Skip to main content

2016 | OriginalPaper | Buchkapitel

9. American Process: Production of Low Cost Nanocellulose for Renewable, Advanced Materials Applications

verfasst von : Kim Nelson, Theodora Retsina, Mikhail Iakovlev, Adriaan van Heiningen, Yulin Deng, Jo Anne Shatkin, Arie Mulyadi

Erschienen in: Materials Research for Manufacturing

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nanocellulose has proven to be a versatile material with a vast array of potential commercial applications including composites and foams for automotive, aerospace, and building construction, viscosity modifiers for cosmetics and oil drilling fluids, and high performance fillers for paper, packaging, paints, plastics, and cement. In addition to material performance properties like gelation, shear thinning, exceptionally high strength, and light weight, nanocellulose has a strong sustainability profile. Being made from biomass, it is renewable, biodegradable, compostable, and designed for the environment with a sustainable life cycle carbon footprint. American Process Inc.’s (API’s) American Value Added Pulping (AVAP)® technology offers commercial-scale production of nanocellulose with flexibility in final product morphology (rod shaped nanocrystals and fiber shaped nanofibrils) and surface properties (hydrophilic or hydrophobic) to service the wide variety of emerging end-use market segments. The novel hydrophobic lignin-coated variety of AVAP nanocellulose can be incorporated into plastics. This achievement overcomes a well-known barrier to commercial utilization of nanocellulose. AVAP nanocellulose will also be low cost, with commercial selling prices anticipated to be comparable to competing petroleum-based polymers.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat R.J. Moon, S. Beck, A.W. Rudie, Cellulosic nanocrystals—a material with unique properties and many potential applications, in Production and Applications of Cellulose Nanomaterials, ed. by M.T. Postek, et al. 2013 (TAPPI Press, Peachtree Corners, GA), pp. 9–12 R.J. Moon, S. Beck, A.W. Rudie, Cellulosic nanocrystals—a material with unique properties and many potential applications, in Production and Applications of Cellulose Nanomaterials, ed. by M.T. Postek, et al. 2013 (TAPPI Press, Peachtree Corners, GA), pp. 9–12
2.
Zurück zum Zitat H. Kangas, Cellulose nanofibrils—a class of materials with unique properties and many potential applications, in Production and Applications of Cellulose Nanomaterials, ed. by M.T. Postek, et al. 2013 (TAPPI Press, Peachtree Corners, GA) H. Kangas, Cellulose nanofibrils—a class of materials with unique properties and many potential applications, in Production and Applications of Cellulose Nanomaterials, ed. by M.T. Postek, et al. 2013 (TAPPI Press, Peachtree Corners, GA)
3.
Zurück zum Zitat R.W. Malmsheimer et al., Forest management solutions for mitigating climate change in the United States. J. Forest. 106(3), 115–173 (2008) R.W. Malmsheimer et al., Forest management solutions for mitigating climate change in the United States. J. Forest. 106(3), 115–173 (2008)
4.
Zurück zum Zitat C. Eberle, S. Ozcan, Nanocellulose reinforced polymers, in Cellulosic Nanomaterials Workshop 2014 (Oak Ridge National Laboratory, Washington, DC) C. Eberle, S. Ozcan, Nanocellulose reinforced polymers, in Cellulosic Nanomaterials Workshop 2014 (Oak Ridge National Laboratory, Washington, DC)
5.
Zurück zum Zitat J.A. Shatkin et al., Market projections of cellulose nanomaterial-enabled products—Part 1: applications. Tappi J. 13(5), 9–16 (2014) J.A. Shatkin et al., Market projections of cellulose nanomaterial-enabled products—Part 1: applications. Tappi J. 13(5), 9–16 (2014)
6.
Zurück zum Zitat K. Nelson, T. Retsina, Innovative nanocellulose process breaks the cost barrier. Tappi J. 13(5), 19–23 (2014) K. Nelson, T. Retsina, Innovative nanocellulose process breaks the cost barrier. Tappi J. 13(5), 19–23 (2014)
9.
Zurück zum Zitat D.M. Fox et al., Flame retarded poly(lactic acid) using POSS-modified cellulose. 1. Thermal and combustion properties of intumescing composites. Polym. Degrad. Stab. 98(2), 590–596 (2013)CrossRef D.M. Fox et al., Flame retarded poly(lactic acid) using POSS-modified cellulose. 1. Thermal and combustion properties of intumescing composites. Polym. Degrad. Stab. 98(2), 590–596 (2013)CrossRef
10.
Zurück zum Zitat B. Lyne, Market Prospects for NanoCellulose (The Royal Institute of Technology, Alberta Biomaterials Development Centre, Edmunton, AB, Canada, 2013) B. Lyne, Market Prospects for NanoCellulose (The Royal Institute of Technology, Alberta Biomaterials Development Centre, Edmunton, AB, Canada, 2013)
11.
Zurück zum Zitat M. Henriksson et al., Cellulose nanopaper structures of high toughness. Biomacromolecules 9(6), 1579–1585 (2008)CrossRef M. Henriksson et al., Cellulose nanopaper structures of high toughness. Biomacromolecules 9(6), 1579–1585 (2008)CrossRef
12.
Zurück zum Zitat W. Gindl, J. Keckes, All-cellulose nanocomposite. Polymer 46(23), 10221–10225 (2005)CrossRef W. Gindl, J. Keckes, All-cellulose nanocomposite. Polymer 46(23), 10221–10225 (2005)CrossRef
13.
Zurück zum Zitat R.J. Moon et al., Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40(7), 3941–3994 (2011)CrossRef R.J. Moon et al., Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 40(7), 3941–3994 (2011)CrossRef
14.
Zurück zum Zitat I. Siró, D. Plackett, Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3), 459–494 (2010)CrossRef I. Siró, D. Plackett, Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3), 459–494 (2010)CrossRef
15.
Zurück zum Zitat W. Hamad, On the development and applications of cellulosic nanofibrillar and nanocrystalline materials. Can. J. Chem. Eng. 84(5), 513–519 (2006)CrossRef W. Hamad, On the development and applications of cellulosic nanofibrillar and nanocrystalline materials. Can. J. Chem. Eng. 84(5), 513–519 (2006)CrossRef
16.
Zurück zum Zitat J. Lee, Y. Deng, The morphology and mechanical properties of layer structured cellulose microfibril foams from ice-templating methods. Soft Matter 7(13), 6034–6040 (2011)CrossRef J. Lee, Y. Deng, The morphology and mechanical properties of layer structured cellulose microfibril foams from ice-templating methods. Soft Matter 7(13), 6034–6040 (2011)CrossRef
17.
