Skip to main content
Erschienen in: Continuum Mechanics and Thermodynamics 3/2021

23.11.2020 | Original Article

Positive definiteness in coupled strain gradient elasticity

verfasst von: Lidiia Nazarenko, Rainer Glüge, Holm Altenbach

Erschienen in: Continuum Mechanics and Thermodynamics | Ausgabe 3/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The linear theory of coupled gradient elasticity has been considered for hemitropic second gradient materials, specifically the positive definiteness of the strain and strain gradient energy density, which is assumed to be a quadratic form of the strain and of the second gradient of the displacement. The existence of the mixed, fifth-rank coupling term significantly complicates the problem. To obtain inequalities for the positive definiteness including the coupling term, a diagonalization in terms of block matrices is given, such that the potential energy density is obtained in an uncoupled quadratic form of a modified strain and the second gradient of displacement. Using orthonormal bases for the second-rank strain tensor and third-rank strain gradient tensor results in matrix representations for the modified fourth-rank and the sixth-rank tensors, such that Sylvester’s formula and eigenvalue criteria can be applied to yield conditions for positive definiteness. Both criteria result in the same constraints on the constitutive parameters. A comparison with results available in the literature was possible only for the special case that the coupling term vanishes. These coincide with our results.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Abali, B.E., Barchiesi, E.: Additive manufacturing introduced substructure and computational determination of metamaterials parameters by means of the asymptotic homogenization (2020) Abali, B.E., Barchiesi, E.: Additive manufacturing introduced substructure and computational determination of metamaterials parameters by means of the asymptotic homogenization (2020)
2.
Zurück zum Zitat Abali, B.E., Yang, H., Papadopoulos, P.: A computational approach for determination of parameters in generalized mechanics. In: Altenbach, H., Müller, W.H., Abali, B.E. (eds.) Higher Gradient Materials and Related Generalized Continua, Advanced Structured Materials, vol 120. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30406-5_1 Abali, B.E., Yang, H., Papadopoulos, P.: A computational approach for determination of parameters in generalized mechanics. In: Altenbach, H., Müller, W.H., Abali, B.E. (eds.) Higher Gradient Materials and Related Generalized Continua, Advanced Structured Materials, vol 120. Springer, Cham (2019). https://​doi.​org/​10.​1007/​978-3-030-30406-5_​1
3.
Zurück zum Zitat Altan, B.S., Aifantis, E.C.: On some aspects in the special theory of gradient elasticity. J. Mech. Behav. Mater. 8(3), 231–282 (1997)CrossRef Altan, B.S., Aifantis, E.C.: On some aspects in the special theory of gradient elasticity. J. Mech. Behav. Mater. 8(3), 231–282 (1997)CrossRef
4.
Zurück zum Zitat Askes, H., Aifantis, E.C.: Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results. Int. J. Solids Struct. 48, 1962–1990 (2011)CrossRef Askes, H., Aifantis, E.C.: Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results. Int. J. Solids Struct. 48, 1962–1990 (2011)CrossRef
5.
Zurück zum Zitat Askes, H., Suiker, A.S.J., Sluys, L.J.: A classification of higher-order strain-gradient models linear analysis. Arch. Appl. Mech. 72, 171–188 (2002)ADSCrossRef Askes, H., Suiker, A.S.J., Sluys, L.J.: A classification of higher-order strain-gradient models linear analysis. Arch. Appl. Mech. 72, 171–188 (2002)ADSCrossRef
6.
Zurück zum Zitat Auffray, N., He, Q., Le Quang, H.: Complete symmetry classification and compact matrix representations for 3D strain gradient elasticity. Int. J. Solids Struct. 159, 197–210 (2019)CrossRef Auffray, N., He, Q., Le Quang, H.: Complete symmetry classification and compact matrix representations for 3D strain gradient elasticity. Int. J. Solids Struct. 159, 197–210 (2019)CrossRef
7.
Zurück zum Zitat Auffray, N., Le Quang, H., He, Q.C.: Matrix representations for 3D strain-gradient elasticity. J. Mech. Phys. Solids 61(5), 1202–1223 (2013)ADSMathSciNetCrossRef Auffray, N., Le Quang, H., He, Q.C.: Matrix representations for 3D strain-gradient elasticity. J. Mech. Phys. Solids 61(5), 1202–1223 (2013)ADSMathSciNetCrossRef
8.
