Skip to main content
Erschienen in: Structural and Multidisciplinary Optimization 4/2020

09.01.2020 | Research Paper

Topology optimization of fluidic pressure-loaded structures and compliant mechanisms using the Darcy method

verfasst von: P. Kumar, J. S. Frouws, M. Langelaar

Erschienen in: Structural and Multidisciplinary Optimization | Ausgabe 4/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In various applications, design problems involving structures and compliant mechanisms experience fluidic pressure loads. During topology optimization of such design problems, these loads adapt their direction and location with the evolution of the design, which poses various challenges. A new density-based topology optimization approach using Darcy’s law in conjunction with a drainage term is presented to provide a continuous and consistent treatment of design-dependent fluidic pressure loads. The porosity of each finite element and its drainage term are related to its density variable using a Heaviside function, yielding a smooth transition between the solid and void phases. A design-dependent pressure field is established using Darcy’s law and the associated PDE is solved using the finite element method. Further, the obtained pressure field is used to determine the consistent nodal loads. The approach provides a computationally inexpensive evaluation of load sensitivities using the adjoint-variable method. To show the efficacy and robustness of the proposed method, numerical examples related to fluidic pressure-loaded stiff structures and small-deformation compliant mechanisms are solved. For the structures, compliance is minimized, whereas for the mechanisms, a multi-criteria objective is minimized with given resource constraints.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
Henceforth, we write “pressure loads” instead of “fluidic pressure loads” throughout the manuscript for simplicity.
 
2
\(K = \frac {\kappa }{\mu }\) is termed ‘flow coefficient’ herein, noting the fact that this terminology is however sometimes used in literature with a different meaning.
 
