Skip to main content
Erschienen in: Continuum Mechanics and Thermodynamics 4/2021

10.03.2021 | Original Article

Analytical solutions of the cylindrical bending problem for the relaxed micromorphic continuum and other generalized continua

verfasst von: Gianluca Rizzi, Geralf Hütter, Angela Madeo, Patrizio Neff

Erschienen in: Continuum Mechanics and Thermodynamics | Ausgabe 4/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We consider the cylindrical bending problem for an infinite plate as modeled with a family of generalized continuum models, including the micromorphic approach. The models allow to describe length scale effects in the sense that thinner specimens are comparatively stiffer. We provide the analytical solution for each case and exhibits the predicted bending stiffness. The relaxed micromorphic continuum shows bounded bending stiffness for arbitrary thin specimens, while classical micromorphic continuum or gradient elasticity as well as Cosserat models (Neff et al. in Acta Mechanica 211(3–4):237–249, 2010) exhibit unphysical unbounded bending stiffness for arbitrary thin specimens. This finding highlights the advantage of using the relaxed micromorphic model, which has a definite limit stiffness for small samples and which aids in identifying the relevant material parameters.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Here are reported the macroscopic 3D Poisson’s ratio \(\nu _{ \hbox {macro}} = \frac{\lambda _{\hbox { macro}}}{2\left( \lambda _{\hbox { macro}} + \mu _{\hbox { macro}}\right) }\), the Young modulus
\(E_{ \hbox {macro}} = \frac{\mu _{\hbox { macro}} \left( 3\lambda _{\hbox { macro}} + 2 \mu _{\hbox { macro}}\right) }{\lambda _{\hbox { macro}} + \mu _{\hbox { macro}}} = 2\mu _{\hbox { macro}}\left( 1+\nu _{\hbox { macro}}\right) \), and the bulk modulus \(\kappa _{\hbox { macro}} = \frac{2\mu _{\hbox { macro}} + 3\lambda _{\hbox { macro}}}{3}\).
 
2
Note that under the plane stress hypothesis the first Lamé parameter becomes \({\widehat{\lambda }}_{\hbox { macro}} = \frac{2 \, \lambda _{\hbox { macro}} \, \mu _{\hbox { macro}}}{\lambda _{\hbox { macro}} + 2 \mu _{\hbox { macro}}}\) , while the shear modulus \({\widehat{\mu }}_{\hbox { macro}} = \mu _{\hbox { macro}}\) , the Young modulus \({\widehat{E}} = E = \frac{\mu _{\hbox { macro}}(3\lambda _{\hbox { macro}} + 2\mu _{\hbox { macro}})}{\lambda _{\hbox { macro}} + \mu _{\hbox { macro}}}\) , and the Poisson’s ratio \({\widehat{\nu }} = \mu _{\hbox { macro}} = \frac{\lambda _{\hbox { macro}}}{2\lambda _{ \hbox {macro}}+2\mu _{\hbox { macro}}}\) do not change. It is also reported here the more used bending stiffness expression \({\widehat{\lambda }}_{\hbox { macro}} + 2\mu _{\hbox { macro}} = \frac{E_{\hbox { macro}}}{1- \nu _{\hbox { macro}}^2}\) .
 
3
Are here reported the 3D Poisson’s ratio \(\nu _{ \hbox {macro}} = \frac{\lambda _{\hbox { macro}}}{2\left( \lambda _{\hbox { macro}} + \mu _{\hbox { macro}}\right) }\), the 3D Young modulus \(E_{ \hbox {macro}} = \frac{\mu _{\hbox { macro}} \left( 3\lambda _{\hbox { macro}} + 2 \mu _{\hbox { macro}}\right) }{\lambda _{\hbox { macro}} + \mu _{\hbox { macro}}}\), and the micro and the mesoexpression of the Poisson’s ratio in plane stress \(\nu _{ \hbox {micro}} = \frac{\lambda _{\hbox { micro}}}{2\left( \lambda _{\hbox { micro}} + \mu _{\hbox { micro}}\right) }\) and the \(\nu _e = \frac{\lambda _e}{2\left( \lambda _e + \mu _e\right) }\), respectively.
 
4
\(\text {sech}(x) := \frac{1}{\text {cosh}(x)} = \frac{2}{e^{x}+e^{-x}}\).
 