Zurück zum Zitat Brannon, R.: Rotation, Reflection, and Frame Changes. IOP Publishing, Bristol (2018) Brannon, R.: Rotation, Reflection, and Frame Changes. IOP Publishing, Bristol (2018)
9.
Zurück zum Zitat Cosserat, F., Cosserat, E.: Théorie des corps déformables. A. Herman et Fils, Paris (1909)MATH Cosserat, F., Cosserat, E.: Théorie des corps déformables. A. Herman et Fils, Paris (1909)MATH
10.
Zurück zum Zitat Cowin, S., Mehrabadi, M.: The structure of the linear anisotropic elastic symmetries. J. Mech. Phys. Solids 40(7), 1459–1471 (1992)ADSMathSciNetCrossRef Cowin, S., Mehrabadi, M.: The structure of the linear anisotropic elastic symmetries. J. Mech. Phys. Solids 40(7), 1459–1471 (1992)ADSMathSciNetCrossRef
11.
Zurück zum Zitat dell’Isola, F., Sciarra, G., Vidoli, S.: Generalized hooke’s law for isotropic second gradient materials. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 465(2107), 2177–2196 (2009)ADSMathSciNetMATH dell’Isola, F., Sciarra, G., Vidoli, S.: Generalized hooke’s law for isotropic second gradient materials. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 465(2107), 2177–2196 (2009)ADSMathSciNetMATH
12.
Zurück zum Zitat Eremeyev, V.A., Altenbach, H.: On the direct approach in the theory of second gradient plates. In: Altenbach, H., Mikhasev, G.I. (eds.) Shell and Membrane Theories in Mechanics and Biology: From Macro- to Nanoscale Structures, Advanced Structured Materials, vol. 45, pp. 147–154. Springer, Cham (2015)CrossRef Eremeyev, V.A., Altenbach, H.: On the direct approach in the theory of second gradient plates. In: Altenbach, H., Mikhasev, G.I. (eds.) Shell and Membrane Theories in Mechanics and Biology: From Macro- to Nanoscale Structures, Advanced Structured Materials, vol. 45, pp. 147–154. Springer, Cham (2015)CrossRef
13.
Zurück zum Zitat Eremeyev, V.A., Lurie, S.A., Solyaev, Y.O., dellIsola, F.: On the well posedness of static boundary value problem within the linear dilatational strain gradient elasticity. Zeitschrift für angewandte Mathematik und Physik 71(6), 182 (2000)ADSMathSciNetCrossRef Eremeyev, V.A., Lurie, S.A., Solyaev, Y.O., dellIsola, F.: On the well posedness of static boundary value problem within the linear dilatational strain gradient elasticity. Zeitschrift für angewandte Mathematik und Physik 71(6), 182 (2000)ADSMathSciNetCrossRef
14.
Zurück zum Zitat Ferretti, M., Madeo, A., dell’Isola, F., Boisse, P.: Modeling the onset of shear boundary layers in fibrous composite reinforcements by second-gradient theory. Zeitschrift für angewandte Mathematik und Physik 65(3), 587–612 (2014)ADSMathSciNetCrossRef Ferretti, M., Madeo, A., dell’Isola, F., Boisse, P.: Modeling the onset of shear boundary layers in fibrous composite reinforcements by second-gradient theory. Zeitschrift für angewandte Mathematik und Physik 65(3), 587–612 (2014)ADSMathSciNetCrossRef
15.
Zurück zum Zitat Forest, S., Bertram, A.: Formulations of strain gradient plasticity. In: Altenbach, H., Maugin, G.A., Eremeyev, V.A. (eds.) Mechanics of Generalized Continua, Advanced Structured Materials, vol. 7, pp. 137–149. Springer, Berlin (2011)CrossRef Forest, S., Bertram, A.: Formulations of strain gradient plasticity. In: Altenbach, H., Maugin, G.A., Eremeyev, V.A. (eds.) Mechanics of Generalized Continua, Advanced Structured Materials, vol. 7, pp. 137–149. Springer, Berlin (2011)CrossRef
16.
Zurück zum Zitat Georgiadis, H.G., Anagnostou, D.S.: Problems of the FlamantBoussinesq and Kelvin type in dipolar gradient elasticity. J. Elast. 90, 71–98 (2008)CrossRef Georgiadis, H.G., Anagnostou, D.S.: Problems of the FlamantBoussinesq and Kelvin type in dipolar gradient elasticity. J. Elast. 90, 71–98 (2008)CrossRef
17.