Zurück zum Zitat H.M.C. Azeredo et al., Nanocellulose reinforced chitosan composite films as affected by nanofiller loading and plasticizer content. J. Food Sci. 75(1), N1–N7 (2010)CrossRef H.M.C. Azeredo et al., Nanocellulose reinforced chitosan composite films as affected by nanofiller loading and plasticizer content. J. Food Sci. 75(1), N1–N7 (2010)CrossRef
18.
Zurück zum Zitat X. Xu et al., Cellulose nanocrystals vs. cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents. ACS Appl. Mater. Interfaces 5(8), 2999–3009 (2013)CrossRef X. Xu et al., Cellulose nanocrystals vs. cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents. ACS Appl. Mater. Interfaces 5(8), 2999–3009 (2013)CrossRef
19.
Zurück zum Zitat E.S. Medeiros et al., Electrospun nanofibers of poly (vinyl alcohol) reinforced with cellulose nanofibrils. J. Biobased Mater. Bioenergy 2(3), 231–242 (2008)CrossRef E.S. Medeiros et al., Electrospun nanofibers of poly (vinyl alcohol) reinforced with cellulose nanofibrils. J. Biobased Mater. Bioenergy 2(3), 231–242 (2008)CrossRef
20.
Zurück zum Zitat G. Siqueira, J. Bras, A. Dufresne, Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10(2), 425–432 (2008)CrossRef G. Siqueira, J. Bras, A. Dufresne, Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10(2), 425–432 (2008)CrossRef
21.
Zurück zum Zitat H. Lönnberg et al., Synthesis of polycaprolactone-grafted microfibrillated cellulose for use in novel bionanocomposites-influence of the graft length on the mechanical properties. ACS Appl. Mater. Interfaces 3(5), 1426–1433 (2011)CrossRef H. Lönnberg et al., Synthesis of polycaprolactone-grafted microfibrillated cellulose for use in novel bionanocomposites-influence of the graft length on the mechanical properties. ACS Appl. Mater. Interfaces 3(5), 1426–1433 (2011)CrossRef
22.
Zurück zum Zitat L. Fang et al., Influence of silane surface modification of veneer on interfacial adhesion of wood–plastic plywood. Appl. Surf. Sci. 288, 682–689 (2014)CrossRef L. Fang et al., Influence of silane surface modification of veneer on interfacial adhesion of wood–plastic plywood. Appl. Surf. Sci. 288, 682–689 (2014)CrossRef
23.
Zurück zum Zitat A. Dufresne, M.N. Belgacem, Cellulose-reinforced composites: from micro-to nanoscale. Polímeros 23(3), 277–286 (2013) A. Dufresne, M.N. Belgacem, Cellulose-reinforced composites: from micro-to nanoscale. Polímeros 23(3), 277–286 (2013)
24.
Zurück zum Zitat Y. Xie et al., Silane coupling agents used for natural fiber/polymer composites: a review. Compos. A Appl. Sci. Manuf. 41(7), 806–819 (2010)CrossRef Y. Xie et al., Silane coupling agents used for natural fiber/polymer composites: a review. Compos. A Appl. Sci. Manuf. 41(7), 806–819 (2010)CrossRef
25.
Zurück zum Zitat S.-Y. Fu et al., Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Compos. B Eng. 39(6), 933–961 (2008)CrossRef S.-Y. Fu et al., Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Compos. B Eng. 39(6), 933–961 (2008)CrossRef
26.
Zurück zum Zitat S.J. Peters et al., Nanocellulose and microcellulose fibers for concrete. Transp. Res. Rec.: J. Transp. Res. Board 2142(1), 25–28 (2010)CrossRef S.J. Peters et al., Nanocellulose and microcellulose fibers for concrete. Transp. Res. Rec.: J. Transp. Res. Board 2142(1), 25–28 (2010)CrossRef
27.
Zurück zum Zitat Y.W. Cao, W. Jason, J. Youngblood, R. Moon, P. Zavattieri, Performance-enhanced cementitious materials by cellulose nanocrystal additions, in Production and Applications of Cellulose Nanomaterials, ed. by M.T. Postek, et al. 2013 (TAPPI press, Peachtree Corners, GA), p. 135–136 Y.W. Cao, W. Jason, J. Youngblood, R. Moon, P. Zavattieri, Performance-enhanced cementitious materials by cellulose nanocrystal additions, in Production and Applications of Cellulose Nanomaterials, ed. by M.T. Postek, et al. 2013 (TAPPI press, Peachtree Corners, GA), p. 135–136
28.
Zurück zum Zitat F. Jiang, Y.-L. Hsieh, Super water absorbing and shape memory nanocellulose aerogels from TEMPO-oxidized cellulose nanofibrils via cyclic freezing-thawing. J. Mater. Chem. A 2(2), 350–359 (2014)CrossRef F. Jiang, Y.-L. Hsieh, Super water absorbing and shape memory nanocellulose aerogels from TEMPO-oxidized cellulose nanofibrils via cyclic freezing-thawing. J. Mater. Chem. A 2(2), 350–359 (2014)CrossRef
29.
Zurück zum Zitat Z. Zhang et al., Ultralightweight and flexible silylated nanocellulose sponges for the selective removal of oil from water. Chem. Mater. 26(8), 2659–2668 (2014)CrossRef Z. Zhang et al., Ultralightweight and flexible silylated nanocellulose sponges for the selective removal of oil from water. Chem. Mater. 26(8), 2659–2668 (2014)CrossRef
30.
Zurück zum Zitat S.T. Nguyen et al., Advanced thermal insulation and absorption properties of recycled cellulose aerogels. Colloids Surf., A 445, 128–134 (2014)CrossRef S.T. Nguyen et al., Advanced thermal insulation and absorption properties of recycled cellulose aerogels. Colloids Surf., A 445, 128–134 (2014)CrossRef
31.
Zurück zum Zitat N.T. Cervin et al., Ultra porous nanocellulose aerogels as separation medium for mixtures of oil/water liquids. Cellulose 19(2), 401–410 (2012)CrossRef N.T. Cervin et al., Ultra porous nanocellulose aerogels as separation medium for mixtures of oil/water liquids. Cellulose 19(2), 401–410 (2012)CrossRef
32.
