Skip to main content

2021 | OriginalPaper | Buchkapitel

Pareto Models for Risk Management

verfasst von : Arthur Charpentier, Emmanuel Flachaire

Erschienen in: Recent Econometric Techniques for Macroeconomic and Financial Data

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The Pareto model is very popular in risk management, since simple analytical formulas can be derived for financial downside risk measures (value-at-risk, expected shortfall) or reinsurance premiums and related quantities (large claim index, return period). Nevertheless, in practice, distributions are (strictly) Pareto only in the tails, above (possible very) large threshold. Therefore, it could be interesting to take into account second-order behavior to provide a better fit. In this article, we present how to go from a strict Pareto model to Pareto-type distributions. We discuss inference, derive formulas for various measures and indices, and finally provide applications on insurance losses and financial risks.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Gabaix (2009) claimed that similar results can be obtained when exponents are different, unfortunately, this yields only asymptotic power tails, which will be discussed in this chapter.
 
2
\(\overline{F}_{u'}\) is a truncated Pareto distribution, with density equals to \(f(x)/(1-F(u'))\). This property can be observed directly using Eq. (8), where both \(\alpha \) and \(\lambda \) remain unchanged.
Note that this property is quite intuitive, since the GPD distribution appears as a limit for exceeding distributions, and limit in asymptotic results are always fixed points: the Gaussian family is stable by addition (and appears in the Central Limit Theorem) while Fréchet distribution is max-stable (and appears in the first theorem in extreme value theory).
 
3
Historically, extremes were studied through block-maximum—yearly maximum, or maximum of a subgroup of observations. Following Fisher and Tippett (1928), up to some affine transformation, the limiting distribution of the maximum over n i.i.d observations is either Weibull (observations with a bounded support), Gumbel (infinite support, but light tails, like the exponential distribution) or Fréchet (unbounded, with heavy tails, like Pareto distribution). Pickands (1975) and Balkema and de Haan (1974) obtained further that not only the only possible limiting conditional excess distribution is GPD, but also that the distribution of the maximum on subsamples (of same size) should be Fréchet distributed, with the same tail index \(\gamma \), if \(\gamma >0\). For instance in the USA, if the distribution of maximum income per county is Fréchet with parameter \(\gamma \) (and if county had identical sizes), then the conditional excess distribution function of incomes above a high threshold is a GPD distribution with the same tail index \(\gamma \).
 
4
The quantile function U is defined as \(U(x)=F^{-1}(1-1/x)\).
 
5
Using the expansion \((1+y^a)^b \approx 1+b y^a\), for small \(y^a\), in (22) yields (20).
 
6
Albrecher et al. (2017, Sect. 4.6) give an approximation, based on \((1+\delta -\delta y^\tau )^{-\alpha }\approx 1-\alpha \delta +\alpha \delta y^\tau \), which can be very poor. Thus, we do not recommend to use it.
 
7
Even if Hill estimator can be can be seen as a Maximum Likehood estimator, for some properly chosen distribution.
 
8
Given a sample \(\lbrace x_1,\ldots ,x_n \rbrace \), let \(\lbrace x_{1:n},\ldots ,x_{n:n} \rbrace \) denote the ordered version, with \(x_{1:n}=\min \lbrace x_1,\ldots ,x_n\rbrace \), \(x_{n:n}=\max \lbrace x_1,\ldots ,x_n\rbrace \) and \(x_{1:n}\le \ldots x_{n-1:n}\le x_{n:n} \).
 
9
The study of the limiting distribution of the maximum of a sample of size n made us introduce a normalizing sequence \(a_n\). Here, a continuous version is considered—with U(t) instead of U(n)—and the sequence \(a_n\) becomes the auxiliary function a(t).
 