Zurück zum Zitat Germain, P.: The method of virtual power in continuum mechanics. Part 2: microstructure. SIAM J. Appl. Math. 25(3), 556–575 (1973)CrossRef Germain, P.: The method of virtual power in continuum mechanics. Part 2: microstructure. SIAM J. Appl. Math. 25(3), 556–575 (1973)CrossRef
18.
Zurück zum Zitat Glüge, R., Kalisch, J., Bertram, A.: The eigenmodes in isotropic strain gradient elasticity. In: Altenbach, H., Forest, S. (eds.) Generalized Continua as Models for Classical and Advanced Materials, Advanced Structured Materials, vol. 42, pp. 163–178. Springer, Cham (2016) Glüge, R., Kalisch, J., Bertram, A.: The eigenmodes in isotropic strain gradient elasticity. In: Altenbach, H., Forest, S. (eds.) Generalized Continua as Models for Classical and Advanced Materials, Advanced Structured Materials, vol. 42, pp. 163–178. Springer, Cham (2016)
19.
Zurück zum Zitat Gusev, A.A., Lurie, S.A.: Symmetry conditions in strain gradient elasticity. Math. Mech. Solids 22(4), 683–691 (2017)MathSciNetCrossRef Gusev, A.A., Lurie, S.A.: Symmetry conditions in strain gradient elasticity. Math. Mech. Solids 22(4), 683–691 (2017)MathSciNetCrossRef
20.
Zurück zum Zitat Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1985)CrossRef Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1985)CrossRef
21.
Zurück zum Zitat Javili, A., dell’Isola, F., Steinmann, P.: Geometrically nonlinear higher-gradient elasticity with energetic boundaries. J. Mech. Phys. Solids 61, 2381–2401 (2013)ADSMathSciNetCrossRef Javili, A., dell’Isola, F., Steinmann, P.: Geometrically nonlinear higher-gradient elasticity with energetic boundaries. J. Mech. Phys. Solids 61, 2381–2401 (2013)ADSMathSciNetCrossRef
22.
Zurück zum Zitat Kirchhoff, G.: Über das Gleichgewicht und die Bewegung eines unendlich dnnen elastischen Stabes. Journal fr die reine und angewandte Mathematik 56, 285–313 (1859) Kirchhoff, G.: Über das Gleichgewicht und die Bewegung eines unendlich dnnen elastischen Stabes. Journal fr die reine und angewandte Mathematik 56, 285–313 (1859)
23.
Zurück zum Zitat Knops, R., Payne, L.: Uniqueness Theorems in Linear Elasticity. Springer Tracts in Natural Philosophy. Springer, Berlin (1971)CrossRef Knops, R., Payne, L.: Uniqueness Theorems in Linear Elasticity. Springer Tracts in Natural Philosophy. Springer, Berlin (1971)CrossRef
24.
Zurück zum Zitat Lazar, M., Maugin, G.A., Aifantis, E.C.: On a theory of nonlocal elasticity of bi-helmholtz type and some applications. Int. J. Solids Struct. 43(6), 1404–1421 (2006)MathSciNetCrossRef Lazar, M., Maugin, G.A., Aifantis, E.C.: On a theory of nonlocal elasticity of bi-helmholtz type and some applications. Int. J. Solids Struct. 43(6), 1404–1421 (2006)MathSciNetCrossRef
25.
Zurück zum Zitat Lim, C.W., Zhang, G., Reddy, J.N.: A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J. Mech. Phys. Solids 78, 298–313 (2015)ADSMathSciNetCrossRef Lim, C.W., Zhang, G., Reddy, J.N.: A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J. Mech. Phys. Solids 78, 298–313 (2015)ADSMathSciNetCrossRef
26.
Zurück zum Zitat Lurie, S., Volkov-Bogorodsky, D., Leontiev, A., Aifantis, E.: Eshelby’s inclusion problem in the gradient theory of elasticity: applications to composite materials. Int. J. Eng. Sci. 49(12), 1517–1525 (2011). Please check and confirm the edit made in the reference [26]MathSciNetCrossRef Lurie, S., Volkov-Bogorodsky, D., Leontiev, A., Aifantis, E.: Eshelby’s inclusion problem in the gradient theory of elasticity: applications to composite materials. Int. J. Eng. Sci. 49(12), 1517–1525 (2011). Please check and confirm the edit made in the reference [26]MathSciNetCrossRef
27.