Zurück zum Zitat J.T. Korhonen et al., Hydrophobic nanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absorbents. ACS Appl. Mater. Interfaces 3(6), 1813–1816 (2011)CrossRef J.T. Korhonen et al., Hydrophobic nanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absorbents. ACS Appl. Mater. Interfaces 3(6), 1813–1816 (2011)CrossRef
33.
Zurück zum Zitat C. Gebald et al., Amine-based nanofibrillated cellulose as adsorbent for CO2 capture from air. Environ. Sci. Technol. 45(20), 9101–9108 (2011)CrossRef C. Gebald et al., Amine-based nanofibrillated cellulose as adsorbent for CO2 capture from air. Environ. Sci. Technol. 45(20), 9101–9108 (2011)CrossRef
34.
Zurück zum Zitat X. He, et al., Aerogels from quaternary ammonium-functionalized cellulose nanofibers for rapid removal of Cr(VI) from water. Carbohydr. Polym. (2014) X. He, et al., Aerogels from quaternary ammonium-functionalized cellulose nanofibers for rapid removal of Cr(VI) from water. Carbohydr. Polym. (2014)
35.
Zurück zum Zitat H. Valo et al., Drug release from nanoparticles embedded in four different nanofibrillar cellulose aerogels. Eur. J. Pharm. Sci. 50(1), 69–77 (2013)CrossRef H. Valo et al., Drug release from nanoparticles embedded in four different nanofibrillar cellulose aerogels. Eur. J. Pharm. Sci. 50(1), 69–77 (2013)CrossRef
36.
Zurück zum Zitat D.O. Carlsson et al., Electroactive nanofibrillated cellulose aerogel composites with tunable structural and electrochemical properties. J. Mater. Chem. 22(36), 19014–19024 (2012)CrossRef D.O. Carlsson et al., Electroactive nanofibrillated cellulose aerogel composites with tunable structural and electrochemical properties. J. Mater. Chem. 22(36), 19014–19024 (2012)CrossRef
37.
Zurück zum Zitat H.-W. Liang et al., Highly conductive and stretchable conductors fabricated from bacterial cellulose. NPG Asia Mater. 4, e19 (2012)CrossRef H.-W. Liang et al., Highly conductive and stretchable conductors fabricated from bacterial cellulose. NPG Asia Mater. 4, e19 (2012)CrossRef
38.
Zurück zum Zitat FPL, Forest Products Laboratory: Restoring America’s Forests Through the Wise Use of Wood (USDA Forest Products Laboratory, Madison, WI, USA, 2013), p. 13 FPL, Forest Products Laboratory: Restoring America’s Forests Through the Wise Use of Wood (USDA Forest Products Laboratory, Madison, WI, USA, 2013), p. 13
39.
Zurück zum Zitat L. Heath, W. Thielemans, Cellulose nanowhisker aerogels. Green Chem. 12(8), 1448–1453 (2010)CrossRef L. Heath, W. Thielemans, Cellulose nanowhisker aerogels. Green Chem. 12(8), 1448–1453 (2010)CrossRef
40.
Zurück zum Zitat N. Lavoine et al., Microfibrillated cellulose—its barrier properties and applications in cellulosic materials: a review. Carbohydr. Polym. 90(2), 735–764 (2012)CrossRef N. Lavoine et al., Microfibrillated cellulose—its barrier properties and applications in cellulosic materials: a review. Carbohydr. Polym. 90(2), 735–764 (2012)CrossRef
41.
Zurück zum Zitat G. Rodionova et al., Surface chemical modification of microfibrillated cellulose: improvement of barrier properties for packaging applications. Cellulose 18(1), 127–134 (2011)CrossRef G. Rodionova et al., Surface chemical modification of microfibrillated cellulose: improvement of barrier properties for packaging applications. Cellulose 18(1), 127–134 (2011)CrossRef
42.
Zurück zum Zitat K. Syverud, P. Stenius, Strength and barrier properties of MFC films. Cellulose 16(1), 75–85 (2009)CrossRef K. Syverud, P. Stenius, Strength and barrier properties of MFC films. Cellulose 16(1), 75–85 (2009)CrossRef
43.
Zurück zum Zitat C. Aulin, M. Gällstedt, T. Lindström, Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose 17(3), 559–574 (2010)CrossRef C. Aulin, M. Gällstedt, T. Lindström, Oxygen and oil barrier properties of microfibrillated cellulose films and coatings. Cellulose 17(3), 559–574 (2010)CrossRef
44.
Zurück zum Zitat W.T. Luu, D.W. Bousfield, J. Kettle, Application of nano-fibrillated cellulose as a paper surface treatment for inkjet printing, in 2011 PaperCon Conference 2011, TAPPI W.T. Luu, D.W. Bousfield, J. Kettle, Application of nano-fibrillated cellulose as a paper surface treatment for inkjet printing, in 2011 PaperCon Conference 2011, TAPPI
45.
Zurück zum Zitat A. Mautner et al., Nanopapers for organic solvent nanofiltration. Chem. Commun. 50(43), 5778–5781 (2014)CrossRef A. Mautner et al., Nanopapers for organic solvent nanofiltration. Chem. Commun. 50(43), 5778–5781 (2014)CrossRef
46.
Zurück zum Zitat H. Fukuzumi et al., Selective permeation of hydrogen gas using cellulose nanofibril film. Biomacromolecules 14(5), 1705–1709 (2013)CrossRef H. Fukuzumi et al., Selective permeation of hydrogen gas using cellulose nanofibril film. Biomacromolecules 14(5), 1705–1709 (2013)CrossRef
47.
Zurück zum Zitat W. Thielemans, C.R. Warbey, D.A. Walsh, Permselective nanostructured membranes based on cellulose nanowhiskers. Green Chem. 11(4), 531–537 (2009)CrossRef W. Thielemans, C.R. Warbey, D.A. Walsh, Permselective nanostructured membranes based on cellulose nanowhiskers. Green Chem. 11(4), 531–537 (2009)CrossRef
48.
Zurück zum Zitat T. Lindström, et al., Microfibrillated cellulose, in Encyclopedia of Polymer Science and Technology (John Wiley & Sons, Inc, 2002) T. Lindström, et al., Microfibrillated cellulose, in Encyclopedia of Polymer Science and Technology (John Wiley & Sons, Inc, 2002)
49.
Zurück zum Zitat A.F. Turbak, F.W. Snyder, K.R. Sandberg, Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J. Appl. Polym. Sci. 37, 815–827 (1983) A.F. Turbak, F.W. Snyder, K.R. Sandberg, Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J. Appl. Polym. Sci. 37, 815–827 (1983)
50.
