:1094–1120MathSciNetCrossRefMATH
3.
Zurück zum Zitat Yu H, Sung Y (2010) Least squares approach to joint beam design for interference alignment in multiuser multi-input multi-output interference channels. IEEE Trans Signal Process 58:4960–4966MathSciNetCrossRef Yu H, Sung Y (2010) Least squares approach to joint beam design for interference alignment in multiuser multi-input multi-output interference channels. IEEE Trans Signal Process 58:4960–4966MathSciNetCrossRef
4.
Zurück zum Zitat Xu K, Simaan N (2010) Intrinsic wrench estimation and its performance index for multisegment continuum robots. IEEE Trans Rob 26:555–561CrossRef Xu K, Simaan N (2010) Intrinsic wrench estimation and its performance index for multisegment continuum robots. IEEE Trans Rob 26:555–561CrossRef
5.
Zurück zum Zitat Ferreira LV, Kaszkurewicz E, Bhaya A (2005) Solving systems of linear equations via gradient systems with discontinuous righthand sides: application to LS-SVM. IEEE Trans Neural Netw 16:501–505CrossRef Ferreira LV, Kaszkurewicz E, Bhaya A (2005) Solving systems of linear equations via gradient systems with discontinuous righthand sides: application to LS-SVM. IEEE Trans Neural Netw 16:501–505CrossRef
6.
Zurück zum Zitat Saad Y, Van Der Vorst HA (2000) Iterative solution of linear systems in the twentieth century. J Comput Appl Math 123:10–33CrossRef Saad Y, Van Der Vorst HA (2000) Iterative solution of linear systems in the twentieth century. J Comput Appl Math 123:10–33CrossRef
7.
Zurück zum Zitat Keramati B (2009) An approach to the solution of linear system of equations by He’s homotopy perturbation method. Chaos Solitons Fractals 41:152–156MathSciNetCrossRefMATH Keramati B (2009) An approach to the solution of linear system of equations by He’s homotopy perturbation method. Chaos Solitons Fractals 41:152–156MathSciNetCrossRefMATH
8.
Zurück zum Zitat Chen K (2012) Robustness analysis of Wang neural network for online linear equation solving. Electron Lett 48:1391–1392CrossRef Chen K (2012) Robustness analysis of Wang neural network for online linear equation solving. Electron Lett 48:1391–1392CrossRef
9.
Zurück zum Zitat Chen K (2013) Implicit dynamic system for online simultaneous linear equations solving. Electron Lett 49:101–102CrossRef Chen K (2013) Implicit dynamic system for online simultaneous linear equations solving. Electron Lett 49:101–102CrossRef
10.
Zurück zum Zitat Tan M (2011) Exponential convergence and stability of delayed fuzzy cellular neural networks with time-varying coefficients. J Control Theory Appl 9:500–504MathSciNetCrossRefMATH Tan M (2011) Exponential convergence and stability of delayed fuzzy cellular neural networks with time-varying coefficients. J Control Theory Appl 9:500–504MathSciNetCrossRefMATH
11.
Zurück zum Zitat Jin L, Zhang Y (2014) Discrete-time Zhang neural network of \(O(\tau ^3)\) pattern for time-varying matrix pseudoinversion with application to manipulator motion generation. Neurocomputing 142:165–173CrossRef Jin L, Zhang Y (2014) Discrete-time Zhang neural network of \(O(\tau ^3)\) pattern for time-varying matrix pseudoinversion with application to manipulator motion generation. Neurocomputing 142:165–173CrossRef
12.
Zurück zum Zitat Li S, Chen S, Liu B (2013) Accelerating a recurrent neural network to finite-time convergence for solving time-varying Sylvester equation by using a sign-bi-power activation function. Neural Process Lett 37:189–205CrossRef Li S, Chen S, Liu B (2013) Accelerating a recurrent neural network to finite-time convergence for solving time-varying Sylvester equation by using a sign-bi-power activation function. Neural Process Lett 37:189–205CrossRef
13.
Zurück zum Zitat Li S, Li Y (2014) Nonlinearly activated neural network for solving time-varying complex Sylvester equation. IEEE Trans Cybern 44:1397–1407CrossRef Li S, Li Y (2014) Nonlinearly activated neural network for solving time-varying complex Sylvester equation. IEEE Trans Cybern 44:1397–1407CrossRef
14.
Zurück zum Zitat Li S, Liu B, Li Y (2013) Selective positive–negative feedback produces the winner-take-all competition in recurrent neural networks. IEEE Trans Neural Netw Learn Syst 24:301–309CrossRef Li S, Liu B, Li Y (2013) Selective positive–negative feedback produces the winner-take-all competition in recurrent neural networks. IEEE Trans Neural Netw Learn Syst 24:301–309CrossRef
15.
