Skip to main content
Erschienen in: Structural and Multidisciplinary Optimization 1/2013

01.01.2013 | Research Paper

Topology optimization of hyperelastic bodies including non-zero prescribed displacements

verfasst von: Anders Klarbring, Niclas Strömberg

Erschienen in: Structural and Multidisciplinary Optimization | Ausgabe 1/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Stiffness topology optimization is usually based on a state problem of linear elasticity, and there seems to be little discussion on what is the limit for such a small rotation-displacement assumption. We show that even for gross rotations that are in all practical aspects small (<3 deg), topology optimization based on a large deformation theory might generate different design concepts compared to what is obtained when small displacement linear elasticity is used. Furthermore, in large rotations, the choice of stiffness objective (potential energy or compliance), can be crucial for the optimal design concept. The paper considers topology optimization of hyperelastic bodies subjected simultaneously to external forces and prescribed non-zero displacements. In that respect it generalizes a recent contribution of ours to large deformations, but we note that the objectives of potential energy and compliance are no longer equivalent in the non-linear case. We use seven different hyperelastic strain energy functions and find that the numerical performance of the Kirchhoff–St.Venant model is in general significantly worse than the performance of the other six models, which are all modifications of this classical law that are equivalent in the limit of infinitesimal strains, but do not contain the well-known collapse in compression. Numerical results are presented for two different problem settings.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
For the nested formulation, the last term disappears and the Lagrangian becomes the potential energy.
 
