Skip to main content
Erschienen in: Wireless Personal Communications 1/2018

09.04.2018

LF-SegNet: A Fully Convolutional Encoder–Decoder Network for Segmenting Lung Fields from Chest Radiographs

verfasst von: Ajay Mittal, Rahul Hooda, Sanjeev Sofat

Erschienen in: Wireless Personal Communications | Ausgabe 1/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Segmentation of lung fields is an important pre-requisite step in chest radiographic computer-aided diagnosis systems as it precisely defines the region-of-interest on which different operations are applied. However, it is immensely challenging due to extreme variations in shape and size of lungs. Manual segmentation is also prone to large inter-observer and intra-observer variations. Thus, an automated method for lung field segmentation with sufficiently high accuracy is unsparingly required. This paper presents a deep learning-based fully convolutional encoder-decoder network for segmenting lung fields from chest radiographs. The major contribution of this work is in the unique design of the encoder-decoder network that makes it especially suitable for lung field segmentation. The proposed network is trained, tested and evaluated on publicly available standard datasets. The result of evaluation indicates that the performance of the proposed method, i.e. accuracy of 98.73% and overlap of 95.10%, is better than state-of-the-art methods.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Alexander Kalinovsky, A., & Kovalev, V. (2016). Lung image segmentation using deep learning methods and convolutional neural networks. In XIII International Conference on Pattern Recognition and Information Processing, Minsk: Publishing Center of BSU. Alexander Kalinovsky, A., & Kovalev, V. (2016). Lung image segmentation using deep learning methods and convolutional neural networks. In XIII International Conference on Pattern Recognition and Information Processing, Minsk: Publishing Center of BSU.
2.
Zurück zum Zitat Annangi, P., Thiruvenkadam, S., Raja, A., Xu, H., Sun, X., & Mao, L. (2010). A region based active contour method for x-ray lung segmentation using prior shape and low level features. In 2010 IEEE international symposium on biomedical imaging: from nano to macro, pp. 892–895. Annangi, P., Thiruvenkadam, S., Raja, A., Xu, H., Sun, X., & Mao, L. (2010). A region based active contour method for x-ray lung segmentation using prior shape and low level features. In 2010 IEEE international symposium on biomedical imaging: from nano to macro, pp. 892–895.
3.
Zurück zum Zitat Arbabshirani, M. R., Dallal, A. H., Agarwal, C., Patel, A., & Moore, G. (2017). Accurate segmentation of lung fields on chest radiographs using deep convolutional networks. In SPIE medical imaging (pp. 1013,305–1013,305). International Society for Optics and Photonics. Arbabshirani, M. R., Dallal, A. H., Agarwal, C., Patel, A., & Moore, G. (2017). Accurate segmentation of lung fields on chest radiographs using deep convolutional networks. In SPIE medical imaging (pp. 1013,305–1013,305). International Society for Optics and Photonics.
4.
Zurück zum Zitat Armato, S. G., Giger, M. L., & MacMahon, H. (1998). Automated lung segmentation in digitized posteroanterior chest radiographs. Academic Radiology, 5(4), 245–255.CrossRef Armato, S. G., Giger, M. L., & MacMahon, H. (1998). Automated lung segmentation in digitized posteroanterior chest radiographs. Academic Radiology, 5(4), 245–255.CrossRef
5.
Zurück zum Zitat Badrinarayanan, V., Handa, A., & Cipolla, R. (2015). Segnet: A deep convolutional encoder-decoder architecture for robust semantic pixel-wise labelling. arXiv preprint arXiv:1505.07293 Badrinarayanan, V., Handa, A., & Cipolla, R. (2015). Segnet: A deep convolutional encoder-decoder architecture for robust semantic pixel-wise labelling. arXiv preprint arXiv:​1505.​07293
6.
Zurück zum Zitat Badrinarayanan, V., Kendall, A., & Cipolla, R. (2015). Segnet: A deep convolutional encoder-decoder architecture for image segmentation. arXiv preprint arXiv:1511.00561 Badrinarayanan, V., Kendall, A., & Cipolla, R. (2015). Segnet: A deep convolutional encoder-decoder architecture for image segmentation. arXiv preprint arXiv:​1511.​00561
7.