3
used in the approaches based on boundary identification
 
4
in this work pout = 0
 
5
In 2D case, dz is the thickness t and \(\frac {\partial \!{p}}{\partial \!{z}}=0\)
 
6
In case of CM, state variables are u and v originated from input load and dummy load at output port, respectively.
 
7
Herein, a generic case of CM is considered.
 
Literatur
Zurück zum Zitat Batchelor G (2000) An introduction to fluid dynamics. Cambridge University Press, CambridgeCrossRef Batchelor G (2000) An introduction to fluid dynamics. Cambridge University Press, CambridgeCrossRef
Zurück zum Zitat Bourdin B, Chambolle A (2003) Design-dependent loads in topology optimization. ESAIM: Control, Optimisation and Calculus of Variations 9:19–48MathSciNetMATH Bourdin B, Chambolle A (2003) Design-dependent loads in topology optimization. ESAIM: Control, Optimisation and Calculus of Variations 9:19–48MathSciNetMATH
Zurück zum Zitat Bruns TE, Tortorelli DA (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190(26):3443–3459MATHCrossRef Bruns TE, Tortorelli DA (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190(26):3443–3459MATHCrossRef
Zurück zum Zitat Chen BC, Kikuchi N (2001) Topology optimization with design-dependent loads. Finite Elements in Analysis and Design 37(1):57–70MATHCrossRef Chen BC, Kikuchi N (2001) Topology optimization with design-dependent loads. Finite Elements in Analysis and Design 37(1):57–70MATHCrossRef
Zurück zum Zitat Deepak SR, Dinesh M, Sahu DK, Ananthasuresh G (2009) A comparative study of the formulations and benchmark problems for the topology optimization of compliant mechanisms. J Mech Robot 1(1):011003CrossRef Deepak SR, Dinesh M, Sahu DK, Ananthasuresh G (2009) A comparative study of the formulations and benchmark problems for the topology optimization of compliant mechanisms. J Mech Robot 1(1):011003CrossRef
Zurück zum Zitat van Dijk NP, Maute K, Langelaar M, Van Keulen F (2013) Level-set methods for structural topology optimization: a review. Struct Multidiscip Optim 48(3):437–472MathSciNetCrossRef van Dijk NP, Maute K, Langelaar M, Van Keulen F (2013) Level-set methods for structural topology optimization: a review. Struct Multidiscip Optim 48(3):437–472MathSciNetCrossRef
Zurück zum Zitat Du J, Olhoff N (2004) Topological optimization of continuum structures with design-dependent surface loading - part I: new computational approach for 2D problems. Struct Multidiscip Optim 27(3):151–165MathSciNetMATHCrossRef Du J, Olhoff N (2004) Topological optimization of continuum structures with design-dependent surface loading - part I: new computational approach for 2D problems. Struct Multidiscip Optim 27(3):151–165MathSciNetMATHCrossRef
Zurück zum Zitat Frecker M, Ananthasuresh G, Nishiwaki S, Kikuchi N, Kota S (1997) Topological synthesis of compliant mechanisms using multi-criteria optimization. J Mech Des 119(2):238–245CrossRef Frecker M, Ananthasuresh G, Nishiwaki S, Kikuchi N, Kota S (1997) Topological synthesis of compliant mechanisms using multi-criteria optimization. J Mech Des 119(2):238–245CrossRef
Zurück zum Zitat Fuchs MB, Shemesh NNY (2004) Density-based topological design of structures subjected to water pressure using a parametric loading surface. Struct Multidiscip Optim 28(1):11–19CrossRef Fuchs MB, Shemesh NNY (2004) Density-based topological design of structures subjected to water pressure using a parametric loading surface. Struct Multidiscip Optim 28(1):11–19CrossRef
Zurück zum Zitat Gao X, Zhao K, Gu Y (2004) Topology optimization with design-dependent loads by level set approach. In: 10th AIAA/ISSMO multidisciplinary analysis and optimization conference, p 4526 Gao X, Zhao K, Gu Y (2004) Topology optimization with design-dependent loads by level set approach. In: 10th AIAA/ISSMO multidisciplinary analysis and optimization conference, p 4526
Zurück zum Zitat Hammer VB, Olhoff N (2000) Topology optimization of continuum structures subjected to pressure loading. Struct Multidiscip Optim 19(2):85–92CrossRef Hammer VB, Olhoff N (2000) Topology optimization of continuum structures subjected to pressure loading. Struct Multidiscip Optim 19(2):85–92CrossRef
Zurück zum Zitat Kumar P, Sauer RA, Saxena A (2016) Synthesis of c0 path-generating contact-aided compliant mechanisms using the material mask overlay method. J Mech Des 138(6):062301CrossRef Kumar P, Sauer RA, Saxena A (2016) Synthesis of c0 path-generating contact-aided compliant mechanisms using the material mask overlay method. J Mech Des 138(6):062301CrossRef
Zurück zum Zitat Lee E, Martins JRRA (2012) Structural topology optimization with design-dependent pressure loads. Comput Methods Appl Mech Eng 233-236:40–48MathSciNetMATHCrossRef Lee E, Martins JRRA (2012) Structural topology optimization with design-dependent pressure loads. Comput Methods Appl Mech Eng 233-236:40–48MathSciNetMATHCrossRef
Zurück zum Zitat Li C, Xu C, Gui C, Fox MD (2010) Distance regularized level set evolution and its application to image segmentation. IEEE Trans Image Process 19(12):3243–3254MathSciNetMATHCrossRef Li C, Xu C, Gui C, Fox MD (2010) Distance regularized level set evolution and its application to image segmentation. IEEE Trans Image Process 19(12):3243–3254MathSciNetMATHCrossRef
Zurück zum Zitat Li Z m, Yu J, Yu Y, Xu L (2018) Topology optimization of pressure structures based on regional contour tracking technology. Struct Multidiscip Optim 58(2):687–700CrossRef Li Z m, Yu J, Yu Y, Xu L (2018) Topology optimization of pressure structures based on regional contour tracking technology. Struct Multidiscip Optim 58(2):687–700CrossRef
Zurück zum Zitat Lu KJ, Kota S (2003) Design of compliant mechanisms for morphing structural shapes. J Intell Mater Sys Struct 14(6):379–391CrossRef Lu KJ, Kota S (2003) Design of compliant mechanisms for morphing structural shapes. J Intell Mater Sys Struct 14(6):379–391CrossRef
