Skip to main content

2018 | OriginalPaper | Buchkapitel

Evolution of an Intrathermocline Lens over the Lofoten Basin

verfasst von : Boris N. Filyushkin, Mikhail A. Sokolovskiy, Konstantin V. Lebedev

Erschienen in: The Ocean in Motion

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The Lofoten Basin of the Norwegian Sea is the main reservoir of heat in the Polar seas; it stands out as an area of high mesoscale activity and the existence of a quasi-permanent anticyclonic vortex. The observations of Argo floats over the period of 2005–2014 (17,600 profiles measured by 125 recorders) were used in the area of 55–80° N and 30–15° W, covering the Lofoten Basin. The Argo-based Model for Investigation of the Global Ocean (AMIGO) was used. The method makes it possible to obtain annual mean velocity fields and thermohaline characteristics up to a depth of 1500 m in 1° squares. One large-scale anticyclonic vortex covering the deepest part of the Lofoten area was observed in the depth column from 30 to 1500 m with velocity values increasing from 0–2 cm/s in the vortex center to 7–12 cm/s at its periphery. A local anticyclonic vortex (a lens of warm and saline waters) with a radius of about 35 km at depths of 250–700 m with an average long-term position of the center at 69.5° N and 3.5° E is also distinguished along the vertical distributions of thermohaline characteristics. In this contribution, we simulate the evolution of this lens, represented as an anticyclonic vortex patch located in the middle layer, within the framework of a three-layer quasi-geostrophic model using the Contour Dynamics Method. Calculations showed that the model can adequately reproduce the nature of the lens drift under the influences of various types of ocean currents and bottom topography. Comparison of the model results with the in situ observations of the vortex trajectories gives satisfactory results.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Alekseev, G. V., Bagryantsev, M. V., Bogorodskiy, P. V., Vasin, V. V., & Shirokov, P. E. (1991). Structure and circulation of water in the area of anticyclonic eddy in the northeastern Norwegian Sea. Problems of the Arctic and Antarctic, 65, 14–23 (in Russian). Alekseev, G. V., Bagryantsev, M. V., Bogorodskiy, P. V., Vasin, V. V., & Shirokov, P. E. (1991). Structure and circulation of water in the area of anticyclonic eddy in the northeastern Norwegian Sea. Problems of the Arctic and Antarctic, 65, 14–23 (in Russian).
2.
Zurück zum Zitat Alekseev, G. V., Nikolaev, Yu V, Romanov, A. A., Romantsev, V. A., & Sarukhanyan, E. I. (1986). Results of natural investigations in the Norwegian energy active zone. Itogi Nauki i Tekhniki, Atmosphere, Ocean, Space Program RAZREZY, 7, 46–72 (in Russian). Alekseev, G. V., Nikolaev, Yu V, Romanov, A. A., Romantsev, V. A., & Sarukhanyan, E. I. (1986). Results of natural investigations in the Norwegian energy active zone. Itogi Nauki i Tekhniki, Atmosphere, Ocean, Space Program RAZREZY, 7, 46–72 (in Russian).
4.
Zurück zum Zitat Bashmachnikov, I. L., Sokolovskiy, M. A., Belonenko, T. V., Volkov, D. L., Isachsen, P. E., & Carton, X. (2017). On the vertical structure and stability of the Lofoten vortex in the Norwegian Sea. Deep-Sea Research Part I (in press). Bashmachnikov, I. L., Sokolovskiy, M. A., Belonenko, T. V., Volkov, D. L., Isachsen, P. E., & Carton, X. (2017). On the vertical structure and stability of the Lofoten vortex in the Norwegian Sea. Deep-Sea Research Part I (in press).
5.