Zurück zum Zitat K. Xhanari, K. Syverud, P. Stenius, Emulsions stabilized by microfibrillated cellulose: the effect of hydrophobization, concentration and o/w ratio. J. Dispersion Sci. Technol. 32(3), 447–452 (2011)CrossRef K. Xhanari, K. Syverud, P. Stenius, Emulsions stabilized by microfibrillated cellulose: the effect of hydrophobization, concentration and o/w ratio. J. Dispersion Sci. Technol. 32(3), 447–452 (2011)CrossRef
51.
Zurück zum Zitat A. Lif et al., Fischer-Tropsch diesel emulsions stabilised by microfibrillated cellulose and nonionic surfactants. J. Colloid Interface Sci. 352(2), 585–592 (2010)CrossRef A. Lif et al., Fischer-Tropsch diesel emulsions stabilised by microfibrillated cellulose and nonionic surfactants. J. Colloid Interface Sci. 352(2), 585–592 (2010)CrossRef
52.
Zurück zum Zitat Y. Boluk, L. Zhao, Aircraft anti-icing fluids formulated with nanocrystalline cellulose, Alberta Innovates—Technology Futures (2013) Y. Boluk, L. Zhao, Aircraft anti-icing fluids formulated with nanocrystalline cellulose, Alberta Innovates—Technology Futures (2013)
53.
Zurück zum Zitat K. Dimic-Misic, P.A.C. Gane, J. Paltakari, Micro- and nanofibrillated cellulose as a rheology modifier additive in CMC-containing pigment-coating formulations. Ind. Eng. Chem. Res. 52(45), 16066–16083 (2013)CrossRef K. Dimic-Misic, P.A.C. Gane, J. Paltakari, Micro- and nanofibrillated cellulose as a rheology modifier additive in CMC-containing pigment-coating formulations. Ind. Eng. Chem. Res. 52(45), 16066–16083 (2013)CrossRef
55.
Zurück zum Zitat J. Moreau, Driving innovation to market. cellulose nanomaterials—a path to commercialization, in Cellulosic Nanomaterials Workshop 2014, CelluForce, Washington, DC J. Moreau, Driving innovation to market. cellulose nanomaterials—a path to commercialization, in Cellulosic Nanomaterials Workshop 2014, CelluForce, Washington, DC
56.
Zurück zum Zitat X. Dong, J.-F. Revol, D. Gray, Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5(1), 19–32 (1998)CrossRef X. Dong, J.-F. Revol, D. Gray, Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5(1), 19–32 (1998)CrossRef
57.
Zurück zum Zitat R.S. Reiner, A.W. Rudie, Process scale-up of cellulose nanocrystal production to 25 kg per batch at the forest products laboratory, in Production and Applications of Cellulose Nanomaterials, ed. by M.T. Postek, et al. 2013 (TAPPI Press, Peachtree Corners, GA), pp. 21–24 R.S. Reiner, A.W. Rudie, Process scale-up of cellulose nanocrystal production to 25 kg per batch at the forest products laboratory, in Production and Applications of Cellulose Nanomaterials, ed. by M.T. Postek, et al. 2013 (TAPPI Press, Peachtree Corners, GA), pp. 21–24
58.
Zurück zum Zitat T. Saito et al., Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8(8), 2485–2491 (2007)CrossRef T. Saito et al., Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8(8), 2485–2491 (2007)CrossRef
59.
Zurück zum Zitat R.S. Reiner, A.W. Rudie, Pilot plant scale-up of TEMPO-pretreated cellulose nanofibrils, in Production and Applications of Cellulose Nanomaterials, ed. by M.T. Postek, et al. 2013 (TAPPI Press, Peachtree Corners, GA), pp. 177–178 R.S. Reiner, A.W. Rudie, Pilot plant scale-up of TEMPO-pretreated cellulose nanofibrils, in Production and Applications of Cellulose Nanomaterials, ed. by M.T. Postek, et al. 2013 (TAPPI Press, Peachtree Corners, GA), pp. 177–178
60.
Zurück zum Zitat M. Iakovlev, H. Sixta, A. van Heiningen, SO2-ethanol-water (SEW) pulping: II. Kinetics for spruce, beech, and wheat straw. J. Wood Chem. Technol. 31(3), 250–266 (2011)CrossRef M. Iakovlev, H. Sixta, A. van Heiningen, SO2-ethanol-water (SEW) pulping: II. Kinetics for spruce, beech, and wheat straw. J. Wood Chem. Technol. 31(3), 250–266 (2011)CrossRef
61.
Zurück zum Zitat M. Iakovlev et al., SO2-ethanol-water (SEW) fractionation of spruce: kinetics and conditions for paper and viscose-grade dissolving pulps. RSC Adv. 4(4), 1938–1950 (2014)CrossRef M. Iakovlev et al., SO2-ethanol-water (SEW) fractionation of spruce: kinetics and conditions for paper and viscose-grade dissolving pulps. RSC Adv. 4(4), 1938–1950 (2014)CrossRef
62.
Zurück zum Zitat S.F. Primakov, Delignification of various wood species with aqueous-alcoholic solutions. Nauchn. Tr. Vses. Nauchn.-Issled. Inst. Tsellyulozn.-Bumazhn. Prom. 47, 69–75 (1961) S.F. Primakov, Delignification of various wood species with aqueous-alcoholic solutions. Nauchn. Tr. Vses. Nauchn.-Issled. Inst. Tsellyulozn.-Bumazhn. Prom. 47, 69–75 (1961)
63.
Zurück zum Zitat R.J. Puumala, Organosolv Pulping and a Preliminary Vapor-liquid Equilibrium Study of a Sulfur Dioxide, Ethanol, Water System (Michigan Technological University, 1991) R.J. Puumala, Organosolv Pulping and a Preliminary Vapor-liquid Equilibrium Study of a Sulfur Dioxide, Ethanol, Water System (Michigan Technological University, 1991)
64.
Zurück zum Zitat E. Sklavounos et al., Oil palm empty fruit bunch to biofuels and chemicals via SO2–ethanol–water fractionation and ABE fermentation. Bioresour. Technol. 147, 102–109 (2013)CrossRef E. Sklavounos et al., Oil palm empty fruit bunch to biofuels and chemicals via SO2–ethanol–water fractionation and ABE fermentation. Bioresour. Technol. 147, 102–109 (2013)CrossRef
65.