Zurück zum Zitat Martin PB, Sigmund O (2003) Topology optimization: theory, methods and applications. Springer, Berlin Martin PB, Sigmund O (2003) Topology optimization: theory, methods and applications. Springer, Berlin
Zurück zum Zitat Panganiban H, Jang GW, Chung TJ (2010) Topology optimization of pressure-actuated compliant mechanisms. Finite Elem Anal Des 46(3):238–246CrossRef Panganiban H, Jang GW, Chung TJ (2010) Topology optimization of pressure-actuated compliant mechanisms. Finite Elem Anal Des 46(3):238–246CrossRef
Zurück zum Zitat Picelli R, Neofytou A, Kim HA (2019) Topology optimization for design-dependent hydrostatic pressure loading via the level-set method. Struct Multidiscip Optim 60(4):1313–1326 Picelli R, Neofytou A, Kim HA (2019) Topology optimization for design-dependent hydrostatic pressure loading via the level-set method. Struct Multidiscip Optim 60(4):1313–1326
Zurück zum Zitat Saxena A (2013) A contact-aided compliant displacement-delimited gripper manipulator. J Mech Robot 5 (4):041005CrossRef Saxena A (2013) A contact-aided compliant displacement-delimited gripper manipulator. J Mech Robot 5 (4):041005CrossRef
Zurück zum Zitat Saxena A, Ananthasuresh G (2000) On an optimal property of compliant topologies. Struct Multidiscip Optim 19(1):36–49CrossRef Saxena A, Ananthasuresh G (2000) On an optimal property of compliant topologies. Struct Multidiscip Optim 19(1):36–49CrossRef
Zurück zum Zitat Saxena A, Ananthasuresh G (2001) Topology synthesis of compliant mechanisms for nonlinear force-deflection and curved path specifications. J Mech Des 123(1):33–42CrossRef Saxena A, Ananthasuresh G (2001) Topology synthesis of compliant mechanisms for nonlinear force-deflection and curved path specifications. J Mech Des 123(1):33–42CrossRef
Zurück zum Zitat Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidiscip Optim 33(4-5):401–424CrossRef Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidiscip Optim 33(4-5):401–424CrossRef
Zurück zum Zitat Sigmund O, Clausen PM (2007) Topology optimization using a mixed formulation: an alternative way to solve pressure load problems. Comput Methods Appl Mech Eng 196(13-16):1874–1889MathSciNetMATHCrossRef Sigmund O, Clausen PM (2007) Topology optimization using a mixed formulation: an alternative way to solve pressure load problems. Comput Methods Appl Mech Eng 196(13-16):1874–1889MathSciNetMATHCrossRef
Zurück zum Zitat Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373MathSciNetMATHCrossRef Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373MathSciNetMATHCrossRef
Zurück zum Zitat Vasista S, Tong L (2012) Design and testing of pressurized cellular planar morphing structures. AIAA journal 50(6):1328–1338CrossRef Vasista S, Tong L (2012) Design and testing of pressurized cellular planar morphing structures. AIAA journal 50(6):1328–1338CrossRef
Zurück zum Zitat Wang C, Zhao M, Ge T (2016) Structural topology optimization with design-dependent pressure loads. Struct Multidiscip Optim 53(5):1005–1018MathSciNetCrossRef Wang C, Zhao M, Ge T (2016) Structural topology optimization with design-dependent pressure loads. Struct Multidiscip Optim 53(5):1005–1018MathSciNetCrossRef
Zurück zum Zitat Wang F, Lazarov BS, Sigmund O (2011) On projection methods, convergence and robust formulations in topology optimization. Struct Multidiscip Optim 43(6):767–784MATHCrossRef Wang F, Lazarov BS, Sigmund O (2011) On projection methods, convergence and robust formulations in topology optimization. Struct Multidiscip Optim 43(6):767–784MATHCrossRef
Zurück zum Zitat Xia Q, Wang MY, Shi T (2015) Topology optimization with pressure load through a level set method. Comput Methods Appl Mech Eng 283:177–195MathSciNetMATHCrossRef Xia Q, Wang MY, Shi T (2015) Topology optimization with pressure load through a level set method. Comput Methods Appl Mech Eng 283:177–195MathSciNetMATHCrossRef
Zurück zum Zitat Yap HK, Ng HY, Yeow CH (2016) High-force soft printable pneumatics for soft robotic applications. Soft Robotics 3(3):144–158CrossRef Yap HK, Ng HY, Yeow CH (2016) High-force soft printable pneumatics for soft robotic applications. Soft Robotics 3(3):144–158CrossRef
Zurück zum Zitat Zhang H, Zhang X, Liu ST (2008) A new boundary search scheme for topology optimization of continuum structures with design-dependent loads. Struct Multidiscip Optim 37(2):121–129CrossRef Zhang H, Zhang X, Liu ST (2008) A new boundary search scheme for topology optimization of continuum structures with design-dependent loads. Struct Multidiscip Optim 37(2):121–129CrossRef
Zurück zum Zitat Zheng B, Chang CJ, Gea HC (2009) Topology optimization with design-dependent pressure loading. Struct Multidiscip Optim 38(6):535–543MATHCrossRef Zheng B, Chang CJ, Gea HC (2009) Topology optimization with design-dependent pressure loading. Struct Multidiscip Optim 38(6):535–543MATHCrossRef
Zurück zum Zitat Zienkiewicz OC, Taylor RL (2005) The finite element method for solid and structural mechanics. Butterworth-Heinemann, OxfordMATH Zienkiewicz OC, Taylor RL (2005) The finite element method for solid and structural mechanics. Butterworth-Heinemann, OxfordMATH
Zurück zum Zitat Zolfagharian A, Kouzani AZ, Khoo SY, Moghadam AAA, Gibson I, Kaynak A (2016) Evolution of 3D printed soft actuators. Sensors Actuators A Phys 250:258–272CrossRef Zolfagharian A, Kouzani AZ, Khoo SY, Moghadam AAA, Gibson I, Kaynak A (2016) Evolution of 3D printed soft actuators. Sensors Actuators A Phys 250:258–272CrossRef
Metadaten
Titel
Topology optimization of fluidic pressure-loaded structures and compliant mechanisms using the Darcy method
verfasst von
P. Kumar
J. S. Frouws
M. Langelaar
Publikationsdatum
09.01.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Structural and Multidisciplinary Optimization / Ausgabe 4/2020
Print ISSN: 1615-147X
Elektronische ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-019-02442-0

Weitere Artikel der Ausgabe 4/2020

Structural and Multidisciplinary Optimization 4/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.