Skip to main content
Erschienen in: Structural and Multidisciplinary Optimization 4/2022

01.04.2022 | Research Paper

Topology optimization of stiff structures under self-weight for given volume using a smooth Heaviside function

verfasst von: Prabhat Kumar

Erschienen in: Structural and Multidisciplinary Optimization | Ausgabe 4/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents a density-based topology optimization approach to design structures under self-weight load. Such loads change their magnitude and/or location as the topology optimization advances and pose several unique challenges, e.g., non-monotonous behavior of compliance objective, parasitic effects of the low-stiffness elements, and tendency to lose constrained nature of the problems. The modified SIMP material scheme is employed with the three-field density representation technique (original, filtered, and projected design fields) to achieve optimized solutions close to 0–1. A novel mass density interpolation strategy is proposed using a smooth Heaviside function, which provides a continuous transition between solid and void states of elements and facilitates tuning of the non-monotonous behavior of the objective. A constraint that implicitly imposes a lower bound on the permitted volume is conceptualized using the maximum permitted mass and the current mass of the evolving design. Sensitivities of the objective and self-weight are evaluated using the adjoint-variable method. Compliance of the domain is minimized to achieve the optimized designs using the Method of Moving Asymptotes. The efficacy and robustness of the presented approach are demonstrated by designing various 2D and 3D structures involving self-weight. The proposed approach maintains the constrained nature of the optimization problems and provides smooth and rapid objective convergence.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
2D structure diagram is taken for simplicity.
 