Zurück zum Zitat M. Yamamoto, M. Iakovlev, A. van Heiningen, Total mass balances of SO2-ethanol-water (SEW) fractionation of forest biomass. Holzforschung 65(4), 559–565 (2011)CrossRef M. Yamamoto, M. Iakovlev, A. van Heiningen, Total mass balances of SO2-ethanol-water (SEW) fractionation of forest biomass. Holzforschung 65(4), 559–565 (2011)CrossRef
66.
Zurück zum Zitat M. Yamamoto, M. Iakovlev, A. van Heiningen, Kinetics of SO2–ethanol–water (SEW) fractionation of hardwood and softwood biomass. Bioresour. Technol. 155, 307–313 (2014)CrossRef M. Yamamoto, M. Iakovlev, A. van Heiningen, Kinetics of SO2–ethanol–water (SEW) fractionation of hardwood and softwood biomass. Bioresour. Technol. 155, 307–313 (2014)CrossRef
67.
Zurück zum Zitat T. Retsina, V. Pylkkänen, Back to the biorefinery: a novel approach to boost pulp mill profits, in Paper 3602007. pp. 18–19 T. Retsina, V. Pylkkänen, Back to the biorefinery: a novel approach to boost pulp mill profits, in Paper 3602007. pp. 18–19
68.
Zurück zum Zitat T. Retsina, V. Pylkkänen, Method for the production of fermentable sugars and cellulose from lignocellulosic material (American Process, Inc, 2011) T. Retsina, V. Pylkkänen, Method for the production of fermentable sugars and cellulose from lignocellulosic material (American Process, Inc, 2011)
69.
Zurück zum Zitat S.A. Rydholm, Pulping Processes (John Wiley & Sons Inc., London, 1965) S.A. Rydholm, Pulping Processes (John Wiley & Sons Inc., London, 1965)
70.
Zurück zum Zitat S.S. Vishnevskaya, R.K. Boyarskaya, M.N. Tsypkina, Sulfonation and dissolution of lignin in sulfite pulping. 2. Factors determining the dissolution of lignin. Koksnes Kimija 1, 23–28 (1981) S.S. Vishnevskaya, R.K. Boyarskaya, M.N. Tsypkina, Sulfonation and dissolution of lignin in sulfite pulping. 2. Factors determining the dissolution of lignin. Koksnes Kimija 1, 23–28 (1981)
71.
Zurück zum Zitat M. Iakovlev, A. van Heiningen, Efficient fractionation of spruce by SO2-ethanol-water treatment: closed mass balances for carbohydrates and sulfur. ChemSusChem 5(8), 1625–1637 (2012) M. Iakovlev, A. van Heiningen, Efficient fractionation of spruce by SO2-ethanol-water treatment: closed mass balances for carbohydrates and sulfur. ChemSusChem 5(8), 1625–1637 (2012)
72.
Zurück zum Zitat M. Iakovlev, A. van Heiningen, Kinetics of fractionation by SO2-ethanol-water (SEW) treatment: understanding the deconstruction of spruce wood chips. RSC Adv. 2(7), 3057–3068 (2012) M. Iakovlev, A. van Heiningen, Kinetics of fractionation by SO2-ethanol-water (SEW) treatment: understanding the deconstruction of spruce wood chips. RSC Adv. 2(7), 3057–3068 (2012)
73.
Zurück zum Zitat M. Iakovlev, E. Hiltunen, A. van Heiningen, Paper technical potential of spruce SO2-ethanol-water (SEW) pulp compared to kraft pulp. Nord. Pulp Pap. Res. J. 25(4), 428–433 (2010)CrossRef M. Iakovlev, E. Hiltunen, A. van Heiningen, Paper technical potential of spruce SO2-ethanol-water (SEW) pulp compared to kraft pulp. Nord. Pulp Pap. Res. J. 25(4), 428–433 (2010)CrossRef
74.
Zurück zum Zitat M. Iakovlev et al., SO2–ethanol–water (SEW) fractionation process: production of dissolving pulp from spruce. Cellulose 21(3), 1419–1429 (2014) M. Iakovlev et al., SO2–ethanol–water (SEW) fractionation process: production of dissolving pulp from spruce. Cellulose 21(3), 1419–1429 (2014)
75.
Zurück zum Zitat H. Sixta et al., Novel concepts of dissolving pulp production. Cellulose 20(4), 1547–1561 (2013)CrossRef H. Sixta et al., Novel concepts of dissolving pulp production. Cellulose 20(4), 1547–1561 (2013)CrossRef
76.
Zurück zum Zitat K. Nelson, Low cost co-production of cellulose nanofibrils and/or cellulose nanocrystals with biofuels using the AVAP biorefinery technology, in NWBC 2014—the 5th Nordic Wood Biorefinery Conference, 2014. Stockholm, Sweden K. Nelson, Low cost co-production of cellulose nanofibrils and/or cellulose nanocrystals with biofuels using the AVAP biorefinery technology, in NWBC 2014—the 5th Nordic Wood Biorefinery Conference, 2014. Stockholm, Sweden
77.
Zurück zum Zitat M. Yamamoto, M. Iakovlev, A. van Heiningen, The effect of chemical and physical characteristics of spruce SEW pulps on enzymatic hydrolysis. Cellulose 21(5), 3395–3407 (2014)CrossRef M. Yamamoto, M. Iakovlev, A. van Heiningen, The effect of chemical and physical characteristics of spruce SEW pulps on enzymatic hydrolysis. Cellulose 21(5), 3395–3407 (2014)CrossRef
78.
Zurück zum Zitat M. Yamamoto et al., Enzymatic hydrolysis of hardwood and softwood harvest residue fibers released by sulfur dioxide–ethanol–water fractionation. Bioresour. Technol. 167, 530–538 (2014)CrossRef M. Yamamoto et al., Enzymatic hydrolysis of hardwood and softwood harvest residue fibers released by sulfur dioxide–ethanol–water fractionation. Bioresour. Technol. 167, 530–538 (2014)CrossRef
79.
Zurück zum Zitat M. Yamamoto et al., The effect of bark on sulfur dioxide–ethanol–water fractionation and enzymatic hydrolysis of forest biomass. Bioresour. Technol. 167, 390–397 (2014)CrossRef M. Yamamoto et al., The effect of bark on sulfur dioxide–ethanol–water fractionation and enzymatic hydrolysis of forest biomass. Bioresour. Technol. 167, 390–397 (2014)CrossRef
80.