10
See the R packages ReIns or TopIncomes.
 
11
It is the danishuni dataset in the CASdatasets package, available from http://​cas.​uqam.​ca/​.
 
Literatur
Zurück zum Zitat Albrecher, H., Beirlant, J., & Teugels, J. L. (2017). Reinsurance: Actuarial and statistical aspects. Wiley series in probability and statistics. Albrecher, H., Beirlant, J., & Teugels, J. L. (2017). Reinsurance: Actuarial and statistical aspects. Wiley series in probability and statistics.
Zurück zum Zitat Arnold, B. C. (2008). Pareto and generalized Pareto distributions. In D. Chotikapanich (Ed.), Modeling income distributions and Lorenz curves (Chap. 7, pp. 119–146). New York: Springer. Arnold, B. C. (2008). Pareto and generalized Pareto distributions. In D. Chotikapanich (Ed.), Modeling income distributions and Lorenz curves (Chap. 7, pp. 119–146). New York: Springer.
Zurück zum Zitat Balkema, A., & de Haan, L. (1974). Residual life time at great age. Annals of Probability, 2, 792–804.CrossRef Balkema, A., & de Haan, L. (1974). Residual life time at great age. Annals of Probability, 2, 792–804.CrossRef
Zurück zum Zitat Beirlant, J., Goegebeur, Y., Segers, J., & Teugels, J. (2004). Statistics of extremes: Theory and applications. Wiley series in probability and statistics. Beirlant, J., Goegebeur, Y., Segers, J., & Teugels, J. (2004). Statistics of extremes: Theory and applications. Wiley series in probability and statistics.
Zurück zum Zitat Beirlant, J., Joossens, E., & Segers, J. (2009). Second-order refined peaks-over-threshold modelling for heavy-tailed distributions. Journal of Statistical Planning and Inference, 139, 2800–2815.CrossRef Beirlant, J., Joossens, E., & Segers, J. (2009). Second-order refined peaks-over-threshold modelling for heavy-tailed distributions. Journal of Statistical Planning and Inference, 139, 2800–2815.CrossRef
Zurück zum Zitat Beirlant, J., & Teugels, J. L. (1992). Modeling large claims in non-life insurance. Insurance: Mathematics and Economics, 11(1), 17–29. Beirlant, J., & Teugels, J. L. (1992). Modeling large claims in non-life insurance. Insurance: Mathematics and Economics, 11(1), 17–29.
Zurück zum Zitat Bingham, N. H., Goldie, C. M., & Teugels, J. L. (1987). Regular variation. Encyclopedia of mathematics and its applications. Cambridge: Cambridge University Press. Bingham, N. H., Goldie, C. M., & Teugels, J. L. (1987). Regular variation. Encyclopedia of mathematics and its applications. Cambridge: Cambridge University Press.
Zurück zum Zitat Cebrián, A. C., Denuit, M., & Lambert, P. (2003). Generalized Pareto fit to the society of actuaries’ large claims database. North American Actuarial Journal, 7(3), 18–36.CrossRef Cebrián, A. C., Denuit, M., & Lambert, P. (2003). Generalized Pareto fit to the society of actuaries’ large claims database. North American Actuarial Journal, 7(3), 18–36.CrossRef
Zurück zum Zitat Charpentier, A., & Flachaire, E. (2019). Pareto models for top incomes. hal id: hal-02145024. Charpentier, A., & Flachaire, E. (2019). Pareto models for top incomes. hal id: hal-02145024.
Zurück zum Zitat Davison, A. (2003). Statistical models. Cambridge: Cambridge University Press. Davison, A. (2003). Statistical models. Cambridge: Cambridge University Press.
Zurück zum Zitat de Haan, L., & Ferreira, A. (2006). Extreme value theory: An introduction. Springer series in operations research and financial engineering. de Haan, L., & Ferreira, A. (2006). Extreme value theory: An introduction. Springer series in operations research and financial engineering.
Zurück zum Zitat de Haan, L., & Stadtmüller, U. (1996). Generalized regular variation of second order. Journal of the Australian Mathematical Society, 61, 381–395.CrossRef de Haan, L., & Stadtmüller, U. (1996). Generalized regular variation of second order. Journal of the Australian Mathematical Society, 61, 381–395.CrossRef
Zurück zum Zitat Embrechts, P., Klüppelberg, C., & Mikosch, T. (1997). Modelling extremal events for insurance and finance. Berlin, Heidelberg: Springer.CrossRef Embrechts, P., Klüppelberg, C., & Mikosch, T. (1997). Modelling extremal events for insurance and finance. Berlin, Heidelberg: Springer.CrossRef
