Skip to main content
Erschienen in: Structural and Multidisciplinary Optimization 6/2016

02.06.2016 | RESEARCH PAPER

Uncertainty quantification in reliability estimation with limit state surrogates

verfasst von: Saideep Nannapaneni, Zhen Hu, Sankaran Mahadevan

Erschienen in: Structural and Multidisciplinary Optimization | Ausgabe 6/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Model-based reliability analysis is affected by different types of epistemic uncertainty, due to inadequate data and modeling errors. When the physics-based simulation model is computationally expensive, a surrogate has often been used in reliability analysis, introducing additional uncertainty due to the surrogate. This paper proposes a framework to include statistical uncertainty and model uncertainty in surrogate-based reliability analysis. Two types of surrogates have been considered: (1) general-purpose surrogate models that compute the system model output over the desired ranges of the random variables; and (2) limit-state surrogates. A unified approach to connect the model calibration analysis using the Kennedy and O’Hagan (KOH) framework to the construction of limit state surrogate and to estimating the uncertainty in reliability analysis is developed. The Gaussian Process (GP) general-purpose surrogate of the physics-based simulation model obtained from the KOH calibration analysis is further refined at the limit state (local refinement) to construct the limit state surrogate, which is used for reliability analysis. An efficient single-loop sampling approach using the probability integral transform is used for sampling the input variables with statistical uncertainty. The variability in the GP prediction (surrogate uncertainty) is included in reliability analysis through correlated sampling of the model predictions at different inputs. The Monte Carlo sampling (MCS) error, which represents the error due to limited Monte Carlo samples, is quantified by constructing a probability density function. All the different sources of epistemic uncertainty are quantified and aggregated to estimate the uncertainty in the reliability analysis. Two examples are used to demonstrate the proposed techniques.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Agresti A, Coull BA (1998) Approximate is better than “exact” for interval estimation of binomial proportions. Am Stat 52(2):119–126MathSciNet Agresti A, Coull BA (1998) Approximate is better than “exact” for interval estimation of binomial proportions. Am Stat 52(2):119–126MathSciNet
Zurück zum Zitat Arendt PD, Apley DW, Chen W (2012) Quantification of model uncertainty: Calibration, model discrepancy, and identifiability. J Mech Des 134(10):100908CrossRef Arendt PD, Apley DW, Chen W (2012) Quantification of model uncertainty: Calibration, model discrepancy, and identifiability. J Mech Des 134(10):100908CrossRef
Zurück zum Zitat Bernardo JM, Rueda R (2002) Bayesian hypothesis testing: a reference approach. Int Stat Rev 70(3):351–372CrossRefMATH Bernardo JM, Rueda R (2002) Bayesian hypothesis testing: a reference approach. Int Stat Rev 70(3):351–372CrossRefMATH
Zurück zum Zitat Bichon BJ, Eldred MS, Swiler LP, Mahadevan S, McFarland JM (2008) Efficient global reliability analysis for nonlinear implicit performance functions. AIAA J 46(10):2459–2468CrossRef Bichon BJ, Eldred MS, Swiler LP, Mahadevan S, McFarland JM (2008) Efficient global reliability analysis for nonlinear implicit performance functions. AIAA J 46(10):2459–2468CrossRef
Zurück zum Zitat Bichon BJ, McFarland JM, Mahadevan S (2011) Efficient surrogate models for reliability analysis of systems with multiple failure modes. Reliab Eng Syst Saf 96(10):1386–1395CrossRef Bichon BJ, McFarland JM, Mahadevan S (2011) Efficient surrogate models for reliability analysis of systems with multiple failure modes. Reliab Eng Syst Saf 96(10):1386–1395CrossRef
Zurück zum Zitat Choi SK, Grandhi RV, Canfield RA (2004) Structural reliability under non-Gaussian stochastic behavior. Comput Struct 82(13):1113–1121CrossRef Choi SK, Grandhi RV, Canfield RA (2004) Structural reliability under non-Gaussian stochastic behavior. Comput Struct 82(13):1113–1121CrossRef
Zurück zum Zitat Der Kiureghian A, Ditlevsen O (2009) Aleatory or epistemic? Does it matter? Struct Saf 31(2):105–112CrossRef Der Kiureghian A, Ditlevsen O (2009) Aleatory or epistemic? Does it matter? Struct Saf 31(2):105–112CrossRef
Zurück zum Zitat Dubourg V, Sudret B, Deheeger F (2013) Metamodel-based importance sampling for structural reliability analysis. Probab Eng Mech 33:47–57CrossRef Dubourg V, Sudret B, Deheeger F (2013) Metamodel-based importance sampling for structural reliability analysis. Probab Eng Mech 33:47–57CrossRef