Zurück zum Zitat E. Sklavounos et al., Conditioning of SO2-ethanol-water spent liquor from spruce for the production of chemicals by ABE fermentation. Holzforschung 65(4), 551–558 (2011)CrossRef E. Sklavounos et al., Conditioning of SO2-ethanol-water spent liquor from spruce for the production of chemicals by ABE fermentation. Holzforschung 65(4), 551–558 (2011)CrossRef
81.
Zurück zum Zitat E. Sklavounos, M. Iakovlev, A. van Heiningen, Study on conditioning of SO2–ethanol–water spent liquor from spruce chips/softwood biomass for ABE fermentation. Ind. Eng. Chem. Res. 52(11), 4351–4359 (2013)CrossRef E. Sklavounos, M. Iakovlev, A. van Heiningen, Study on conditioning of SO2–ethanol–water spent liquor from spruce chips/softwood biomass for ABE fermentation. Ind. Eng. Chem. Res. 52(11), 4351–4359 (2013)CrossRef
82.
Zurück zum Zitat E. Sklavounos et al., Comparison of two conditioning schemes for detoxifying SO2-ethanol-water hydrolysate from lignocellulosics for ABE fermentation. Nord. Pulp Pap. Res. J. 29(3), 370–382 (2014)CrossRef E. Sklavounos et al., Comparison of two conditioning schemes for detoxifying SO2-ethanol-water hydrolysate from lignocellulosics for ABE fermentation. Nord. Pulp Pap. Res. J. 29(3), 370–382 (2014)CrossRef
83.
Zurück zum Zitat S.A. Survase et al., Continuous acetone–butanol–ethanol fermentation using SO2–ethanol–water spent liquor from spruce. Bioresour. Technol. 102(23), 10996–11002 (2011)CrossRef S.A. Survase et al., Continuous acetone–butanol–ethanol fermentation using SO2–ethanol–water spent liquor from spruce. Bioresour. Technol. 102(23), 10996–11002 (2011)CrossRef
84.
Zurück zum Zitat M. Iakovlev, T. Pääkkönen, A. van Heiningen, Kinetics of SO2-ethanol-water pulping of spruce. Holzforschung 63(6), 779–784 (2009)CrossRef M. Iakovlev, T. Pääkkönen, A. van Heiningen, Kinetics of SO2-ethanol-water pulping of spruce. Holzforschung 63(6), 779–784 (2009)CrossRef
85.
Zurück zum Zitat N.A. Rozenberger, Rapid sulfite pulping. Bumazhnaya Promyshlennost 36(12), 3–7 (1961) N.A. Rozenberger, Rapid sulfite pulping. Bumazhnaya Promyshlennost 36(12), 3–7 (1961)
86.
Zurück zum Zitat D.H. Page, The origin of the differences between sulfite and kraft pulps. Canadian J. Pulp Paper 9(1), 15–20 (1983) D.H. Page, The origin of the differences between sulfite and kraft pulps. Canadian J. Pulp Paper 9(1), 15–20 (1983)
87.
Zurück zum Zitat L.O. Morales et al., Effects of residual lignin and heteropolysaccharides on the bioconversion of softwood lignocellulose nanofibrils obtained by SO2–ethanol–water fractionation. Bioresour. Technol. 161, 55–62 (2014)CrossRef L.O. Morales et al., Effects of residual lignin and heteropolysaccharides on the bioconversion of softwood lignocellulose nanofibrils obtained by SO2–ethanol–water fractionation. Bioresour. Technol. 161, 55–62 (2014)CrossRef
88.
Zurück zum Zitat J.Y. Zhu, R. Sabo, X. Luo, Integrated production of nano-fibrillated cellulose and cellulosic biofuel (ethanol) by enzymatic fractionation of wood fibers. Green Chem. 13(5), 1339–1344 (2011)CrossRef J.Y. Zhu, R. Sabo, X. Luo, Integrated production of nano-fibrillated cellulose and cellulosic biofuel (ethanol) by enzymatic fractionation of wood fibers. Green Chem. 13(5), 1339–1344 (2011)CrossRef
89.
Zurück zum Zitat K.L. Spence et al., A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose 18(4), 1097–1111 (2011)CrossRef K.L. Spence et al., A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose 18(4), 1097–1111 (2011)CrossRef
90.
Zurück zum Zitat I.C. Hoeger et al., Mechanical deconstruction of lignocellulose cell walls and their enzymatic saccharification. Cellulose 20(2), 807–818 (2013)CrossRef I.C. Hoeger et al., Mechanical deconstruction of lignocellulose cell walls and their enzymatic saccharification. Cellulose 20(2), 807–818 (2013)CrossRef
91.
Zurück zum Zitat M.A. Hubbe et al., Cellulosic nanocomposites: a review. BioResources 3(3), 929–980 (2008) M.A. Hubbe et al., Cellulosic nanocomposites: a review. BioResources 3(3), 929–980 (2008)
92.
Zurück zum Zitat H. Abdul Khalil, A. Bhat, A. Ireana Yusra, Green composites from sustainable cellulose nanofibrils: a review. Carbohydr. Polym. 87(2), 963–979 (2012) H. Abdul Khalil, A. Bhat, A. Ireana Yusra, Green composites from sustainable cellulose nanofibrils: a review. Carbohydr. Polym. 87(2), 963–979 (2012)
93.
Zurück zum Zitat K. Missoum, M.N. Belgacem, J. Bras, Nanofibrillated cellulose surface modification: a review. Materials 6(5), 1745–1766 (2013)CrossRef K. Missoum, M.N. Belgacem, J. Bras, Nanofibrillated cellulose surface modification: a review. Materials 6(5), 1745–1766 (2013)CrossRef
94.
Zurück zum Zitat D.J. Gardner et al., Adhesion and surface issues in cellulose and nanocellulose. J. Adhes. Sci. Technol. 22(5–6), 545–567 (2008)CrossRef D.J. Gardner et al., Adhesion and surface issues in cellulose and nanocellulose. J. Adhes. Sci. Technol. 22(5–6), 545–567 (2008)CrossRef
95.
Zurück zum Zitat Y. Habibi, L.A. Lucia, O.J. Rojas, Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem. Rev. 110(6), 3479–3500 (2010)CrossRef Y. Habibi, L.A. Lucia, O.J. Rojas, Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem. Rev. 110(6), 3479–3500 (2010)CrossRef
96.