Zurück zum Zitat Fisher, R. A., & Tippett, L. H. C. (1928). Limiting forms of the frequency distribution of the largest or smallest member of a sample. Proceedings of the Cambridge Philosophical Society, 24, 180–290.CrossRef Fisher, R. A., & Tippett, L. H. C. (1928). Limiting forms of the frequency distribution of the largest or smallest member of a sample. Proceedings of the Cambridge Philosophical Society, 24, 180–290.CrossRef
Zurück zum Zitat Gabaix, X. (2009). Power laws in economics and finance. Annual Review of Economics, 1(1), 255–294.CrossRef Gabaix, X. (2009). Power laws in economics and finance. Annual Review of Economics, 1(1), 255–294.CrossRef
Zurück zum Zitat Ghosh, S., & Resnick, S. (2010). A discussion on mean excess plots. Stochastic Processes and Their Applications, 120(8), 1492–1517.CrossRef Ghosh, S., & Resnick, S. (2010). A discussion on mean excess plots. Stochastic Processes and Their Applications, 120(8), 1492–1517.CrossRef
Zurück zum Zitat Gnedenko, B. (1943). Sur la distribution limite du terme maximum d’une serie aleatoire. Annals of Mathematics, 44(3), 423–453.CrossRef Gnedenko, B. (1943). Sur la distribution limite du terme maximum d’une serie aleatoire. Annals of Mathematics, 44(3), 423–453.CrossRef
Zurück zum Zitat Goldie, C. M., & Klüppelberg, C. (1998). Subexponential distributions. In R. J. Adler, R. E. Feldman, & M. S. Taqqu (Eds.), A practical guide to heavy tails (pp. 436–459). Basel: Birkhäuser. Goldie, C. M., & Klüppelberg, C. (1998). Subexponential distributions. In R. J. Adler, R. E. Feldman, & M. S. Taqqu (Eds.), A practical guide to heavy tails (pp. 436–459). Basel: Birkhäuser.
Zurück zum Zitat Guess, F., & Proschan, F. (1988). 12 mean residual life: Theory and applications. In Quality control and reliability. Handbook of statistics (Vol. 7, pp. 215–224). Amsterdam: Elsevier. Guess, F., & Proschan, F. (1988). 12 mean residual life: Theory and applications. In Quality control and reliability. Handbook of statistics (Vol. 7, pp. 215–224). Amsterdam: Elsevier.
Zurück zum Zitat Hagstroem, K. G. (1925). La loi de pareto et la reassurance. Skandinavisk Aktuarietidskrift, 25. Hagstroem, K. G. (1925). La loi de pareto et la reassurance. Skandinavisk Aktuarietidskrift, 25.
Zurück zum Zitat Hagstroem, K. G. (1960). Remarks on Pareto distributions. Scandinavian Actuarial Journal, 60(1–2), 59–71.CrossRef Hagstroem, K. G. (1960). Remarks on Pareto distributions. Scandinavian Actuarial Journal, 60(1–2), 59–71.CrossRef
Zurück zum Zitat Hall, P. (1982). On some simple estimate of an exponent of regular variation. Journal of the Royal Statistical Society: Series B, 44, 37–42. Hall, P. (1982). On some simple estimate of an exponent of regular variation. Journal of the Royal Statistical Society: Series B, 44, 37–42.
Zurück zum Zitat Jessen, A. H., & Mikosch, T. (2006). Regularly varying functions. Publications de l’Institut Mathématique, 19, 171–192.CrossRef Jessen, A. H., & Mikosch, T. (2006). Regularly varying functions. Publications de l’Institut Mathématique, 19, 171–192.CrossRef
Zurück zum Zitat Klüppelberg, C. (2004). Risk management with extreme value theory. In B. Finkenstädt, & H. Rootzén (Eds.), Extreme values in finance, telecommunications, and the environment (Chap. 3, pp. 101–168). Oxford: Chapman & Hall/CRC. Klüppelberg, C. (2004). Risk management with extreme value theory. In B. Finkenstädt, & H. Rootzén (Eds.), Extreme values in finance, telecommunications, and the environment (Chap. 3, pp. 101–168). Oxford: Chapman & Hall/CRC.
Zurück zum Zitat Kremer, E. (1984). Rating of non proportional reinsurance treaties based on ordered claims (pp. 285–314). Dordrecht: Springer. Kremer, E. (1984). Rating of non proportional reinsurance treaties based on ordered claims (pp. 285–314). Dordrecht: Springer.
Zurück zum Zitat Lomax, K. S. (1954). Business failures: Another example of the analysis of failure data. Journal of the American Statistical Association, 49(268), 847–852.CrossRef Lomax, K. S. (1954). Business failures: Another example of the analysis of failure data. Journal of the American Statistical Association, 49(268), 847–852.CrossRef
Zurück zum Zitat McNeil, A. (1997). Estimating the tails of loss severity distributions using extreme value theory. ASTIN Bulletin, 27(27), 117–137.CrossRef McNeil, A. (1997). Estimating the tails of loss severity distributions using extreme value theory. ASTIN Bulletin, 27(27), 117–137.CrossRef