5
Where \(\kappa _e = \frac{2\mu _e + 3\lambda _e}{3}\) and \(\kappa _{\hbox { micro}} = \frac{2\mu _{\hbox { micro}} + 3\lambda _{\hbox { micro}}}{3}\) are the meso- and the micro-scale 3D bulk modulus.
 
6
The equivalent formulation in terms of a rotation vector \(\vartheta :=\hbox {axl} ({\varvec{A}}) \in {\mathbb {R}}^3\) is given in appendix D of [42].
 
7
Where \(\kappa _e = \frac{2\mu _e + 3\lambda _e}{3}\) and \(\kappa _{\hbox { micro}} = \frac{2\mu _{\hbox { micro}} + 3\lambda _{\hbox { micro}}}{3}\) are he meso- and the micro-scale 3D bulk modulus.
 
8
Note that \(\left\Vert \hbox {Curl} \left( \omega \varvec{\mathbb {1}}\right) \right\Vert ^2_{{\mathbb {R}}^{3\times 3}} = \left\Vert \hbox {Anti} \left( \varvec{\hbox {D}} \omega \right) \right\Vert ^2_{{\mathbb {R}}^{3\times 3}} = 2 \left\Vert \hbox {axl} \, \left( \hbox {Anti} \left( \varvec{\hbox {D}} \omega \right) \right) \right\Vert ^2_{{\mathbb {R}}^3} = 2 \left\Vert \varvec{\hbox {D}} \omega \right\Vert ^2_{{\mathbb {R}}^3}\)
 