Zurück zum Zitat Wang X, Xu B, Luo C (2012) An asynchronous communication system based on the hyperchaotic system of 6th-order cellular neural network. Opt Commun 285:5401–5405CrossRef Wang X, Xu B, Luo C (2012) An asynchronous communication system based on the hyperchaotic system of 6th-order cellular neural network. Opt Commun 285:5401–5405CrossRef
16.
Zurück zum Zitat Yang C, Li Z, Cui R, Xu B (2014) Neural network-based motion control of an underactuated wheeled inverted pendulum model. IEEE Trans Neural Netw Learn Syst 25:2004–2016CrossRef Yang C, Li Z, Cui R, Xu B (2014) Neural network-based motion control of an underactuated wheeled inverted pendulum model. IEEE Trans Neural Netw Learn Syst 25:2004–2016CrossRef
17.
Zurück zum Zitat Xiao L, Lu R (2015) Finite-time solution to nonlinear equation using recurrent neural dynamics with a specially-constructed activation function. Neurocomputing 151:246–251CrossRef Xiao L, Lu R (2015) Finite-time solution to nonlinear equation using recurrent neural dynamics with a specially-constructed activation function. Neurocomputing 151:246–251CrossRef
18.
Zurück zum Zitat Na J, Ren X, Shang C, Guo Y (2012) Adaptive neural network predictive control for nonlinear pure feedback systems with input delay. J Process Control 22:194–206CrossRef Na J, Ren X, Shang C, Guo Y (2012) Adaptive neural network predictive control for nonlinear pure feedback systems with input delay. J Process Control 22:194–206CrossRef
19.
Zurück zum Zitat Li G, Na J, Stoten DP, Ren X (2014) Adaptive neural network feedforward control for dynamically substructured systems. IEEE Trans Control Syst Technol 22:944–954CrossRef Li G, Na J, Stoten DP, Ren X (2014) Adaptive neural network feedforward control for dynamically substructured systems. IEEE Trans Control Syst Technol 22:944–954CrossRef
20.
Zurück zum Zitat Liu Q, Cao J (2011) Global exponential stability of discrete-time recurrent neural network for solving quadratic programming problems subject to linear constraints. Neurocomputing 74:3494–3501CrossRef Liu Q, Cao J (2011) Global exponential stability of discrete-time recurrent neural network for solving quadratic programming problems subject to linear constraints. Neurocomputing 74:3494–3501CrossRef
21.
Zurück zum Zitat Li S, Liu B, Chen B, Lou Y (2013) Neural network based mobile phone localization using Bluetooth connectivity. Neural Comput Appl 23:667–675CrossRef Li S, Liu B, Chen B, Lou Y (2013) Neural network based mobile phone localization using Bluetooth connectivity. Neural Comput Appl 23:667–675CrossRef
22.
Zurück zum Zitat Tang Q, Wang X (2014) Backstepping generalized synchronization for neural network with delays based on tracing control method. Neural Comput Appl 24:775–778CrossRef Tang Q, Wang X (2014) Backstepping generalized synchronization for neural network with delays based on tracing control method. Neural Comput Appl 24:775–778CrossRef
23.
Zurück zum Zitat Yang Y, Zhang Y (2013) Superior robustness of power-sum activation functions in Zhang neural networks for time-varying quadratic programs perturbed with large implementation errors. Neural Comput Appl 22:175–185CrossRef Yang Y, Zhang Y (2013) Superior robustness of power-sum activation functions in Zhang neural networks for time-varying quadratic programs perturbed with large implementation errors. Neural Comput Appl 22:175–185CrossRef
24.
Zurück zum Zitat Zhang Y, Yang Y, Cai B, Guo D (2012) Zhang neural network and its application to Newton iteration for matrix square root estimation. Neural Comput Appl 21:453–460CrossRef Zhang Y, Yang Y, Cai B, Guo D (2012) Zhang neural network and its application to Newton iteration for matrix square root estimation. Neural Comput Appl 21:453–460CrossRef
25.
Zurück zum Zitat Cai B, Jiang X (2014) A novel artificial neural network method for biomedical prediction based on matrix pseudo-inversion. J Biomed Inform 48:114–121CrossRef Cai B, Jiang X (2014) A novel artificial neural network method for biomedical prediction based on matrix pseudo-inversion. J Biomed Inform 48:114–121CrossRef
26.
Zurück zum Zitat Cheng L, Hou ZG, Lin Y, Tan M, Zhang WC, Wu FX (2011) Recurrent neural network for non-smooth convex optimization problems with application to the identification of genetic regulatory networks. IEEE Trans Neural Netw 22:714–726CrossRef Cheng L, Hou ZG, Lin Y, Tan M, Zhang WC, Wu FX (2011) Recurrent neural network for non-smooth convex optimization problems with application to the identification of genetic regulatory networks. IEEE Trans Neural Netw 22:714–726CrossRef
27.