Zurück zum Zitat Echard B, Gayton N, Lemaire M (2011) AK-MCS: an active learning reliability method combining Kriging and Monte Carlo simulation. Struct Saf 33(2):145–154CrossRef Echard B, Gayton N, Lemaire M (2011) AK-MCS: an active learning reliability method combining Kriging and Monte Carlo simulation. Struct Saf 33(2):145–154CrossRef
Zurück zum Zitat Emura T, Lin YS (2015) A comparison of normal approximation rules for attribute control charts. Qual Reliab Eng Int 31(3):411–418CrossRef Emura T, Lin YS (2015) A comparison of normal approximation rules for attribute control charts. Qual Reliab Eng Int 31(3):411–418CrossRef
Zurück zum Zitat Faravelli L (1989) Response-surface approach for reliability analysis. J Eng Mech 115(12):2763–2781CrossRef Faravelli L (1989) Response-surface approach for reliability analysis. J Eng Mech 115(12):2763–2781CrossRef
Zurück zum Zitat Haldar A, Mahadevan S (2000a) Reliability assessment using stochastic finite element analysis. John Wiley & Sons, New York Haldar A, Mahadevan S (2000a) Reliability assessment using stochastic finite element analysis. John Wiley & Sons, New York
Zurück zum Zitat Haldar A, Mahadevan S (2000b) Probability, reliability, and statistical methods in engineering design. John Wiley & Sons, New York Haldar A, Mahadevan S (2000b) Probability, reliability, and statistical methods in engineering design. John Wiley & Sons, New York
Zurück zum Zitat Hu Z, Du X (2015) Mixed efficient global optimization for time-dependent reliability analysis. J Mech Des 137(5):051401MathSciNetCrossRef Hu Z, Du X (2015) Mixed efficient global optimization for time-dependent reliability analysis. J Mech Des 137(5):051401MathSciNetCrossRef
Zurück zum Zitat Hu Z, Mahadevan S, (2015) Global sensitivity analysis-enhanced surrogate (GSAS) modeling for reliability analysis. Struct Multidiscip Optim :1–21 Hu Z, Mahadevan S, (2015) Global sensitivity analysis-enhanced surrogate (GSAS) modeling for reliability analysis. Struct Multidiscip Optim :1–21
Zurück zum Zitat Hu Z, Mahadevan S, Du X (2015) Uncertainty quantification in time-dependent reliability analysis method. The ASME 2015 international design engineering technical conferences (IDETC) and computers and information in engineering conference (CIE), August 2–7, 2015 in Boston, MA Hu Z, Mahadevan S, Du X (2015) Uncertainty quantification in time-dependent reliability analysis method. The ASME 2015 international design engineering technical conferences (IDETC) and computers and information in engineering conference (CIE), August 2–7, 2015 in Boston, MA
Zurück zum Zitat Jiang Z, Chen W, Fu Y, Yang R (2013) Reliability-based design optimization with model bias and data uncertainty. SAE Int J Mater Manuf 6(3):502–516CrossRef Jiang Z, Chen W, Fu Y, Yang R (2013) Reliability-based design optimization with model bias and data uncertainty. SAE Int J Mater Manuf 6(3):502–516CrossRef
Zurück zum Zitat Jones DR, Schonlau M, Welch WJ (1998) Efficient global optimization of expensive black-box functions. J Glob Optim 13(4):455–492MathSciNetCrossRefMATH Jones DR, Schonlau M, Welch WJ (1998) Efficient global optimization of expensive black-box functions. J Glob Optim 13(4):455–492MathSciNetCrossRefMATH
Zurück zum Zitat Kaymaz I (2005) Application of kriging method to structural reliability problems. Struct Saf 27(2):133–151CrossRef Kaymaz I (2005) Application of kriging method to structural reliability problems. Struct Saf 27(2):133–151CrossRef
Zurück zum Zitat Ling Y, Mahadevan S (2013) Quantitative model validation techniques: New insights. Reliab Eng Syst Saf 111:217–231CrossRef Ling Y, Mahadevan S (2013) Quantitative model validation techniques: New insights. Reliab Eng Syst Saf 111:217–231CrossRef
Zurück zum Zitat Mahadevan S, Zhang R, Smith N (2001) Bayesian networks for system reliability reassessment. Struct Saf 23(3):231–251CrossRef Mahadevan S, Zhang R, Smith N (2001) Bayesian networks for system reliability reassessment. Struct Saf 23(3):231–251CrossRef
Zurück zum Zitat Nannapaneni S, Mahadevan S (2015) Model and data uncertainty effects on reliability estimation. 17th AIAA non-deterministic approaches conference. AIAA SciTech, Florida Nannapaneni S, Mahadevan S (2015) Model and data uncertainty effects on reliability estimation. 17th AIAA non-deterministic approaches conference. AIAA SciTech, Florida