Literatur
1.
Zurück zum Zitat Altenbach, H., Eremeyev, V.A.: On the linear theory of micropolar plates. Zeitschrift für angewandte Mathematik und Mechanik 89(4), 242–256 (2009)ADSMathSciNetCrossRef Altenbach, H., Eremeyev, V.A.: On the linear theory of micropolar plates. Zeitschrift für angewandte Mathematik und Mechanik 89(4), 242–256 (2009)ADSMathSciNetCrossRef
2.
Zurück zum Zitat Altenbach, H., Eremeyev, V.A.: Generalized Continua-From the Theory to Engineering Applications, vol. 541. Springer, Berlin (2012) Altenbach, H., Eremeyev, V.A.: Generalized Continua-From the Theory to Engineering Applications, vol. 541. Springer, Berlin (2012)
3.
Zurück zum Zitat Altenbach, J., Altenbach, H., Eremeyev, V.A.: On generalized Cosserat-type theories of plates and shells: a short review and bibliography. Arch. Appl. Mech. 80(1), 73–92 (2010)ADSCrossRef Altenbach, J., Altenbach, H., Eremeyev, V.A.: On generalized Cosserat-type theories of plates and shells: a short review and bibliography. Arch. Appl. Mech. 80(1), 73–92 (2010)ADSCrossRef
4.
Zurück zum Zitat Arroyo, M., Belytschko, T.: Continuum mechanics modeling and simulation of carbon nanotubes. Meccanica 40(4–6), 455–469 (2005)MathSciNetCrossRef Arroyo, M., Belytschko, T.: Continuum mechanics modeling and simulation of carbon nanotubes. Meccanica 40(4–6), 455–469 (2005)MathSciNetCrossRef
5.
Zurück zum Zitat Barbagallo, G., Madeo, A., d’Agostino, M.V., Abreu, R., Ghiba, I.D., Neff, P.: Transparent anisotropy for the relaxed micromorphic model: macroscopic consistency conditions and long wave length asymptotics. Int. J. Solids Struct. 120, 7–30 (2017)CrossRef Barbagallo, G., Madeo, A., d’Agostino, M.V., Abreu, R., Ghiba, I.D., Neff, P.: Transparent anisotropy for the relaxed micromorphic model: macroscopic consistency conditions and long wave length asymptotics. Int. J. Solids Struct. 120, 7–30 (2017)CrossRef
6.
Zurück zum Zitat Brcic, M., Canadija, M., Brnic, J.: Estimation of material properties of nanocomposite structures. Meccanica 48(9), 2209–2220 (2013)CrossRef Brcic, M., Canadija, M., Brnic, J.: Estimation of material properties of nanocomposite structures. Meccanica 48(9), 2209–2220 (2013)CrossRef
7.
Zurück zum Zitat Corigliano, A., Cacchione, F., De Masi, B., Riva, C.: On-chip electrostatically actuated bending tests for the mechanical characterization of polysilicon at the micro scale. Meccanica 40(4–6), 485–503 (2005)CrossRef Corigliano, A., Cacchione, F., De Masi, B., Riva, C.: On-chip electrostatically actuated bending tests for the mechanical characterization of polysilicon at the micro scale. Meccanica 40(4–6), 485–503 (2005)CrossRef
8.
Zurück zum Zitat Cowin, S.C., Nunziato, J.W.: Linear elastic materials with voids. J. Elast. 13(2), 125–147 (1983)CrossRef Cowin, S.C., Nunziato, J.W.: Linear elastic materials with voids. J. Elast. 13(2), 125–147 (1983)CrossRef
9.
Zurück zum Zitat d’Agostino, M.V., Barbagallo, G., Ghiba, I.D., Eidel, B., Neff, P., Madeo, A.: Effective description of anisotropic wave dispersion in mechanical band-gap metamaterials via the relaxed micromorphic model. J. Elast. 39, 299–329 (2020)MathSciNetCrossRef d’Agostino, M.V., Barbagallo, G., Ghiba, I.D., Eidel, B., Neff, P., Madeo, A.: Effective description of anisotropic wave dispersion in mechanical band-gap metamaterials via the relaxed micromorphic model. J. Elast. 39, 299–329 (2020)MathSciNetCrossRef
10.
Zurück zum Zitat De Cicco, S., Nappa, L.: Torsion and flexure of microstretch elastic circular cylinders. Int. J. Eng. Sci. 35(6), 573–583 (1997)CrossRef De Cicco, S., Nappa, L.: Torsion and flexure of microstretch elastic circular cylinders. Int. J. Eng. Sci. 35(6), 573–583 (1997)CrossRef
11.
Zurück zum Zitat Dell’Isola, F., Sciarra, G., Vidoli, S.: Generalized Hooke’s law for isotropic second gradient materials. Proc. R. Soc. A Math. Phys. Eng. Sci. 465(2107), 2177–2196 (2009)ADSMathSciNetMATH Dell’Isola, F., Sciarra, G., Vidoli, S.: Generalized Hooke’s law for isotropic second gradient materials. Proc. R. Soc. A Math. Phys. Eng. Sci. 465(2107), 2177–2196 (2009)ADSMathSciNetMATH
12.
Zurück zum Zitat Eremeyev, V.A., Lebedev, L.P., Altenbach, H.: Foundations of Micropolar Mechanics. Springer, Berlin (2012)MATH Eremeyev, V.A., Lebedev, L.P., Altenbach, H.: Foundations of Micropolar Mechanics. Springer, Berlin (2012)MATH