Zurück zum Zitat S. Rebouillat, F. Pla, State of the art manufacturing and engineering of nanocellulose: a review of available data and industrial applications. J. Biomater. Nanobiotechnol. 4(2) (2013) S. Rebouillat, F. Pla, State of the art manufacturing and engineering of nanocellulose: a review of available data and industrial applications. J. Biomater. Nanobiotechnol. 4(2) (2013)
97.
Zurück zum Zitat J. Kim et al., Dispersion of cellulose crystallites by nonionic surfactants in a hydrophobic polymer matrix. Polym. Eng. Sci. 49(10), 2054–2061 (2009)CrossRef J. Kim et al., Dispersion of cellulose crystallites by nonionic surfactants in a hydrophobic polymer matrix. Polym. Eng. Sci. 49(10), 2054–2061 (2009)CrossRef
98.
Zurück zum Zitat N. Ljungberg et al., New nanocomposite materials reinforced with cellulose whiskers in atactic polypropylene: effect of surface and dispersion characteristics. Biomacromolecules 6(5), 2732–2739 (2005)CrossRef N. Ljungberg et al., New nanocomposite materials reinforced with cellulose whiskers in atactic polypropylene: effect of surface and dispersion characteristics. Biomacromolecules 6(5), 2732–2739 (2005)CrossRef
99.
Zurück zum Zitat S. Kalia et al., Nanofibrillated cellulose: surface modification and potential applications. Colloid Polym. Sci. 292(1), 5–31 (2014)CrossRef S. Kalia et al., Nanofibrillated cellulose: surface modification and potential applications. Colloid Polym. Sci. 292(1), 5–31 (2014)CrossRef
100.
Zurück zum Zitat M. Jonoobi et al., A comparison of modified and unmodified cellulose nanofiber reinforced polylactic acid (PLA) prepared by twin screw extrusion. J. Polym. Environ. 20(4), 991–997 (2012)CrossRef M. Jonoobi et al., A comparison of modified and unmodified cellulose nanofiber reinforced polylactic acid (PLA) prepared by twin screw extrusion. J. Polym. Environ. 20(4), 991–997 (2012)CrossRef
101.
Zurück zum Zitat M. Jonoobi et al., Preparation of cellulose nanofibers with hydrophobic surface characteristics. Cellulose 17(2), 299–307 (2010)CrossRef M. Jonoobi et al., Preparation of cellulose nanofibers with hydrophobic surface characteristics. Cellulose 17(2), 299–307 (2010)CrossRef
102.
Zurück zum Zitat N. Lin et al., Surface acetylation of cellulose nanocrystal and its reinforcing function in poly(lactic acid). Carbohydr. Polym. 83(4), 1834–1842 (2011)CrossRef N. Lin et al., Surface acetylation of cellulose nanocrystal and its reinforcing function in poly(lactic acid). Carbohydr. Polym. 83(4), 1834–1842 (2011)CrossRef
103.
Zurück zum Zitat L.C. Tome et al., Surface hydrophobization of bacterial and vegetable cellulose fibers using ionic liquids as solvent media and catalysts. Green Chem. 13(9), 2464–2470 (2011)CrossRef L.C. Tome et al., Surface hydrophobization of bacterial and vegetable cellulose fibers using ionic liquids as solvent media and catalysts. Green Chem. 13(9), 2464–2470 (2011)CrossRef
104.
Zurück zum Zitat Y. Yoshida, L. Heux, A. Isogai, Heterogeneous reaction between cellulose and alkyl ketene dimer under solvent-free conditions. Cellulose 19(5), 1667–1676 (2012)CrossRef Y. Yoshida, L. Heux, A. Isogai, Heterogeneous reaction between cellulose and alkyl ketene dimer under solvent-free conditions. Cellulose 19(5), 1667–1676 (2012)CrossRef
105.
Zurück zum Zitat M. Granstrom et al., Highly water repellent aerogels based on cellulose stearoyl esters. Polym. Chem. 2(8), 1789–1796 (2011)CrossRef M. Granstrom et al., Highly water repellent aerogels based on cellulose stearoyl esters. Polym. Chem. 2(8), 1789–1796 (2011)CrossRef
106.
Zurück zum Zitat G. Rodionova, et al., Surface modification of microfibrillated cellulose films by gas-phase esterification: Improvement of barrier properties, in Proceedings of the 2010 TAPPI International Conference on Nanotechnology for the Forest Product Industry, Espoo, Finland, 2010 G. Rodionova, et al., Surface modification of microfibrillated cellulose films by gas-phase esterification: Improvement of barrier properties, in Proceedings of the 2010 TAPPI International Conference on Nanotechnology for the Forest Product Industry, Espoo, Finland, 2010
107.
Zurück zum Zitat K. Missoum et al., Effect of chemically modified nanofibrillated cellulose addition on the properties of fiber-based materials. Ind. Crops Prod. 48, 98–105 (2013)CrossRef K. Missoum et al., Effect of chemically modified nanofibrillated cellulose addition on the properties of fiber-based materials. Ind. Crops Prod. 48, 98–105 (2013)CrossRef
108.
Zurück zum Zitat M. Andresen et al., Properties and characterization of hydrophobized microfibrillated cellulose. Cellulose 13(6), 665–677 (2006)CrossRef M. Andresen et al., Properties and characterization of hydrophobized microfibrillated cellulose. Cellulose 13(6), 665–677 (2006)CrossRef
109.
Zurück zum Zitat J. Lu, P. Askeland, L.T. Drzal, Surface modification of microfibrillated cellulose for epoxy composite applications. Polymer 49(5), 1285–1296 (2008)CrossRef J. Lu, P. Askeland, L.T. Drzal, Surface modification of microfibrillated cellulose for epoxy composite applications. Polymer 49(5), 1285–1296 (2008)CrossRef
110.
Zurück zum Zitat E. Malmström, A. Carlmark, Controlled grafting of cellulose fibres–an outlook beyond paper and cardboard. Polym. Chem. 3(7), 1702–1713 (2012)CrossRef E. Malmström, A. Carlmark, Controlled grafting of cellulose fibres–an outlook beyond paper and cardboard. Polym. Chem. 3(7), 1702–1713 (2012)CrossRef
111.
Zurück zum Zitat D. Roy et al., Cellulose modification by polymer grafting: a review. Chem. Soc. Rev. 38(7), 2046–2064 (2009)CrossRef D. Roy et al., Cellulose modification by polymer grafting: a review. Chem. Soc. Rev. 38(7), 2046–2064 (2009)CrossRef
112.