Zurück zum Zitat McNeil, A. J., & Frey, R. (2000). Estimation of tail-related risk measures for heteroscedastic financial time series: An extreme value approach. Journal of Empirical Finance, 7(3), 271–300. Special issue on Risk Management. McNeil, A. J., & Frey, R. (2000). Estimation of tail-related risk measures for heteroscedastic financial time series: An extreme value approach. Journal of Empirical Finance, 7(3), 271–300. Special issue on Risk Management.
Zurück zum Zitat O’Brien, G. L. (1980). A limit theorem for sample maxima and heavy branches in Galton-Watson trees. Journal of Applied Probability, 17(2), 539–545.CrossRef O’Brien, G. L. (1980). A limit theorem for sample maxima and heavy branches in Galton-Watson trees. Journal of Applied Probability, 17(2), 539–545.CrossRef
Zurück zum Zitat Pareto, V. (1895). La legge della domanda. In Pareto (Ed.), Ecrits d’économie politique pure (Chap. 11, pp. 295–304). Genève: Librairie Droz. Pareto, V. (1895). La legge della domanda. In Pareto (Ed.), Ecrits d’économie politique pure (Chap. 11, pp. 295–304). Genève: Librairie Droz.
Zurück zum Zitat Peng, L., & Qi, Y. (2004). Estimating the first- and second-order parameters of a heavy-tailed distribution. Australian & New Zealand Journal of Statistics, 46, 305–312.CrossRef Peng, L., & Qi, Y. (2004). Estimating the first- and second-order parameters of a heavy-tailed distribution. Australian & New Zealand Journal of Statistics, 46, 305–312.CrossRef
Zurück zum Zitat Pickands, J. (1975). Statistical inference using extreme order statistics. Annals of Statistics, 23, 119–131. Pickands, J. (1975). Statistical inference using extreme order statistics. Annals of Statistics, 23, 119–131.
Zurück zum Zitat Resnick, S. (2007). Heavy-tail phenomena: Probabilistic and statistical modeling (Vol. 10). New York: Springer. Resnick, S. (2007). Heavy-tail phenomena: Probabilistic and statistical modeling (Vol. 10). New York: Springer.
Zurück zum Zitat Resnick, S. I. (1997). Discussion of the Danish data on large fire insurance losses. ASTIN Bulletin, 27(1), 139–151.CrossRef Resnick, S. I. (1997). Discussion of the Danish data on large fire insurance losses. ASTIN Bulletin, 27(1), 139–151.CrossRef
Zurück zum Zitat Reynkens, T. (2018). ReIns: Functions from “Reinsurance: Actuarial and statistical aspects”. R package version 1.0.8. Reynkens, T. (2018). ReIns: Functions from “Reinsurance: Actuarial and statistical aspects”. R package version 1.0.8.
Zurück zum Zitat Rigby, R. A., & Stasinopoulos, D. M. (2005). Generalized additive models for location, scale and shape (with discussion). Applied Statistics, 54, 507–554. Rigby, R. A., & Stasinopoulos, D. M. (2005). Generalized additive models for location, scale and shape (with discussion). Applied Statistics, 54, 507–554.
Zurück zum Zitat Roy, A. D. (1952). Safety first and the holding of assets. Econometrica, 20(3), 431–449.CrossRef Roy, A. D. (1952). Safety first and the holding of assets. Econometrica, 20(3), 431–449.CrossRef
Zurück zum Zitat Schumpeter, J. A. (1949). Vilfredo Pareto (1848–1923). The Quarterly Journal of Economics, 63(2), 147–173.CrossRef Schumpeter, J. A. (1949). Vilfredo Pareto (1848–1923). The Quarterly Journal of Economics, 63(2), 147–173.CrossRef
Zurück zum Zitat Scollnik, D. P. M. (2007). On composite lognormal-Pareto models. Scandinavian Actuarial Journal, 2007(1), 20–33.CrossRef Scollnik, D. P. M. (2007). On composite lognormal-Pareto models. Scandinavian Actuarial Journal, 2007(1), 20–33.CrossRef
Zurück zum Zitat Smith, R. L. (1987). Estimating tails of probability distributions. Annals of Statistics, 15(3), 1174–1207. Smith, R. L. (1987). Estimating tails of probability distributions. Annals of Statistics, 15(3), 1174–1207.
Zurück zum Zitat Vajda, S. (1951). Analytical studies in stop-loss reinsurance. Scandinavian Actuarial Journal, 1951(1–2), 158–175.CrossRef Vajda, S. (1951). Analytical studies in stop-loss reinsurance. Scandinavian Actuarial Journal, 1951(1–2), 158–175.CrossRef
Metadaten
Titel
Pareto Models for Risk Management
verfasst von
Arthur Charpentier
Emmanuel Flachaire
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-54252-8_14

Premium Partner