Zurück zum Zitat Berbaum, K. S., Krupinski, E. A., Schartz, K. M., Caldwell, R. T., Madsen, M. T., Hur, S., et al. (2015). Satisfaction of search in chest radiography 2015. Academic Radiology, 22(11), 1457–1465.CrossRef Berbaum, K. S., Krupinski, E. A., Schartz, K. M., Caldwell, R. T., Madsen, M. T., Hur, S., et al. (2015). Satisfaction of search in chest radiography 2015. Academic Radiology, 22(11), 1457–1465.CrossRef
8.
Zurück zum Zitat Breuninger, M., van Ginneken, B., Philipsen, R. H., Mhimbira, F., Hella, J. J., Lwilla, F., et al. (2014). Diagnostic accuracy of computer-aided detection of pulmonary tuberculosis in chest radiographs: A validation study from sub-Saharan Africa. PLoS ONE, 9(9), e106,381.CrossRef Breuninger, M., van Ginneken, B., Philipsen, R. H., Mhimbira, F., Hella, J. J., Lwilla, F., et al. (2014). Diagnostic accuracy of computer-aided detection of pulmonary tuberculosis in chest radiographs: A validation study from sub-Saharan Africa. PLoS ONE, 9(9), e106,381.CrossRef
9.
Zurück zum Zitat Candemir, S., Jaeger, S., Palaniappan, K., Antani, S., & Thoma, G. (2012). Graph cut based automatic lung boundary detection in chest radiographs pp. 7–9. Candemir, S., Jaeger, S., Palaniappan, K., Antani, S., & Thoma, G. (2012). Graph cut based automatic lung boundary detection in chest radiographs pp. 7–9.
11.
Zurück zum Zitat Chabi, M. L., Borget, I., Ardiles, R., Aboud, G., Boussouar, S., Vilar, V., et al. (2012). Evaluation of the accuracy of a computer-aided diagnosis (CAD) system in breast ultrasound according to the radiologist’s experience. Academic Radiology, 19(3), 311–319.CrossRef Chabi, M. L., Borget, I., Ardiles, R., Aboud, G., Boussouar, S., Vilar, V., et al. (2012). Evaluation of the accuracy of a computer-aided diagnosis (CAD) system in breast ultrasound according to the radiologist’s experience. Academic Radiology, 19(3), 311–319.CrossRef
12.
Zurück zum Zitat Elemraid, M. A., Muller, M., Spencer, D. A., Rushton, S. P., Gorton, R., Thomas, M. F., et al. (2014). Accuracy of the interpretation of chest radiographs for the diagnosis of paediatric pneumonia. PLoS ONE, 9(8), e106,051.CrossRef Elemraid, M. A., Muller, M., Spencer, D. A., Rushton, S. P., Gorton, R., Thomas, M. F., et al. (2014). Accuracy of the interpretation of chest radiographs for the diagnosis of paediatric pneumonia. PLoS ONE, 9(8), e106,051.CrossRef
13.
Zurück zum Zitat van Ginneken, B., Stegmann, M. B., & Loog, M. (2006). Segmentation of anatomical structures in chest radiographs using supervised methods: A comparative study on a public database. Medical Image Analysis, 10(1), 19–40.CrossRef van Ginneken, B., Stegmann, M. B., & Loog, M. (2006). Segmentation of anatomical structures in chest radiographs using supervised methods: A comparative study on a public database. Medical Image Analysis, 10(1), 19–40.CrossRef
14.
15.
Zurück zum Zitat Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. CoRR abs/1502.03167. arXiv:1502.03167 Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. CoRR abs/1502.03167. arXiv:​1502.​03167
16.
Zurück zum Zitat Jaeger, S., Candemir, S., Antani, S., Wáng, Y. X. J., Lu, P. X., & Thoma, G. (2014). Two public chest X-ray datasets for computer-aided screening of pulmonary diseases. Quantitative Imaging in Medicine and Surgery, 4(6), 475–477. Jaeger, S., Candemir, S., Antani, S., Wáng, Y. X. J., Lu, P. X., & Thoma, G. (2014). Two public chest X-ray datasets for computer-aided screening of pulmonary diseases. Quantitative Imaging in Medicine and Surgery, 4(6), 475–477.
17.