2
This is the adjoint equation corresponding to the state equation (15).
 
Literatur
Zurück zum Zitat Ansola R, Canales J, Tarrago JA (2006) An efficient sensitivity computation strategy for the evolutionary structural optimization (eso) of continuum structures subjected to self-weight loads. Finite Elem Anal Des 42(14–15):1220–1230CrossRef Ansola R, Canales J, Tarrago JA (2006) An efficient sensitivity computation strategy for the evolutionary structural optimization (eso) of continuum structures subjected to self-weight loads. Finite Elem Anal Des 42(14–15):1220–1230CrossRef
Zurück zum Zitat Bruns TE, Tortorelli DA (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190(26–27):3443–3459CrossRef Bruns TE, Tortorelli DA (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190(26–27):3443–3459CrossRef
Zurück zum Zitat Bruyneel M, Duysinx P (2005) Note on topology optimization of continuum structures including self-weight. Struct Multidisc Optim 29(4):245–256CrossRef Bruyneel M, Duysinx P (2005) Note on topology optimization of continuum structures including self-weight. Struct Multidisc Optim 29(4):245–256CrossRef
Zurück zum Zitat Chang C, Chen A (2014) The gradient projection method for structural topology optimization including density-dependent force. Struct Multidisc Optim 50(4):645–657MathSciNetCrossRef Chang C, Chen A (2014) The gradient projection method for structural topology optimization including density-dependent force. Struct Multidisc Optim 50(4):645–657MathSciNetCrossRef
Zurück zum Zitat Cook RD, Malkus DS, Plesha ME, Witt RJ (2007) Concepts and applications of finite element analysis. Wiley, New York Cook RD, Malkus DS, Plesha ME, Witt RJ (2007) Concepts and applications of finite element analysis. Wiley, New York
Zurück zum Zitat Félix L, Gomes AA, Suleman A (2020) Topology optimization of the internal structure of an aircraft wing subjected to self-weight load. Eng Optim 52(7):1119–1135MathSciNetCrossRef Félix L, Gomes AA, Suleman A (2020) Topology optimization of the internal structure of an aircraft wing subjected to self-weight load. Eng Optim 52(7):1119–1135MathSciNetCrossRef
Zurück zum Zitat Fernandez F, Barker AT, Kudo J, Lewicki JP, Swartz K, Tortorelli DA, Watts S, White DA, Wong J (2020) Simultaneous material, shape and topology optimization. Comput Methods Appl Mech Eng 371:113321MathSciNetCrossRef Fernandez F, Barker AT, Kudo J, Lewicki JP, Swartz K, Tortorelli DA, Watts S, White DA, Wong J (2020) Simultaneous material, shape and topology optimization. Comput Methods Appl Mech Eng 371:113321MathSciNetCrossRef
Zurück zum Zitat Guest JK, Prévost JH, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Meth Eng 61(2):238–254MathSciNetCrossRef Guest JK, Prévost JH, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Meth Eng 61(2):238–254MathSciNetCrossRef
Zurück zum Zitat Holmberg E, Thore CJ, Klarbring A (2015) Worst-case topology optimization of self-weight loaded structures using semi-definite programming. Struct Multidisc Optim 52(5):915–928MathSciNetCrossRef Holmberg E, Thore CJ, Klarbring A (2015) Worst-case topology optimization of self-weight loaded structures using semi-definite programming. Struct Multidisc Optim 52(5):915–928MathSciNetCrossRef
Zurück zum Zitat Huang X, Xie Y (2011) Evolutionary topology optimization of continuum structures including design-dependent self-weight loads. Finite Elem Anal Des 47(8):942–948CrossRef Huang X, Xie Y (2011) Evolutionary topology optimization of continuum structures including design-dependent self-weight loads. Finite Elem Anal Des 47(8):942–948CrossRef
Zurück zum Zitat Kumar P (2022) HoneyTop90: A 90-line MATLAB code for topology optimization using honeycomb tessellation. Optim Eng (In press) Kumar P (2022) HoneyTop90: A 90-line MATLAB code for topology optimization using honeycomb tessellation. Optim Eng (In press)
Zurück zum Zitat Kumar P, Langelaar M (2021) On topology optimization of design-dependent pressure-loaded three-dimensional structures and compliant mechanisms. Int J Numer Meth Eng 122(9):2205–2220MathSciNetCrossRef Kumar P, Langelaar M (2021) On topology optimization of design-dependent pressure-loaded three-dimensional structures and compliant mechanisms. Int J Numer Meth Eng 122(9):2205–2220MathSciNetCrossRef
Zurück zum Zitat Kumar P, Frouws J, Langelaar M (2020) Topology optimization of fluidic pressure-loaded structures and compliant mechanisms using the Darcy method. Struct Multidisc Optim 61(4):1637–1655MathSciNetCrossRef Kumar P, Frouws J, Langelaar M (2020) Topology optimization of fluidic pressure-loaded structures and compliant mechanisms using the Darcy method. Struct Multidisc Optim 61(4):1637–1655MathSciNetCrossRef
Zurück zum Zitat Lazarov BS, Wang F, Sigmund O (2016) Length scale and manufacturability in density-based topology optimization. Arch Appl Mech 86(1–2):189–218CrossRef Lazarov BS, Wang F, Sigmund O (2016) Length scale and manufacturability in density-based topology optimization. Arch Appl Mech 86(1–2):189–218CrossRef
Zurück zum Zitat Novotny A, Lopes C, Santos R (2021) Topological derivative-based topology optimization of structures subject to self-weight loading. Struct Multidisc Optim 63(4):1853–1861MathSciNetCrossRef Novotny A, Lopes C, Santos R (2021) Topological derivative-based topology optimization of structures subject to self-weight loading. Struct Multidisc Optim 63(4):1853–1861MathSciNetCrossRef
Zurück zum Zitat Pedersen NL (2000) Maximization of eigenvalues using topology optimization. Struct Multidisc Optim 20(1):2–11CrossRef Pedersen NL (2000) Maximization of eigenvalues using topology optimization. Struct Multidisc Optim 20(1):2–11CrossRef
Zurück zum Zitat Rozvany GI (1977) Optimal plastic design: allowance for self-weight. J Eng Mech Div 103(6):1165–1170CrossRef Rozvany GI (1977) Optimal plastic design: allowance for self-weight. J Eng Mech Div 103(6):1165–1170CrossRef
Zurück zum Zitat Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidisc Optim 33(4–5):401–424CrossRef Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidisc Optim 33(4–5):401–424CrossRef
Zurück zum Zitat Sigmund O, Maute K (2013) Topology optimization approaches. Struct Multidisc Optim 48(6):1031–1055CrossRef Sigmund O, Maute K (2013) Topology optimization approaches. Struct Multidisc Optim 48(6):1031–1055CrossRef
Zurück zum Zitat Stolpe M, Svanberg K (2001) An alternative interpolation scheme for minimum compliance topology optimization. Struct Multidisc Optim 22(2):116–124CrossRef Stolpe M, Svanberg K (2001) An alternative interpolation scheme for minimum compliance topology optimization. Struct Multidisc Optim 22(2):116–124CrossRef
Zurück zum Zitat Svanberg K (1987) The method of moving asymptotes-a new method for structural optimization. Int J Numer Meth Eng 24(2):359–373MathSciNetCrossRef Svanberg K (1987) The method of moving asymptotes-a new method for structural optimization. Int J Numer Meth Eng 24(2):359–373MathSciNetCrossRef
Zurück zum Zitat Wang F, Lazarov BS, Sigmund O (2011) On projection methods, convergence and robust formulations in topology optimization. Struct Multidisc Optim 43(6):767–784CrossRef Wang F, Lazarov BS, Sigmund O (2011) On projection methods, convergence and robust formulations in topology optimization. Struct Multidisc Optim 43(6):767–784CrossRef
Zurück zum Zitat Xu H, Guan L, Chen X, Wang L (2013) Guide-weight method for topology optimization of continuum structures including body forces. Finite Elem Anal Des 75:38–49MathSciNetCrossRef Xu H, Guan L, Chen X, Wang L (2013) Guide-weight method for topology optimization of continuum structures including body forces. Finite Elem Anal Des 75:38–49MathSciNetCrossRef
Zurück zum Zitat Zhang W, Zhao L, Gao T (2017) Cbs-based topology optimization including design-dependent body loads. Comput Methods Appl Mech Eng 322:1–22MathSciNetCrossRef Zhang W, Zhao L, Gao T (2017) Cbs-based topology optimization including design-dependent body loads. Comput Methods Appl Mech Eng 322:1–22MathSciNetCrossRef
Metadaten
Titel
Topology optimization of stiff structures under self-weight for given volume using a smooth Heaviside function
verfasst von
Prabhat Kumar
Publikationsdatum
01.04.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
Structural and Multidisciplinary Optimization / Ausgabe 4/2022
Print ISSN: 1615-147X
Elektronische ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-022-03232-x

Weitere Artikel der Ausgabe 4/2022

Structural and Multidisciplinary Optimization 4/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.