Skip to main content
Erschienen in: Neural Computing and Applications 7/2018

07.07.2018 | S.I. : Deep Learning for Biomedical and Healthcare Applications

Very deep feature extraction and fusion for arrhythmias detection

verfasst von: Moussa Amrani, Mohamed Hammad, Feng Jiang, Kuanquan Wang, Amel Amrani

Erschienen in: Neural Computing and Applications | Ausgabe 7/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The electrocardiogram (ECG) is a picture of heart electrical conduction, which is widely used to diagnose many types of diseases such as abnormal heartbeat rhythm (arrhythmia). However, it is very difficult to detect the abnormal ECG characteristics because of the nonlinearity and the complexity of ECG signals from one side, and the noise effect of these signals from the other side, which make it very difficult to perform direct information extraction. Therefore, in this study we propose a very deep convolutional neural network (VDCNN) by using small filters throughout the whole net to reduce the noise affect and improve the performance. Our approach introduces multi-canonical correlation analysis (MCCA), a method to learn selective adaptive layer’s features such that the resulting representations are highly linearly correlated and speed up the training task. Moreover, the Q-Gaussian multi-class support vector machine (QG-MSVM) is introduced for classification, an algorithm which has a better learning performance and generalization ability on ECG signals processing. As a result, we come up with expressively more accurate architecture which is able to differentiate between the normal (NSR) heartbeats and three common types of arrhythmia atrial fibrillation (A-Fib), atrial flutter (AFL), and paroxysmal supraventricular tachycardia (PSVT) without performing any noise filtering or pre-processing techniques. Experimental results show that the proposed algorithm outperforms the state-of-the-art methods.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
6.
Zurück zum Zitat Sahoo S et al (2016) De-noising of ECG signal and QRS detection using Hilbert transform and adaptive thresholding. Procedia Technol 25:68–75CrossRef Sahoo S et al (2016) De-noising of ECG signal and QRS detection using Hilbert transform and adaptive thresholding. Procedia Technol 25:68–75CrossRef
7.
Zurück zum Zitat De Albuquerque VHC et al (2016) Robust automated cardiac arrhythmia detection in ECG beat signals. Neural Comput Appl 1:1–15 De Albuquerque VHC et al (2016) Robust automated cardiac arrhythmia detection in ECG beat signals. Neural Comput Appl 1:1–15
9.
Zurück zum Zitat Ebrahimzadeh A et al (2016) Classification of ECG signals using hermite functions and MLP neural networks. J AI Data Min 4(1):55–65 Ebrahimzadeh A et al (2016) Classification of ECG signals using hermite functions and MLP neural networks. J AI Data Min 4(1):55–65
11.
Zurück zum Zitat Andersen RS et al (2017) A novel approach for automatic detection of atrial fibrillation based on inter beat intervals and support vector machine. In: 2017 39th annual international conference of the IEEE engineering in medicine and biology society (EMBC), pp 2039–2042 Andersen RS et al (2017) A novel approach for automatic detection of atrial fibrillation based on inter beat intervals and support vector machine. In: 2017 39th annual international conference of the IEEE engineering in medicine and biology society (EMBC), pp 2039–2042
12.
Zurück zum Zitat Garcia G et al (2017) Inter-patient ECG heartbeat classification with temporal VCG optimized by PSO. Sci Rep 7(1):10543CrossRef Garcia G et al (2017) Inter-patient ECG heartbeat classification with temporal VCG optimized by PSO. Sci Rep 7(1):10543CrossRef
13.
Zurück zum Zitat Desai U, Martis RJ, Acharya UR, Nayak CG, Seshikala G, Ranjan SK (2016) Diagnosis of multiclass tachycardia beats using recurrence quantification analysis and ensemble classifiers. J Mech Med Biol 16(1):1640005CrossRef Desai U, Martis RJ, Acharya UR, Nayak CG, Seshikala G, Ranjan SK (2016) Diagnosis of multiclass tachycardia beats using recurrence quantification analysis and ensemble classifiers. J Mech Med Biol 16(1):1640005CrossRef
14.
Zurück zum Zitat Acharya UR, Fujita H, Adam H, Oh SL, Tan JH, Sudarshan VK, Koh JEW (2016) Automated characterization of Arrhythmias using nonlinear features from tachycardia ECG beats. In: IEEE international conference on systems, man, and cybernetics Acharya UR, Fujita H, Adam H, Oh SL, Tan JH, Sudarshan VK, Koh JEW (2016) Automated characterization of Arrhythmias using nonlinear features from tachycardia ECG beats. In: IEEE international conference on systems, man, and cybernetics