Zurück zum Zitat Kim, J., Lee, S., Lee, G., Park, Y., & Hong, Y. (2016). Using a method based on a modified k-means clustering and mean shift segmentation to reduce file sizes and detect brain tumors from magnetic resonance (mri) images. Wireless Personal Communications, 89(3), 993–1008.CrossRef Kim, J., Lee, S., Lee, G., Park, Y., & Hong, Y. (2016). Using a method based on a modified k-means clustering and mean shift segmentation to reduce file sizes and detect brain tumors from magnetic resonance (mri) images. Wireless Personal Communications, 89(3), 993–1008.CrossRef
18.
Zurück zum Zitat Kingma, D., & Ba, J. (2015). Adam: A method for stochastic optimization. In Proceedings of the 3rd international conference on learning representations (ICLR). Kingma, D., & Ba, J. (2015). Adam: A method for stochastic optimization. In Proceedings of the 3rd international conference on learning representations (ICLR).
21.
Zurück zum Zitat Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems, pp. 1097–1105. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems, pp. 1097–1105.
22.
Zurück zum Zitat Li, L., Zheng, Y., Kallergi, M., & Clark, R. A. (2001). Improved method for automatic identification of lung regions on chest radiographs. Academic Radiology, 8(7), 629–638.CrossRef Li, L., Zheng, Y., Kallergi, M., & Clark, R. A. (2001). Improved method for automatic identification of lung regions on chest radiographs. Academic Radiology, 8(7), 629–638.CrossRef
23.
Zurück zum Zitat McNitt-Gray, M. F., Huang, H., & Sayre, J. W. (1995). Feature selection in the pattern classification problem of digital chest radiograph segmentation. IEEE Transactions on Medical Imaging, 14(3), 537–547.CrossRef McNitt-Gray, M. F., Huang, H., & Sayre, J. W. (1995). Feature selection in the pattern classification problem of digital chest radiograph segmentation. IEEE Transactions on Medical Imaging, 14(3), 537–547.CrossRef
24.
Zurück zum Zitat Melendez, J., Sánchez, C. I., Philipsen, R. H., Maduskar, P., Dawson, R., Theron, G., et al. (2016). An automated tuberculosis screening strategy combining X-ray-based computer-aided detection and clinical information. Scientific Reports, 6, 25,265.CrossRef Melendez, J., Sánchez, C. I., Philipsen, R. H., Maduskar, P., Dawson, R., Theron, G., et al. (2016). An automated tuberculosis screening strategy combining X-ray-based computer-aided detection and clinical information. Scientific Reports, 6, 25,265.CrossRef
26.
Zurück zum Zitat Myles-Worsley, M., Johnston, W. A., & Simons, M. A. (1988). The influence of expertise on X-ray image processing. Journal of Experimental Psychology. Learning, Memory, and Cognition, 14(3), 553–557.CrossRef Myles-Worsley, M., Johnston, W. A., & Simons, M. A. (1988). The influence of expertise on X-ray image processing. Journal of Experimental Psychology. Learning, Memory, and Cognition, 14(3), 553–557.CrossRef
27.
Zurück zum Zitat Novikov, A. A., Major, D., Lenis, D., Hladuvka, J., Wimmer, M., & Buhler, K. (2017). Fully convolutional architectures for multi-class segmentation in chest radiographs. arXiv preprint arXiv:1701.08816 Novikov, A. A., Major, D., Lenis, D., Hladuvka, J., Wimmer, M., & Buhler, K. (2017). Fully convolutional architectures for multi-class segmentation in chest radiographs. arXiv preprint arXiv:​1701.​08816
28.
Zurück zum Zitat Oliveira, L. L., Silva, S. A., Ribeiro, L. H., de Oliveira, R. M., Coelho, C. J., & S Andrade, A. L. (2008). Computer-aided diagnosis in chest radiography for detection of childhood pneumonia. International Journal of Medical Informatics, 77(8), 555–564.CrossRef Oliveira, L. L., Silva, S. A., Ribeiro, L. H., de Oliveira, R. M., Coelho, C. J., & S Andrade, A. L. (2008). Computer-aided diagnosis in chest radiography for detection of childhood pneumonia. International Journal of Medical Informatics, 77(8), 555–564.CrossRef
29.