13.
Zurück zum Zitat Forest, S.: Micromorphic approach to materials with internal length. In: Encyclopedia of Continuum Mechanics, pp. 1–11. Springer, Berlin (2018) Forest, S.: Micromorphic approach to materials with internal length. In: Encyclopedia of Continuum Mechanics, pp. 1–11. Springer, Berlin (2018)
14.
Zurück zum Zitat Forest, S.: Micromorphic approach to gradient plasticity and damage. In: Handbook of Nonlocal Continuum Mechanics for Materials and Structures, pp. 499–546. Springer, Berlin (2019) Forest, S.: Micromorphic approach to gradient plasticity and damage. In: Handbook of Nonlocal Continuum Mechanics for Materials and Structures, pp. 499–546. Springer, Berlin (2019)
15.
16.
Zurück zum Zitat Gauthier, R.D., Jahsman, W.E.: A quest for micropolar elastic constants. J. Appl. Mech. 42(2), 369–374 (1975)ADSCrossRef Gauthier, R.D., Jahsman, W.E.: A quest for micropolar elastic constants. J. Appl. Mech. 42(2), 369–374 (1975)ADSCrossRef
17.
Zurück zum Zitat Ghiba, I.D., Neff, P., Madeo, A., Münch, I.: A variant of the linear isotropic indeterminate couple-stress model with symmetric local force-stress, symmetric nonlocal force-stress, symmetric couple-stresses and orthogonal boundary conditions. Math. Mech. Solids 22(6), 1221–1266 (2017)MathSciNetCrossRef Ghiba, I.D., Neff, P., Madeo, A., Münch, I.: A variant of the linear isotropic indeterminate couple-stress model with symmetric local force-stress, symmetric nonlocal force-stress, symmetric couple-stresses and orthogonal boundary conditions. Math. Mech. Solids 22(6), 1221–1266 (2017)MathSciNetCrossRef
18.
Zurück zum Zitat Hadjesfandiari, A.R., Dargush, G.F.: Couple stress theory for solids. Int. J. Solids Struct. 48(18), 2496–2510 (2011)CrossRef Hadjesfandiari, A.R., Dargush, G.F.: Couple stress theory for solids. Int. J. Solids Struct. 48(18), 2496–2510 (2011)CrossRef
19.
Zurück zum Zitat Hadjesfandiari, A.R., Hajesfandiari, A., Dargush, G.F.: Pure plate bending in couple stress theories. arXiv preprint arXiv:1606.02954 (2016) Hadjesfandiari, A.R., Hajesfandiari, A., Dargush, G.F.: Pure plate bending in couple stress theories. arXiv preprint arXiv:​1606.​02954 (2016)
20.
Zurück zum Zitat Hütter, G.: Application of a microstrain continuum to size effects in bending and torsion of foams. Int. J. Eng. Sci. 101, 81–91 (2016)CrossRef Hütter, G.: Application of a microstrain continuum to size effects in bending and torsion of foams. Int. J. Eng. Sci. 101, 81–91 (2016)CrossRef
21.
Zurück zum Zitat Hütter, G., Mühlich, U., Kuna, M.: Micromorphic homogenization of a porous medium: elastic behavior and quasi-brittle damage. Continuum Mech. Thermodyn. 27(6), 1059–1072 (2015)ADSMathSciNetCrossRef Hütter, G., Mühlich, U., Kuna, M.: Micromorphic homogenization of a porous medium: elastic behavior and quasi-brittle damage. Continuum Mech. Thermodyn. 27(6), 1059–1072 (2015)ADSMathSciNetCrossRef
22.
Zurück zum Zitat Ieşan, D.: Torsion of micropolar elastic beams. Int. J. Eng. Sci. 9(11), 1047–1060 (1971)CrossRef Ieşan, D.: Torsion of micropolar elastic beams. Int. J. Eng. Sci. 9(11), 1047–1060 (1971)CrossRef
23.
Zurück zum Zitat Ieşan, D., Nappa, L.: Saint-Venant’s problem for microstretch elastic solids. Int. J. Eng. Sci. 32(2), 229–236 (1994)MathSciNetCrossRef Ieşan, D., Nappa, L.: Saint-Venant’s problem for microstretch elastic solids. Int. J. Eng. Sci. 32(2), 229–236 (1994)MathSciNetCrossRef
24.
Zurück zum Zitat Lakes, R.: Elastic freedom in cellular solids and composite materials. In: Mathematics of Multiscale Materials, pp. 129–153. Springer, Berlin (1998) Lakes, R.: Elastic freedom in cellular solids and composite materials. In: Mathematics of Multiscale Materials, pp. 129–153. Springer, Berlin (1998)
25.
Zurück zum Zitat Lakes, R., Drugan, W.J.: Bending of a Cosserat elastic bar of square cross section: theory and experiment. J. Appl. Mech. 82(9), 091002 (2015) ADSCrossRef Lakes, R., Drugan, W.J.: Bending of a Cosserat elastic bar of square cross section: theory and experiment. J. Appl. Mech. 82(9), 091002 (2015) ADSCrossRef
26.