Zurück zum Zitat Gascard, J.-C., & Mork, K. A. (2008). Climatic importance of large-scale and mesoscale circulation in the Lofoten Basin deduced from Lagrangian observations. In R. R. Dickson, J. Meincke, & P. Rhines (Eds.), Chapter 6: Arctic-Subarctic Ocean fluxes. Defining the role of the Northern Seas in climate (pp. 131–143). Dordrecht: Springer. Gascard, J.-C., & Mork, K. A. (2008). Climatic importance of large-scale and mesoscale circulation in the Lofoten Basin deduced from Lagrangian observations. In R. R. Dickson, J. Meincke, & P. Rhines (Eds.), Chapter 6: Arctic-Subarctic Ocean fluxes. Defining the role of the Northern Seas in climate (pp. 131–143). Dordrecht: Springer.
6.
Zurück zum Zitat Ivanov, V. V., & Korablev, A. A. (1995). Formation and regeneration of the pycnocline lens in the Norwegian Sea. Russian Meteorology and Hydrology, 9, 62–69. Ivanov, V. V., & Korablev, A. A. (1995). Formation and regeneration of the pycnocline lens in the Norwegian Sea. Russian Meteorology and Hydrology, 9, 62–69.
7.
Zurück zum Zitat Ivanov, V. V., & Korablev, A. A. (1995). Interpycnocline lens dynamics in the Norwegian Sea. Russian Meteorology and Hydrology, 10, 32–37. Ivanov, V. V., & Korablev, A. A. (1995). Interpycnocline lens dynamics in the Norwegian Sea. Russian Meteorology and Hydrology, 10, 32–37.
8.
Zurück zum Zitat Köhl, A. (2007). Generation and stability of a quasi-permanent vortex in the Lofoten Basin. Journal of Physical Oceanography, 37, 2637–2651.CrossRef Köhl, A. (2007). Generation and stability of a quasi-permanent vortex in the Lofoten Basin. Journal of Physical Oceanography, 37, 2637–2651.CrossRef
9.
Zurück zum Zitat Kozlov, V. F. (1984). Models of the topographic vortices in ocean (p. 200). Moscow: Nauka. Kozlov, V. F. (1984). Models of the topographic vortices in ocean (p. 200). Moscow: Nauka.
10.
Zurück zum Zitat Lebedev, K. V. (2016). An argo-based model for investigation of the Global Ocean (AMIGO). Oceanology, 56, 172–181.CrossRef Lebedev, K. V. (2016). An argo-based model for investigation of the Global Ocean (AMIGO). Oceanology, 56, 172–181.CrossRef
11.
Zurück zum Zitat Moshonkin, S. N., Bagno, A. V., Gusev, A. V., Filyushkin, B. N., & Zalesny, V. B. (2017). Physical properties of the Atlantic-Arctic water exchange formation. Izvestiya Atmospheric and Oceanic Physics, 53, 213–223.CrossRef Moshonkin, S. N., Bagno, A. V., Gusev, A. V., Filyushkin, B. N., & Zalesny, V. B. (2017). Physical properties of the Atlantic-Arctic water exchange formation. Izvestiya Atmospheric and Oceanic Physics, 53, 213–223.CrossRef
14.
Zurück zum Zitat Poulain, P.-M., Warn-Varnas, A., & Niiler, P. P. (1996). Near-surface circulation of the Nordic Seas as measured by Lagrangian drifters. Journal Geophysical Research, 101, 18237–18258.CrossRef Poulain, P.-M., Warn-Varnas, A., & Niiler, P. P. (1996). Near-surface circulation of the Nordic Seas as measured by Lagrangian drifters. Journal Geophysical Research, 101, 18237–18258.CrossRef
15.
Zurück zum Zitat Raj, R. P., Chafik, L., Nilsen, J. E. Ø., Eldevik, T., & Halo, I. (2015). The Lofoten Vortex of the Nordic Seas. Deep-Sea Research Part I, 96, 1–14.CrossRef Raj, R. P., Chafik, L., Nilsen, J. E. Ø., Eldevik, T., & Halo, I. (2015). The Lofoten Vortex of the Nordic Seas. Deep-Sea Research Part I, 96, 1–14.CrossRef
16.
Zurück zum Zitat Raj, R. P., & Halo, I. (2016). Monitoring the mesoscale eddies of the Lofoten Basin: Importance, progress, and challenges. International Journal of Remote Sensing, 37, 3712–3728.CrossRef Raj, R. P., & Halo, I. (2016). Monitoring the mesoscale eddies of the Lofoten Basin: Importance, progress, and challenges. International Journal of Remote Sensing, 37, 3712–3728.CrossRef