Zurück zum Zitat Plankis, T., Juozapavicius, A., Stašiene, E., & Usonis, V. (2017). Computer-aided detection of interstitial lung diseases: A texture approach. Nonlinear Analysis, 22(3), 404–411.MathSciNetCrossRef Plankis, T., Juozapavicius, A., Stašiene, E., & Usonis, V. (2017). Computer-aided detection of interstitial lung diseases: A texture approach. Nonlinear Analysis, 22(3), 404–411.MathSciNetCrossRef
30.
Zurück zum Zitat Rahman, M. T., Codlin, A. J., Rahman, M. M., Nahar, A., Reja, M., Islam, T., Qin, Z. Z., Khan, M. A. S., Banu, S., & Creswell, J. (2017). An evaluation of automated chest radiography reading software for tuberculosis screening among public- and private-sector patients. European Respiratory Journal, 49(5), 1602159.CrossRef Rahman, M. T., Codlin, A. J., Rahman, M. M., Nahar, A., Reja, M., Islam, T., Qin, Z. Z., Khan, M. A. S., Banu, S., & Creswell, J. (2017). An evaluation of automated chest radiography reading software for tuberculosis screening among public- and private-sector patients. European Respiratory Journal, 49(5), 1602159.CrossRef
31.
Zurück zum Zitat Robinson, J. W., Brennan, P. C., Mello-Thoms, C., & Lewis, S. J. (2016). Reporting instructions significantly impact false positive rates when reading chest radiographs. European Radiology, 26(10), 3654–3659.CrossRef Robinson, J. W., Brennan, P. C., Mello-Thoms, C., & Lewis, S. J. (2016). Reporting instructions significantly impact false positive rates when reading chest radiographs. European Radiology, 26(10), 3654–3659.CrossRef
32.
Zurück zum Zitat Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. In International conference on medical image computing and computer-assisted intervention (pp. 234–241). New York: Springer. Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. In International conference on medical image computing and computer-assisted intervention (pp. 234–241). New York: Springer.
33.
Zurück zum Zitat Shaw, N., Hendry, M., & Eden, O. (1990). Inter-observer variation in interpretation of chest X-rays. Scottish Medical Journal, 35(5), 140–141.CrossRef Shaw, N., Hendry, M., & Eden, O. (1990). Inter-observer variation in interpretation of chest X-rays. Scottish Medical Journal, 35(5), 140–141.CrossRef
34.
Zurück zum Zitat Shi, Y., Qi, F., Xue, Z., Chen, L., Ito, K., Matsuo, H., et al. (2008). Segmenting lung fields in serial chest radiographs using both population-based and patient-specific shape statistics. IEEE Transactions on Medical Imaging, 27(4), 481–494.CrossRef Shi, Y., Qi, F., Xue, Z., Chen, L., Ito, K., Matsuo, H., et al. (2008). Segmenting lung fields in serial chest radiographs using both population-based and patient-specific shape statistics. IEEE Transactions on Medical Imaging, 27(4), 481–494.CrossRef
35.
Zurück zum Zitat Shi, Z., Zhou, P., He, L., Nakamura, T., Yao, Q., & Itoh, H. (2009). Lung segmentation in chest radiographs by means of gaussian kernel-based fcm with spatial constraints. In Sixth international conference on fuzzy systems and knowledge discovery, 2009. FSKD’09 (Vol. 3, pp. 428–432). Shi, Z., Zhou, P., He, L., Nakamura, T., Yao, Q., & Itoh, H. (2009). Lung segmentation in chest radiographs by means of gaussian kernel-based fcm with spatial constraints. In Sixth international conference on fuzzy systems and knowledge discovery, 2009. FSKD’09 (Vol. 3, pp. 428–432).
36.
Zurück zum Zitat Shiraishi, J., Katsuragawa, S., Ikezoe, J., Matsumoto, T., Kobayashi, T., Komatsu, Ki, et al. (2000). Development of a digital image database for chest radiographs with and without a lung nodule: Receiver operating characteristic analysis of radiologists’ detection of pulmonary nodules. American Journal of Roentgenology, 174(1), 71–74.CrossRef Shiraishi, J., Katsuragawa, S., Ikezoe, J., Matsumoto, T., Kobayashi, T., Komatsu, Ki, et al. (2000). Development of a digital image database for chest radiographs with and without a lung nodule: Receiver operating characteristic analysis of radiologists’ detection of pulmonary nodules. American Journal of Roentgenology, 174(1), 71–74.CrossRef
37.