Zurück zum Zitat Papadrakakis M, Papadopoulos V, Lagaros ND (1996) Structural reliability analysis of elastic–plastic structures using neural networks and Monte Carlo simulation. Comput Methods Appl Mech Eng 136(1):145–163CrossRefMATH Papadrakakis M, Papadopoulos V, Lagaros ND (1996) Structural reliability analysis of elastic–plastic structures using neural networks and Monte Carlo simulation. Comput Methods Appl Mech Eng 136(1):145–163CrossRefMATH
Zurück zum Zitat Sankararaman S, Mahadevan S (2011) Likelihood-based representation of epistemic uncertainty due to sparse point data and/or interval data. Reliab Eng Syst Saf 96(7):814–824CrossRef Sankararaman S, Mahadevan S (2011) Likelihood-based representation of epistemic uncertainty due to sparse point data and/or interval data. Reliab Eng Syst Saf 96(7):814–824CrossRef
Zurück zum Zitat Sankararaman S, Mahadevan S (2013a) Separating the contributions of variability and parameter uncertainty in probability distributions. Reliab Eng Syst Saf 112:187–199CrossRef Sankararaman S, Mahadevan S (2013a) Separating the contributions of variability and parameter uncertainty in probability distributions. Reliab Eng Syst Saf 112:187–199CrossRef
Zurück zum Zitat Sankararaman S, Mahadevan S (2013b) Distribution type uncertainty due to sparse and imprecise data. Mech Syst Signal Process 37(1):182–198CrossRef Sankararaman S, Mahadevan S (2013b) Distribution type uncertainty due to sparse and imprecise data. Mech Syst Signal Process 37(1):182–198CrossRef
Zurück zum Zitat Song J, Der Kiureghian A (2003) Bounds on system reliability by linear programming. J Eng Mech 129(6):627–636CrossRef Song J, Der Kiureghian A (2003) Bounds on system reliability by linear programming. J Eng Mech 129(6):627–636CrossRef
Zurück zum Zitat Song H, Choi KK, Lee I, Zhao L, Lamb D (2013) Adaptive virtual support vector machine for reliability analysis of high-dimensional problems. Struct Multidiscip Optim 47(4):479–491MathSciNetCrossRefMATH Song H, Choi KK, Lee I, Zhao L, Lamb D (2013) Adaptive virtual support vector machine for reliability analysis of high-dimensional problems. Struct Multidiscip Optim 47(4):479–491MathSciNetCrossRefMATH
Zurück zum Zitat Straub D, Der Kiureghian A (2010) Bayesian network enhanced with structural reliability methods: methodology. J Eng Mech 136(10):1248–1258CrossRef Straub D, Der Kiureghian A (2010) Bayesian network enhanced with structural reliability methods: methodology. J Eng Mech 136(10):1248–1258CrossRef
Zurück zum Zitat Wang Z, Wang P (2015) A double-loop adaptive sampling approach for sensitivity-free dynamic reliability analysis. Reliab Eng Syst Saf 142:346–356CrossRef Wang Z, Wang P (2015) A double-loop adaptive sampling approach for sensitivity-free dynamic reliability analysis. Reliab Eng Syst Saf 142:346–356CrossRef
Zurück zum Zitat Wang P, Youn BD, Xi Z, Kloess A (2009) Bayesian reliability analysis with evolving, insufficient, and subjective data sets. J Mech Des 131(11):111008CrossRef Wang P, Youn BD, Xi Z, Kloess A (2009) Bayesian reliability analysis with evolving, insufficient, and subjective data sets. J Mech Des 131(11):111008CrossRef
Zurück zum Zitat Wang P, Hu C, Youn BD (2011) A generalized complementary intersection method (GCIM) for system reliability analysis. J Mech Des 133(7):071003CrossRef Wang P, Hu C, Youn BD (2011) A generalized complementary intersection method (GCIM) for system reliability analysis. J Mech Des 133(7):071003CrossRef
Zurück zum Zitat Youn BD, Choi KK (2004) A new response surface methodology for reliability-based design optimization. Comput Struct 82(2):241–256CrossRef Youn BD, Choi KK (2004) A new response surface methodology for reliability-based design optimization. Comput Struct 82(2):241–256CrossRef
Zurück zum Zitat Youn BD, Wang P (2006) Bayesian reliability based design optimization under both aleatory and epistemic uncertainties, 11th AIAA/ISSMO multidisciplinary analysis and optimization conference, 6–8 September. Portsmouth, Virginia Youn BD, Wang P (2006) Bayesian reliability based design optimization under both aleatory and epistemic uncertainties, 11th AIAA/ISSMO multidisciplinary analysis and optimization conference, 6–8 September. Portsmouth, Virginia
Metadaten
Titel
Uncertainty quantification in reliability estimation with limit state surrogates
verfasst von
Saideep Nannapaneni
Zhen Hu
Sankaran Mahadevan
Publikationsdatum
02.06.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Structural and Multidisciplinary Optimization / Ausgabe 6/2016
Print ISSN: 1615-147X
Elektronische ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-016-1487-1

Weitere Artikel der Ausgabe 6/2016

Structural and Multidisciplinary Optimization 6/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.