Zurück zum Zitat Ma, H.M., Gao, X.L.: A new homogenization method based on a simplified strain gradient elasticity theory. Acta Mech. 225, 1075–1091 (2014)MathSciNetCrossRef Ma, H.M., Gao, X.L.: A new homogenization method based on a simplified strain gradient elasticity theory. Acta Mech. 225, 1075–1091 (2014)MathSciNetCrossRef
28.
Zurück zum Zitat Mandel, J.: Generalisation de la theorie de plasticite de w. t. koiter. Int. J. Solids Struct. 1(3), 273–295 (1965)CrossRef Mandel, J.: Generalisation de la theorie de plasticite de w. t. koiter. Int. J. Solids Struct. 1(3), 273–295 (1965)CrossRef
29.
30.
Zurück zum Zitat Mindlin, R.D., Eshel, N.N.: On first strain-gradient theories in linear elasticity. Int. J. Solids Struct. 4, 109–124 (1968)CrossRef Mindlin, R.D., Eshel, N.N.: On first strain-gradient theories in linear elasticity. Int. J. Solids Struct. 4, 109–124 (1968)CrossRef
31.
Zurück zum Zitat Nye, J.F.: Physical Properties of Crystals: Their Representation by Tensors and Matrices. Oxford Science Publications. Clarendon Press, Oxford (1985) Nye, J.F.: Physical Properties of Crystals: Their Representation by Tensors and Matrices. Oxford Science Publications. Clarendon Press, Oxford (1985)
32.
Zurück zum Zitat Peerlings, R.H.J., Geers, M.G.D., de Borst, R., Brekelmans, W.A.M.: A critical comparison of nonlocal and gradient-enhanced softening continua. Int. J. Solids Struct. 38(44–45), 7723–7746 (2001)CrossRef Peerlings, R.H.J., Geers, M.G.D., de Borst, R., Brekelmans, W.A.M.: A critical comparison of nonlocal and gradient-enhanced softening continua. Int. J. Solids Struct. 38(44–45), 7723–7746 (2001)CrossRef
33.
Zurück zum Zitat Polizzotto, C.: A note on the higher order strain and stress tensors within deformation gradient elasticity theories: physical interpretations and comparisons. Int. J. Solids Struct. 90, 116–121 (2016)CrossRef Polizzotto, C.: A note on the higher order strain and stress tensors within deformation gradient elasticity theories: physical interpretations and comparisons. Int. J. Solids Struct. 90, 116–121 (2016)CrossRef
34.
Zurück zum Zitat Reiher, J.C., Giorgio, I., Bertram, A.: Finite-element analysis of polyhedra under point and line forces in second-strain gradient elasticity. J. Eng. Mech. 143(2), 04016112 (2017)CrossRef Reiher, J.C., Giorgio, I., Bertram, A.: Finite-element analysis of polyhedra under point and line forces in second-strain gradient elasticity. J. Eng. Mech. 143(2), 04016112 (2017)CrossRef
35.
Zurück zum Zitat Sinclair, G.B.: Stress singularities in classical elasticity I: removal, interpretation, and analysis. Appl. Mech. Rev. 57, 251–298 (2004)ADSCrossRef Sinclair, G.B.: Stress singularities in classical elasticity I: removal, interpretation, and analysis. Appl. Mech. Rev. 57, 251–298 (2004)ADSCrossRef
36.
Zurück zum Zitat Thomson, W.: XXI. Elements of a mathematical theory of elasticity. Philos. Trans. R. Soc. Lond. 146, 481–498 (1856)ADS Thomson, W.: XXI. Elements of a mathematical theory of elasticity. Philos. Trans. R. Soc. Lond. 146, 481–498 (1856)ADS
37.
38.
Zurück zum Zitat Voigt, W.: Lehrbuch der Kristallphysik (mit Ausschluss der Kristalloptik). B. G. Teubner, Leipzig (1910)MATH Voigt, W.: Lehrbuch der Kristallphysik (mit Ausschluss der Kristalloptik). B. G. Teubner, Leipzig (1910)MATH
Metadaten
Titel
Positive definiteness in coupled strain gradient elasticity
verfasst von
Lidiia Nazarenko
Rainer Glüge
Holm Altenbach
Publikationsdatum
23.11.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Continuum Mechanics and Thermodynamics / Ausgabe 3/2021
Print ISSN: 0935-1175
Elektronische ISSN: 1432-0959
DOI
https://doi.org/10.1007/s00161-020-00949-2

Weitere Artikel der Ausgabe 3/2021

Continuum Mechanics and Thermodynamics 3/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.