Zurück zum Zitat Wang H, Chen B, Lin C (2012) Adaptive neural control for strict-feedback stochastic nonlinear systems with time-delay. Neurocomputing 77:267–274CrossRef Wang H, Chen B, Lin C (2012) Adaptive neural control for strict-feedback stochastic nonlinear systems with time-delay. Neurocomputing 77:267–274CrossRef
28.
Zurück zum Zitat Stanimirović PS, Živković IS, Wei Y (2015) Recurrent neural network for computing the Drazin inverse. IEEE Trans Neural Netw Learn Syst 26:2830–2843MathSciNetCrossRef Stanimirović PS, Živković IS, Wei Y (2015) Recurrent neural network for computing the Drazin inverse. IEEE Trans Neural Netw Learn Syst 26:2830–2843MathSciNetCrossRef
29.
Zurück zum Zitat Stanimirović PS, Živković IS, Wei Y (2015) Recurrent neural network approach based on the integral representation of the Drazin inverse. Neural Comput 27:2107–2131CrossRef Stanimirović PS, Živković IS, Wei Y (2015) Recurrent neural network approach based on the integral representation of the Drazin inverse. Neural Comput 27:2107–2131CrossRef
30.
Zurück zum Zitat Wang H, Chen B, Liu X, Liu K, Lin C (2013) Robust adaptive fuzzy tracking control for pure-feedback stochastic nonlinear systems with input constraints. IEEE Trans Cybern 43:2093–2104CrossRef Wang H, Chen B, Liu X, Liu K, Lin C (2013) Robust adaptive fuzzy tracking control for pure-feedback stochastic nonlinear systems with input constraints. IEEE Trans Cybern 43:2093–2104CrossRef
31.
Zurück zum Zitat Abbasbandy S, Jafarian A, Ezzati R (2005) Conjugate gradient method for fuzzy symmetric positive definite system of linear equations. Appl Math Comput 171:1184–1191MathSciNetMATH Abbasbandy S, Jafarian A, Ezzati R (2005) Conjugate gradient method for fuzzy symmetric positive definite system of linear equations. Appl Math Comput 171:1184–1191MathSciNetMATH
32.
Zurück zum Zitat Zhang Y, Wang Y, Jin L, Mu B, Zheng H (2013) Different ZFs leading to various ZNN models illustrated via online solution of time-varying underdetermined systems of linear equations with robotic application. In: Proceedings of the 10th International Symposium on Neural Networks, pp 481–488 Zhang Y, Wang Y, Jin L, Mu B, Zheng H (2013) Different ZFs leading to various ZNN models illustrated via online solution of time-varying underdetermined systems of linear equations with robotic application. In: Proceedings of the 10th International Symposium on Neural Networks, pp 481–488
33.
Zurück zum Zitat Zhang Y, Li W, Guo D, Mu B, Zheng H (2013) Different Zhang functions leading to various ZNN models illustrated via solving the time-varying over determined system of linear equations. In: Proceedings of the 3rd International Conference on Information Science and Technology, pp 771–776 Zhang Y, Li W, Guo D, Mu B, Zheng H (2013) Different Zhang functions leading to various ZNN models illustrated via solving the time-varying over determined system of linear equations. In: Proceedings of the 3rd International Conference on Information Science and Technology, pp 771–776
34.
Zurück zum Zitat Zhang Y, Mu B, Zheng H (2011) Discrete-time Zhang neural network and numerical algorithm for time-varying linear equations solving. In: Proceedings of IEEE International Conference on Mechatronics and Automation, pp 938–943 Zhang Y, Mu B, Zheng H (2011) Discrete-time Zhang neural network and numerical algorithm for time-varying linear equations solving. In: Proceedings of IEEE International Conference on Mechatronics and Automation, pp 938–943
35.
Zurück zum Zitat Zhang Y, Qiu B, Jin L, Guo D, Yang Z (2015) Infinitely many Zhang functions resulting in various ZNN models for time-varying matrix inversion with link to Drazin inverse. Inf Process Lett 115:703–706MathSciNetCrossRefMATH Zhang Y, Qiu B, Jin L, Guo D, Yang Z (2015) Infinitely many Zhang functions resulting in various ZNN models for time-varying matrix inversion with link to Drazin inverse. Inf Process Lett 115:703–706MathSciNetCrossRefMATH
36.
Zurück zum Zitat Zhang Y, Jin L, Guo D, Yin Y, Chou Y (2015) Taylor-type 1-step-ahead numerical differentiation rule for first-order derivative approximation and ZNN discretization. J Comput Appl Math 273:29–40MathSciNetCrossRefMATH Zhang Y, Jin L, Guo D, Yin Y, Chou Y (2015) Taylor-type 1-step-ahead numerical differentiation rule for first-order derivative approximation and ZNN discretization. J Comput Appl Math 273:29–40MathSciNetCrossRefMATH
37.