15.
Zurück zum Zitat Acharya D et al (2017) Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network. Inf Sci 405:81–90CrossRef Acharya D et al (2017) Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network. Inf Sci 405:81–90CrossRef
16.
Zurück zum Zitat Singh BN, Tiwari AK (2006) Optimal selection of wavelet basis function applied to ECG signal denoising. Digit Signal Process A Rev J 16(3):275–287CrossRef Singh BN, Tiwari AK (2006) Optimal selection of wavelet basis function applied to ECG signal denoising. Digit Signal Process A Rev J 16(3):275–287CrossRef
17.
Zurück zum Zitat Zubair M, Kim J, Yoon CW (2016) An automated ECG beat classification system using convolutional neural networks. In: IEEE 6th international conference on IT convergence and security Zubair M, Kim J, Yoon CW (2016) An automated ECG beat classification system using convolutional neural networks. In: IEEE 6th international conference on IT convergence and security
18.
Zurück zum Zitat Acharya D et al (2017) A deep convolutional neural network model to classify heartbeats. Comput Biol Med 89:389–396CrossRef Acharya D et al (2017) A deep convolutional neural network model to classify heartbeats. Comput Biol Med 89:389–396CrossRef
19.
Zurück zum Zitat Goldberger AL et al (2000) PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23):e215–e220CrossRef Goldberger AL et al (2000) PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23):e215–e220CrossRef
21.
Zurück zum Zitat An X et al (2014) A deep learning method for classification of EEG data based on motor imagery. ICIC 8590:203–210 An X et al (2014) A deep learning method for classification of EEG data based on motor imagery. ICIC 8590:203–210
22.
Zurück zum Zitat Sun Y et al (2014) Deep learning face representation from predicting 10,000 classes. In: 2014 IEEE conference on computer vision and pattern recognition, pp 1891–1898 Sun Y et al (2014) Deep learning face representation from predicting 10,000 classes. In: 2014 IEEE conference on computer vision and pattern recognition, pp 1891–1898
23.
Zurück zum Zitat Hinton G et al (2012) Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Process Mag 29(2012):82–97CrossRef Hinton G et al (2012) Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Process Mag 29(2012):82–97CrossRef
24.
Zurück zum Zitat Wang X et al (2017) CSI-based fingerprinting for indoor localization: a deep learning approach. IEEE Trans Veh Technol 66:763–776 Wang X et al (2017) CSI-based fingerprinting for indoor localization: a deep learning approach. IEEE Trans Veh Technol 66:763–776
25.
Zurück zum Zitat Burlina P et al (2017) Comparing humans and deep learning performance for grading AMD: a study in using universal deep features and transfer learning for automated AMD analysis. Comput Biol Med 82:80–86CrossRef Burlina P et al (2017) Comparing humans and deep learning performance for grading AMD: a study in using universal deep features and transfer learning for automated AMD analysis. Comput Biol Med 82:80–86CrossRef
26.
Zurück zum Zitat Greenspan H et al (2016) Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique. IEEE Trans Med Imaging 35:1153–1159CrossRef Greenspan H et al (2016) Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique. IEEE Trans Med Imaging 35:1153–1159CrossRef
27.
Zurück zum Zitat Gargeya R, Leng T (2017) Automated identification of diabetic retinopathy using deep learning. Ophthalmology 124(7):962–969CrossRef Gargeya R, Leng T (2017) Automated identification of diabetic retinopathy using deep learning. Ophthalmology 124(7):962–969CrossRef
28.
Zurück zum Zitat Ravì D et al (2017) Deep learning for health informatics. IEEE J Biomed Health Inf 21:4–21CrossRef Ravì D et al (2017) Deep learning for health informatics. IEEE J Biomed Health Inf 21:4–21CrossRef
29.
Zurück zum Zitat Havaei M et al (2017) Brain tumor segmentation with deep neural networks. Med Image Anal 35:18–31CrossRef Havaei M et al (2017) Brain tumor segmentation with deep neural networks. Med Image Anal 35:18–31CrossRef
30.
Zurück zum Zitat Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. In: Proceedings of international conference learning represent. (ICLR), San Diego, CA, pp 1–14 Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. In: Proceedings of international conference learning represent. (ICLR), San Diego, CA, pp 1–14
31.
Zurück zum Zitat Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. In: NIPS, pp 1106–1114 Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. In: NIPS, pp 1106–1114
32.