Literatur
Zurück zum Zitat Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1:193–202CrossRef Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1:193–202CrossRef
Zurück zum Zitat Bendsøe M, Sigmund O (2002) Topology optimization, theory, methods and applications. Springer, New York Bendsøe M, Sigmund O (2002) Topology optimization, theory, methods and applications. Springer, New York
Zurück zum Zitat Bonet J, Wood RD (2008) Nonlinear continuum mechanics for finite element analysis. Cambridge University Press, CambridgeMATHCrossRef Bonet J, Wood RD (2008) Nonlinear continuum mechanics for finite element analysis. Cambridge University Press, CambridgeMATHCrossRef
Zurück zum Zitat Bruns TE, Sigmund O (2004) Toward the topology design of mechanisms that exhibit snap-through behavior. Comput Methods Appl Mech Eng 193:3973–4000MathSciNetMATHCrossRef Bruns TE, Sigmund O (2004) Toward the topology design of mechanisms that exhibit snap-through behavior. Comput Methods Appl Mech Eng 193:3973–4000MathSciNetMATHCrossRef
Zurück zum Zitat Bruns TE, Sigmund O, Tortorelli DA (2002) Numerical methods for the topology optimization of structures that exhibit snap-through. Int J Numer Methods Eng 55:1215–1237MATHCrossRef Bruns TE, Sigmund O, Tortorelli DA (2002) Numerical methods for the topology optimization of structures that exhibit snap-through. Int J Numer Methods Eng 55:1215–1237MATHCrossRef
Zurück zum Zitat Bruns TE, Tortorelli D (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190:3443–3459MATHCrossRef Bruns TE, Tortorelli D (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190:3443–3459MATHCrossRef
Zurück zum Zitat Buhl T, Pedersen CB, Sigmund O (2000) Stiffness design of geometrically nonlinear structures using topology optimization. Struct Multidisc Optim 19:93–104CrossRef Buhl T, Pedersen CB, Sigmund O (2000) Stiffness design of geometrically nonlinear structures using topology optimization. Struct Multidisc Optim 19:93–104CrossRef
Zurück zum Zitat Cho S, Jung H-S (2003) Design sensitivity analysis and topology optimization of displacement-loaded non-linear structures. Comput Methods Appl Mech Eng 192:2539–2553MATHCrossRef Cho S, Jung H-S (2003) Design sensitivity analysis and topology optimization of displacement-loaded non-linear structures. Comput Methods Appl Mech Eng 192:2539–2553MATHCrossRef
Zurück zum Zitat Christensen P, Klarbring A (2008) An introduction to structural optimization. Springer, New York Christensen P, Klarbring A (2008) An introduction to structural optimization. Springer, New York
Zurück zum Zitat Curnier A (1994) Computational methods in solid mechanics. Kluwer Academic, DordrechtMATHCrossRef Curnier A (1994) Computational methods in solid mechanics. Kluwer Academic, DordrechtMATHCrossRef
Zurück zum Zitat Fleury C (1979) Structural weight optimization by dual methods of convex programming. Int J Numer Methods Eng 14:1761–1783MATHCrossRef Fleury C (1979) Structural weight optimization by dual methods of convex programming. Int J Numer Methods Eng 14:1761–1783MATHCrossRef
Zurück zum Zitat Fleury C, Braibant V (1986) Structural optimization: a new dual method using mixed variables. Int J Numer Methods Eng 23:409–428MathSciNetMATHCrossRef Fleury C, Braibant V (1986) Structural optimization: a new dual method using mixed variables. Int J Numer Methods Eng 23:409–428MathSciNetMATHCrossRef
Zurück zum Zitat Gea HC, Luo J (2001) Topology optimization of structures with geometrical nonlinearities. Comput Struct 79:1977–1985CrossRef Gea HC, Luo J (2001) Topology optimization of structures with geometrical nonlinearities. Comput Struct 79:1977–1985CrossRef
Zurück zum Zitat Groenwold AA, Etman LFP (2008) On the equivalence of optimality criterion and sequential approximate optimization methods in the classical topology layout problem. Int J Numer Methods Eng 73:297–316MathSciNetMATHCrossRef Groenwold AA, Etman LFP (2008) On the equivalence of optimality criterion and sequential approximate optimization methods in the classical topology layout problem. Int J Numer Methods Eng 73:297–316MathSciNetMATHCrossRef
Zurück zum Zitat Haftka RT, Gürdal Z (1992) Elements of structural optimization. Kluwer Academic, DordrechtMATHCrossRef Haftka RT, Gürdal Z (1992) Elements of structural optimization. Kluwer Academic, DordrechtMATHCrossRef
Zurück zum Zitat Holzapfel GA (2000) Nonlinear solid mechanics, a continuum approach for engineering. Wiley, New YorkMATH Holzapfel GA (2000) Nonlinear solid mechanics, a continuum approach for engineering. Wiley, New YorkMATH
Zurück zum Zitat Huang X, Xie YM (2008) Topology optimization of nonlinear structures under displacement loading. Eng Struct 30:2057–2068CrossRef Huang X, Xie YM (2008) Topology optimization of nonlinear structures under displacement loading. Eng Struct 30:2057–2068CrossRef
Zurück zum Zitat Jung D, Gea HC (2004) Topology optimization of nonlinear structures. Finite Elem Anal Des 40:1417–1427CrossRef Jung D, Gea HC (2004) Topology optimization of nonlinear structures. Finite Elem Anal Des 40:1417–1427CrossRef
Zurück zum Zitat Kemmler R, Lipka A, Ramm E (2005) Large deformations and stability in topology optimization. Struct Multidisc Optim 30:459–476MathSciNetMATHCrossRef Kemmler R, Lipka A, Ramm E (2005) Large deformations and stability in topology optimization. Struct Multidisc Optim 30:459–476MathSciNetMATHCrossRef
Zurück zum Zitat Klarbring A, Strömberg N (2011) A note on the min-max formulation of stiffness optimization including non-zero prescribed displacements. Struct Multidisc Optim. doi:10.1007/s00158-011-0674-3 Klarbring A, Strömberg N (2011) A note on the min-max formulation of stiffness optimization including non-zero prescribed displacements. Struct Multidisc Optim. doi:10.​1007/​s00158-011-0674-3
Zurück zum Zitat Lee WS, Youn SK (2004) Topology optimization of rubber isolators considering static and dynamic behaviours. Struct Multidisc Optim 27:284–294CrossRef Lee WS, Youn SK (2004) Topology optimization of rubber isolators considering static and dynamic behaviours. Struct Multidisc Optim 27:284–294CrossRef
Zurück zum Zitat Niu F, Xu S, Cheng G (2011) A general formulation of structural topology optimization for maximizing structural stiffness. Struct Multidisc Optim 43:561–572CrossRef Niu F, Xu S, Cheng G (2011) A general formulation of structural topology optimization for maximizing structural stiffness. Struct Multidisc Optim 43:561–572CrossRef
Zurück zum Zitat Pajot JM, Maute K (2006) Analytical sensitivity analysis of geometrically nonlinear structures based on the co-rotational finite element method. Finite Elem Anal Des 42:900–913MathSciNetCrossRef Pajot JM, Maute K (2006) Analytical sensitivity analysis of geometrically nonlinear structures based on the co-rotational finite element method. Finite Elem Anal Des 42:900–913MathSciNetCrossRef
Zurück zum Zitat Pedersen C, Buhl T, Sigmund O (2001) Topology synthesis of large-displacement compliant mechanisms. Int J Numer Methods Eng 50:2683–2705MATHCrossRef Pedersen C, Buhl T, Sigmund O (2001) Topology synthesis of large-displacement compliant mechanisms. Int J Numer Methods Eng 50:2683–2705MATHCrossRef
Zurück zum Zitat Pedersen P, Pedersen N (2011) Design objectives with non-zero prescribed support displacements. Struct Multidisc Optim 43:205–214CrossRef Pedersen P, Pedersen N (2011) Design objectives with non-zero prescribed support displacements. Struct Multidisc Optim 43:205–214CrossRef
Zurück zum Zitat Sigmund O (2001) A 99 line topology optimization code written in Matlab. Struct Multidisc Optim 21:120–127CrossRef Sigmund O (2001) A 99 line topology optimization code written in Matlab. Struct Multidisc Optim 21:120–127CrossRef
Zurück zum Zitat Zhou M, Rozvany GIN (1991) The COC algorithm, part II: topological, geometrical and generalized shape optimization. Comput Methods Appl Mech Eng 89:309–336CrossRef Zhou M, Rozvany GIN (1991) The COC algorithm, part II: topological, geometrical and generalized shape optimization. Comput Methods Appl Mech Eng 89:309–336CrossRef
Metadaten
Titel
Topology optimization of hyperelastic bodies including non-zero prescribed displacements
verfasst von
Anders Klarbring
Niclas Strömberg
Publikationsdatum
01.01.2013
Verlag
Springer-Verlag
Erschienen in
Structural and Multidisciplinary Optimization / Ausgabe 1/2013
Print ISSN: 1615-147X
Elektronische ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-012-0819-z

Weitere Artikel der Ausgabe 1/2013

Structural and Multidisciplinary Optimization 1/2013 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.