Zurück zum Zitat Mathews JH, Fink KD (2005) Numerical methods using MATLAB. Prentice Hall, New Jersey Mathews JH, Fink KD (2005) Numerical methods using MATLAB. Prentice Hall, New Jersey
38.
Zurück zum Zitat Engeln-Müllges G, Uhlig F (1996) Numerical algorithms with C, with CD-ROM. Springer, New YorkCrossRefMATH Engeln-Müllges G, Uhlig F (1996) Numerical algorithms with C, with CD-ROM. Springer, New YorkCrossRefMATH
39.
Zurück zum Zitat Griffiths DF, Higham DJ (2010) Numerical methods for ordinary differential equations: initial value problems. Springer, LondonCrossRefMATH Griffiths DF, Higham DJ (2010) Numerical methods for ordinary differential equations: initial value problems. Springer, LondonCrossRefMATH
40.
Zurück zum Zitat Cichocki A, Unbehauen R (1992) Neural networks for solving systems of linear equations and related problems. IEEE Trans Circuits Syst I Fundam Theory Appl 39:124–138CrossRefMATH Cichocki A, Unbehauen R (1992) Neural networks for solving systems of linear equations and related problems. IEEE Trans Circuits Syst I Fundam Theory Appl 39:124–138CrossRefMATH
41.
Zurück zum Zitat Xia YS, Feng G, Wang J (2005) A primal-dual neural network for online resolving constrained kinematic redundancy in robot motion control. IEEE Trans Syst Man Cybern Part B Cybern 35:54–64CrossRef Xia YS, Feng G, Wang J (2005) A primal-dual neural network for online resolving constrained kinematic redundancy in robot motion control. IEEE Trans Syst Man Cybern Part B Cybern 35:54–64CrossRef
42.
Zurück zum Zitat Qiu B, Zhang Y, Yang Z (2016) Revisit and compare Ma equivalence and Zhang equivalence of minimum velocity norm (MVN) type. Adv Robot 30:416–430CrossRef Qiu B, Zhang Y, Yang Z (2016) Revisit and compare Ma equivalence and Zhang equivalence of minimum velocity norm (MVN) type. Adv Robot 30:416–430CrossRef
43.
Zurück zum Zitat Li S, Cui H, Li Y, Liu B, Lou Y (2013) Decentralized control of collaborative redundant manipulators with partial command coverage via locally connected recurrent neural networks. Neural Comput Appl 23:1051–1060CrossRef Li S, Cui H, Li Y, Liu B, Lou Y (2013) Decentralized control of collaborative redundant manipulators with partial command coverage via locally connected recurrent neural networks. Neural Comput Appl 23:1051–1060CrossRef
44.
Zurück zum Zitat Zhang Z, Beck A, Magnenat-Thalmann N (2014) Human-like behavior generation based on head-arms model for robot tracking external targets and body parts. IEEE Trans Cybern 45:1390–1400CrossRef Zhang Z, Beck A, Magnenat-Thalmann N (2014) Human-like behavior generation based on head-arms model for robot tracking external targets and body parts. IEEE Trans Cybern 45:1390–1400CrossRef
45.
Zurück zum Zitat Hou ZG, Cheng L, Tan M (2010) Multicriteria optimization for coordination of redundant robots using a dual neural network. IEEE Trans Syst Man Cybern Part B Cybern 40:1075–1087CrossRef Hou ZG, Cheng L, Tan M (2010) Multicriteria optimization for coordination of redundant robots using a dual neural network. IEEE Trans Syst Man Cybern Part B Cybern 40:1075–1087CrossRef
46.
Zurück zum Zitat Zhang Y, Chou Y, Chen J, Zhang Z, Xiao L (2013) Presentation, error analysis and numerical experiments on a group of 1-step-ahead numerical differentiation formulas. J Comput Appl Math 239:406–414MathSciNetCrossRefMATH Zhang Y, Chou Y, Chen J, Zhang Z, Xiao L (2013) Presentation, error analysis and numerical experiments on a group of 1-step-ahead numerical differentiation formulas. J Comput Appl Math 239:406–414MathSciNetCrossRefMATH
Metadaten
Titel
Neural network-based discrete-time Z-type model of high accuracy in noisy environments for solving dynamic system of linear equations
verfasst von
Long Jin
Yunong Zhang
Binbin Qiu
Publikationsdatum
27.10.2016
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 11/2018
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-016-2640-x

Weitere Artikel der Ausgabe 11/2018

Neural Computing and Applications 11/2018 Zur Ausgabe

Premium Partner