Zurück zum Zitat B. Peng et al., Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective. Can. J. Chem. Eng. 89(5), 1191–1206 (2011)CrossRef B. Peng et al., Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective. Can. J. Chem. Eng. 89(5), 1191–1206 (2011)CrossRef
113.
Zurück zum Zitat Y. Habibi, Key advances in the chemical modification of nanocelluloses. Chem. Soc. Rev. 43(5), 1519–1542 (2014)CrossRef Y. Habibi, Key advances in the chemical modification of nanocelluloses. Chem. Soc. Rev. 43(5), 1519–1542 (2014)CrossRef
114.
Zurück zum Zitat A. Bhattacharya, B. Misra, Grafting: a versatile means to modify polymers: techniques, factors and applications. Prog. Polym. Sci. 29(8), 767–814 (2004)CrossRef A. Bhattacharya, B. Misra, Grafting: a versatile means to modify polymers: techniques, factors and applications. Prog. Polym. Sci. 29(8), 767–814 (2004)CrossRef
115.
Zurück zum Zitat S. Pavlidou, C.D. Papaspyrides, A review on polymer–layered silicate nanocomposites. Prog. Polym. Sci. 33(12), 1119–1198 (2008)CrossRef S. Pavlidou, C.D. Papaspyrides, A review on polymer–layered silicate nanocomposites. Prog. Polym. Sci. 33(12), 1119–1198 (2008)CrossRef
116.
Zurück zum Zitat G. Gürdağ, S. Sarmad, Cellulose graft copolymers: synthesis, properties, and applications, in Polysaccharide Based Graft Copolymers, ed. by S. Kalia, M.W. Sabaa (Springer Berlin Heidelberg, 2013), pp. 15–57 G. Gürdağ, S. Sarmad, Cellulose graft copolymers: synthesis, properties, and applications, in Polysaccharide Based Graft Copolymers, ed. by S. Kalia, M.W. Sabaa (Springer Berlin Heidelberg, 2013), pp. 15–57
117.
Zurück zum Zitat K. Littunen et al., Free radical graft copolymerization of nanofibrillated cellulose with acrylic monomers. Carbohydr. Polym. 84(3), 1039–1047 (2011)CrossRef K. Littunen et al., Free radical graft copolymerization of nanofibrillated cellulose with acrylic monomers. Carbohydr. Polym. 84(3), 1039–1047 (2011)CrossRef
118.
Zurück zum Zitat A. Carlmark, E. Larsson, E. Malmström, Grafting of cellulose by ring-opening polymerisation—a review. Eur. Polymer J. 48(10), 1646–1659 (2012)CrossRef A. Carlmark, E. Larsson, E. Malmström, Grafting of cellulose by ring-opening polymerisation—a review. Eur. Polymer J. 48(10), 1646–1659 (2012)CrossRef
119.
Zurück zum Zitat M. Barsbay et al., Verification of controlled grafting of styrene from cellulose via radiation-induced RAFT polymerization. Macromolecules 40(20), 7140–7147 (2007)CrossRef M. Barsbay et al., Verification of controlled grafting of styrene from cellulose via radiation-induced RAFT polymerization. Macromolecules 40(20), 7140–7147 (2007)CrossRef
120.
Zurück zum Zitat D. Roy, J.T. Guthrie, S. Perrier, Graft polymerization: grafting poly (styrene) from cellulose via reversible addition-fragmentation chain transfer (RAFT) polymerization. Macromolecules 38(25), 10363–10372 (2005)CrossRef D. Roy, J.T. Guthrie, S. Perrier, Graft polymerization: grafting poly (styrene) from cellulose via reversible addition-fragmentation chain transfer (RAFT) polymerization. Macromolecules 38(25), 10363–10372 (2005)CrossRef
121.
Zurück zum Zitat Y. Peng, et al. Drying cellulose nanocrystal suspensions, in International Conference on Nanotechnology for Forest. 2013. Stockholm, Sweden Y. Peng, et al. Drying cellulose nanocrystal suspensions, in International Conference on Nanotechnology for Forest. 2013. Stockholm, Sweden
122.
Zurück zum Zitat Y. Peng, D.J. Gardner, Y. Han, Drying cellulose nanofibrils: in search of a suitable method. Cellulose 19(1), 91–102 (2012)CrossRef Y. Peng, D.J. Gardner, Y. Han, Drying cellulose nanofibrils: in search of a suitable method. Cellulose 19(1), 91–102 (2012)CrossRef
123.
Zurück zum Zitat Y. Peng et al., Influence of drying method on the material properties of nanocellulose I: thermostability and crystallinity. Cellulose 20(5), 2379–2392 (2013)CrossRef Y. Peng et al., Influence of drying method on the material properties of nanocellulose I: thermostability and crystallinity. Cellulose 20(5), 2379–2392 (2013)CrossRef
124.
Zurück zum Zitat Y. Peng, et al., Drying cellulose nanocrystal suspensions, in Production and Applications of Cellulose Nanomaterials, ed. by M.T. Postek, et al. 2013 (TAPPI Press, Peachtree Corners, GA), pp. 31–34 Y. Peng, et al., Drying cellulose nanocrystal suspensions, in Production and Applications of Cellulose Nanomaterials, ed. by M.T. Postek, et al. 2013 (TAPPI Press, Peachtree Corners, GA), pp. 31–34
125.
Zurück zum Zitat K. Missoum, J. Bras, M.N. Belgacem, Water redispersible dried nanofibrillated cellulose by adding sodium chloride. Biomacromolecules 13(12), 4118–4125 (2012)CrossRef K. Missoum, J. Bras, M.N. Belgacem, Water redispersible dried nanofibrillated cellulose by adding sodium chloride. Biomacromolecules 13(12), 4118–4125 (2012)CrossRef
126.
Zurück zum Zitat W.L.-S. Nieh, et al., Roadmap for the Development of International Standards for Nanocellulose (TAPPI, 2011) W.L.-S. Nieh, et al., Roadmap for the Development of International Standards for Nanocellulose (TAPPI, 2011)
127.
Zurück zum Zitat K. Nelson, Measurement Needs for Cellulose Nanomaterials (2014) K. Nelson, Measurement Needs for Cellulose Nanomaterials (2014)
Metadaten
Titel
American Process: Production of Low Cost Nanocellulose for Renewable, Advanced Materials Applications
verfasst von
Kim Nelson
Theodora Retsina
Mikhail Iakovlev
Adriaan van Heiningen
Yulin Deng
Jo Anne Shatkin
Arie Mulyadi
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-23419-9_9

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.