17.
Zurück zum Zitat Rodionov, V. B., & Kostianoy, A. G. (1998). Oceanic fronts of the North-European basin seas (293 pp.). Moscow: GEOS (in Russian). Rodionov, V. B., & Kostianoy, A. G. (1998). Oceanic fronts of the North-European basin seas (293 pp.). Moscow: GEOS (in Russian).
18.
Zurück zum Zitat Rossby, T., Ozhigin, V., Ivshin, V., & Bacon, Sh. (2009). An isopycnal view of the Nordic Seas hydrography with focus on properties of the Lofoten Basin. Deep-Sea Research Part I, 56, 1955–1971.CrossRef Rossby, T., Ozhigin, V., Ivshin, V., & Bacon, Sh. (2009). An isopycnal view of the Nordic Seas hydrography with focus on properties of the Lofoten Basin. Deep-Sea Research Part I, 56, 1955–1971.CrossRef
19.
Zurück zum Zitat Søiland, H., & Rossby, T. (2013). On the structure of the Lofoten Basin Eddy. Journal of Geophysical Research: Oceans, 118, 4201–4212. Søiland, H., & Rossby, T. (2013). On the structure of the Lofoten Basin Eddy. Journal of Geophysical Research: Oceans, 118, 4201–4212.
20.
Zurück zum Zitat Sokolovskiy, M. A. (1991). Modeling triple-layer vortical motions in the ocean by the Contour Dynamics Method. Izvestiya Atmospheric and Oceanic Physics, 27, 380–388. Sokolovskiy, M. A. (1991). Modeling triple-layer vortical motions in the ocean by the Contour Dynamics Method. Izvestiya Atmospheric and Oceanic Physics, 27, 380–388.
21.
Zurück zum Zitat Sokolovskiy, M. A., & Verron, J. (2014). Dynamics of vortex structures in a stratified rotating fluid. In Series Atmospheric and oceanographic sciences library (Vol. 47, p. 382). Switzerland: Springer International Publishing. Sokolovskiy, M. A., & Verron, J. (2014). Dynamics of vortex structures in a stratified rotating fluid. In Series Atmospheric and oceanographic sciences library (Vol. 47, p. 382). Switzerland: Springer International Publishing.
22.
Zurück zum Zitat Voet, G., Quadfasel, D., Mork, K. A., & Søiland, H. (2010). The mid-depth circulation of the Nordic Seas derived from profiling float observations. Tellus, 62A, 516–529.CrossRef Voet, G., Quadfasel, D., Mork, K. A., & Søiland, H. (2010). The mid-depth circulation of the Nordic Seas derived from profiling float observations. Tellus, 62A, 516–529.CrossRef
23.
Zurück zum Zitat Volkov, D. L., Belonenko, T. V., & Foux, V. R. (2013). Puzzling over the dynamics of the Lofoten Basin—A sub-Arctic hot spot of ocean variavility. Geophysical Reseach Letters, 40, 738–743.CrossRef Volkov, D. L., Belonenko, T. V., & Foux, V. R. (2013). Puzzling over the dynamics of the Lofoten Basin—A sub-Arctic hot spot of ocean variavility. Geophysical Reseach Letters, 40, 738–743.CrossRef
24.
Zurück zum Zitat Volkov, D. L., Kubryakov, A. A., & Lumpkin, R. (2015). Formation and variability of the Lofoten Basin vortex in a high-resolution ocean model. Deep-Sea Research Part I, 105, 142–157.CrossRef Volkov, D. L., Kubryakov, A. A., & Lumpkin, R. (2015). Formation and variability of the Lofoten Basin vortex in a high-resolution ocean model. Deep-Sea Research Part I, 105, 142–157.CrossRef
25.
Zurück zum Zitat Zyryanov, V. N. (1995). Topographic eddies in sea currents dynamics (p. 240). Moscow: Water Problems Institute of RAS (in Russian). Zyryanov, V. N. (1995). Topographic eddies in sea currents dynamics (p. 240). Moscow: Water Problems Institute of RAS (in Russian).
Metadaten
Titel
Evolution of an Intrathermocline Lens over the Lofoten Basin
verfasst von
Boris N. Filyushkin
Mikhail A. Sokolovskiy
Konstantin V. Lebedev
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-71934-4_21