Zurück zum Zitat Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. In Proceedings of international conference on learning representations. arXiv:1409.1556 Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. In Proceedings of international conference on learning representations. arXiv:​1409.​1556
38.
Zurück zum Zitat Sivaganesan, D. (2017). Wireless distributive personal communication for early detection of collateral cancer using optimized machine learning methodology. Wireless Personal Communications, 94(4), 2291–2302.CrossRef Sivaganesan, D. (2017). Wireless distributive personal communication for early detection of collateral cancer using optimized machine learning methodology. Wireless Personal Communications, 94(4), 2291–2302.CrossRef
40.
Zurück zum Zitat Suzuki, K. (2017). Computer-aided detection of lung cancer. In Image-based computer-assisted radiation therapy (pp. 9–40). New York: Springer. Suzuki, K. (2017). Computer-aided detection of lung cancer. In Image-based computer-assisted radiation therapy (pp. 9–40). New York: Springer.
41.
Zurück zum Zitat Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A. (2015). Going deeper with convolutions. In Computer vision and pattern recognition (CVPR). arXiv:1409.4842 Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A. (2015). Going deeper with convolutions. In Computer vision and pattern recognition (CVPR). arXiv:​1409.​4842
44.
Zurück zum Zitat Tsujii, O., Freedman, M. T., & Mun, S. K. (1998). Automated segmentation of anatomic regions in chest radiographs using an adaptive-sized hybrid neural network. Medical Physics, 25(6), 998–1007.CrossRef Tsujii, O., Freedman, M. T., & Mun, S. K. (1998). Automated segmentation of anatomic regions in chest radiographs using an adaptive-sized hybrid neural network. Medical Physics, 25(6), 998–1007.CrossRef
45.
Zurück zum Zitat Van Ginneken, B., Frangi, A. F., Staal, J. J., ter Haar Romeny, B. M., & Viergever, M. A. (2002). Active shape model segmentation with optimal features. IEEE Transactions on Medical Imaging, 21(8), 924–933.CrossRef Van Ginneken, B., Frangi, A. F., Staal, J. J., ter Haar Romeny, B. M., & Viergever, M. A. (2002). Active shape model segmentation with optimal features. IEEE Transactions on Medical Imaging, 21(8), 924–933.CrossRef
46.
Zurück zum Zitat Van Ginneken, B., Stegmann, M. B., & Loog, M. (2006). Segmentation of anatomical structures in chest radiographs using supervised methods: A comparative study on a public database. Medical Image Analysis, 10(1), 19–40.CrossRef Van Ginneken, B., Stegmann, M. B., & Loog, M. (2006). Segmentation of anatomical structures in chest radiographs using supervised methods: A comparative study on a public database. Medical Image Analysis, 10(1), 19–40.CrossRef
48.
Zurück zum Zitat Wang, J., & Perez, L. (2017). The effectiveness of data augmentation in image classification using deep learning. Tech. rep., Technical report. Wang, J., & Perez, L. (2017). The effectiveness of data augmentation in image classification using deep learning. Tech. rep., Technical report.
49.
Zurück zum Zitat Xu, T., Mandal, M., Long, R., & Basu, A. (2009). Gradient vector flow based active shape model for lung field segmentation in chest radiographs. In Proceedings of annual international conference of the IEEE engineering in medicine and biology society. IEEE engineering in medicine and biology society (Vol. 2009, p. 3561). Xu, T., Mandal, M., Long, R., & Basu, A. (2009). Gradient vector flow based active shape model for lung field segmentation in chest radiographs. In Proceedings of annual international conference of the IEEE engineering in medicine and biology society. IEEE engineering in medicine and biology society (Vol. 2009, p. 3561).
Metadaten
Titel
LF-SegNet: A Fully Convolutional Encoder–Decoder Network for Segmenting Lung Fields from Chest Radiographs
verfasst von
Ajay Mittal
Rahul Hooda
Sanjeev Sofat
Publikationsdatum
09.04.2018
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 1/2018
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-018-5702-9

Weitere Artikel der Ausgabe 1/2018

Wireless Personal Communications 1/2018 Zur Ausgabe

Neuer Inhalt