Zurück zum Zitat Sermanet P, Eigen D, Zhang X, Mathieu M, Fergus R, LeCun Y (2014) OverFeat: integrated recognition, localization and detection using convolutional networks. In: Proceedings of ICLR Sermanet P, Eigen D, Zhang X, Mathieu M, Fergus R, LeCun Y (2014) OverFeat: integrated recognition, localization and detection using convolutional networks. In: Proceedings of ICLR
33.
Zurück zum Zitat Nogueira RF, de Alencar Lotufo R, Machado RC (2016) Fingerprint liveness detection using convolutional neural networks. IEEE Trans Inf Forensics Secur 11(6):1206–1213CrossRef Nogueira RF, de Alencar Lotufo R, Machado RC (2016) Fingerprint liveness detection using convolutional neural networks. IEEE Trans Inf Forensics Secur 11(6):1206–1213CrossRef
34.
Zurück zum Zitat Rodriguez R et al (2015) Feature extraction of electrocardiogram signals by applying adaptive threshold and principal component analysis. J Appl Res Technol 13(2):261–269CrossRef Rodriguez R et al (2015) Feature extraction of electrocardiogram signals by applying adaptive threshold and principal component analysis. J Appl Res Technol 13(2):261–269CrossRef
35.
Zurück zum Zitat Amrani M (2017) Deep feature extraction and combination for synthetic aperture radar target classification. J Appl Remote Sens 11(4):1CrossRef Amrani M (2017) Deep feature extraction and combination for synthetic aperture radar target classification. J Appl Remote Sens 11(4):1CrossRef
36.
Zurück zum Zitat Haghighat M, Abdel-Mottaleb M, Alhalabi W (2016) Fully automatic face normalization and single sample face recognition in unconstrained environments. Expert Syst Appl 47:23–34CrossRef Haghighat M, Abdel-Mottaleb M, Alhalabi W (2016) Fully automatic face normalization and single sample face recognition in unconstrained environments. Expert Syst Appl 47:23–34CrossRef
37.
Zurück zum Zitat Hammad M, Wang K (2017) Fingerprint classification based on a Q-Gaussian multiclass support vector machine. In: Proceedings of the 2017 international conference on biometrics engineering and application. ACM Hammad M, Wang K (2017) Fingerprint classification based on a Q-Gaussian multiclass support vector machine. In: Proceedings of the 2017 international conference on biometrics engineering and application. ACM
38.
Zurück zum Zitat Silva L et al (2010) Reconstruction of multivariate signals using q-Gaussian radial basis function network. IEEE Comput Cardiol 2010:465–468 Silva L et al (2010) Reconstruction of multivariate signals using q-Gaussian radial basis function network. IEEE Comput Cardiol 2010:465–468
39.
Zurück zum Zitat Tsallis C (1994) What are the numbers that experiments provide?. Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro Tsallis C (1994) What are the numbers that experiments provide?. Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro
40.
Zurück zum Zitat Isin Ali, Ozdalili Selen (2017) Cardiac arrhythmia detection using deep learning. Procedia Comput Sci 120:268–275CrossRef Isin Ali, Ozdalili Selen (2017) Cardiac arrhythmia detection using deep learning. Procedia Comput Sci 120:268–275CrossRef
41.
Zurück zum Zitat Luo K et al (2017) Patient-specific deep architectural model for ECG classification. J Healthc Eng 2017:1–13 Luo K et al (2017) Patient-specific deep architectural model for ECG classification. J Healthc Eng 2017:1–13
42.
Zurück zum Zitat Acharya UR et al (2018) Automated identification of shockable and non-shockable life-threatening ventricular arrhythmias using convolutional neural network. Future Gener Comp Syst 79:952–959CrossRef Acharya UR et al (2018) Automated identification of shockable and non-shockable life-threatening ventricular arrhythmias using convolutional neural network. Future Gener Comp Syst 79:952–959CrossRef
43.
Zurück zum Zitat Acharya UR et al (2017) Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals. Inf Sci 415:190–198CrossRef Acharya UR et al (2017) Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals. Inf Sci 415:190–198CrossRef
44.
Zurück zum Zitat Jia F, Lei Y, Guo L, Lin J, Xing S (2017) A neural network constructed by deep learning technique and its application to intelligent fault diagnosis of machines. Neurocomputing 248:98–109 Jia F, Lei Y, Guo L, Lin J, Xing S (2017) A neural network constructed by deep learning technique and its application to intelligent fault diagnosis of machines. Neurocomputing 248:98–109
Metadaten
Titel
Very deep feature extraction and fusion for arrhythmias detection
verfasst von
Moussa Amrani
Mohamed Hammad
Feng Jiang
Kuanquan Wang
Amel Amrani
Publikationsdatum
07.07.2018
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 7/2018
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-018-3616-9

Weitere Artikel der Ausgabe 7/2018

Neural Computing and Applications 7/2018 Zur Ausgabe