Zurück zum Zitat Lakes, R.S.: Size effects and micromechanics of a porous solid. J. Mater. Sci. 18(9), 2572–2580 (1983)ADSCrossRef Lakes, R.S.: Size effects and micromechanics of a porous solid. J. Mater. Sci. 18(9), 2572–2580 (1983)ADSCrossRef
27.
Zurück zum Zitat Lakes, R.S.: Experimental methods for study of Cosserat elastic solids and other generalized elastic continua. Continuum Models Mater. Microstruct. 70, 1–25 (1995)MATH Lakes, R.S.: Experimental methods for study of Cosserat elastic solids and other generalized elastic continua. Continuum Models Mater. Microstruct. 70, 1–25 (1995)MATH
28.
Zurück zum Zitat Lewintan, P., Müller, S., Neff, P.: Korn inequalities for incompatible tensor fields in three space dimensions with conformally invariant dislocation energy. arXiv preprint, arXiv:2011.10573 (2020) Lewintan, P., Müller, S., Neff, P.: Korn inequalities for incompatible tensor fields in three space dimensions with conformally invariant dislocation energy. arXiv preprint, arXiv:​2011.​10573 (2020)
29.
Zurück zum Zitat Lurie, S., Solyaev, Y., Volkov, A., Volkov-Bogorodskiy, D.: Bending problems in the theory of elastic materials with voids and surface effects. Math. Mech. Solids 23(5), 787–804 (2018)MathSciNetCrossRef Lurie, S., Solyaev, Y., Volkov, A., Volkov-Bogorodskiy, D.: Bending problems in the theory of elastic materials with voids and surface effects. Math. Mech. Solids 23(5), 787–804 (2018)MathSciNetCrossRef
30.
Zurück zum Zitat Madeo, A., Ghiba, I.D., Neff, P., Münch, I.: A new view on boundary conditions in the Grioli-Koiter-Mindlin-Toupin indeterminate couple stress model. Eur. J. Mech. A/Solids 59, 294–322 (2016)ADSMathSciNetCrossRef Madeo, A., Ghiba, I.D., Neff, P., Münch, I.: A new view on boundary conditions in the Grioli-Koiter-Mindlin-Toupin indeterminate couple stress model. Eur. J. Mech. A/Solids 59, 294–322 (2016)ADSMathSciNetCrossRef
31.
32.
Zurück zum Zitat Münch, I., Neff, P.: Rotational invariance conditions in elasticity, gradient elasticity and its connection to isotropy. Math. Mech. Solids 23(1), 3–42 (2018)MathSciNetCrossRef Münch, I., Neff, P.: Rotational invariance conditions in elasticity, gradient elasticity and its connection to isotropy. Math. Mech. Solids 23(1), 3–42 (2018)MathSciNetCrossRef
33.
Zurück zum Zitat Münch, I., Neff, P., Madeo, A., Ghiba, I.D.: The modified indeterminate couple stress model: Why Yang et al.’s arguments motivating a symmetric couple stress tensor contain a gap and why the couple stress tensor may be chosen symmetric nevertheless. Zeitschrift für Angewandte Mathematik und Mechanik, 97(12):1524–1554 (2017) Münch, I., Neff, P., Madeo, A., Ghiba, I.D.: The modified indeterminate couple stress model: Why Yang et al.’s arguments motivating a symmetric couple stress tensor contain a gap and why the couple stress tensor may be chosen symmetric nevertheless. Zeitschrift für Angewandte Mathematik und Mechanik, 97(12):1524–1554 (2017)
34.
Zurück zum Zitat Neff, P.: On material constants for micromorphic continua. In: Trends in Applications of Mathematics to Mechanics, STAMM Proceedings, Seeheim, pp. 337–348. Shaker-Verlag, Herzogenrath (2004) Neff, P.: On material constants for micromorphic continua. In: Trends in Applications of Mathematics to Mechanics, STAMM Proceedings, Seeheim, pp. 337–348. Shaker-Verlag, Herzogenrath (2004)
35.
Zurück zum Zitat Neff, P., Eidel, B., d’Agostino, M.V., Madeo, A.: Identification of scale-independent material parameters in the relaxed micromorphic model through model-adapted first order homogenization. J. Elast. 139, 269–298 (2020)MathSciNetCrossRef Neff, P., Eidel, B., d’Agostino, M.V., Madeo, A.: Identification of scale-independent material parameters in the relaxed micromorphic model through model-adapted first order homogenization. J. Elast. 139, 269–298 (2020)MathSciNetCrossRef
36.
Zurück zum Zitat Neff, P., Ghiba, I.D., Madeo, A., Münch, I.: Correct traction boundary conditions in the indeterminate couple stress model. arXiv preprint, arXiv:1504.00448 (2015) Neff, P., Ghiba, I.D., Madeo, A., Münch, I.: Correct traction boundary conditions in the indeterminate couple stress model. arXiv preprint, arXiv:​1504.​00448 (2015)
37.
Zurück zum Zitat Neff, P., Ghiba, I.D., Madeo, A., Placidi, L., Rosi, G.: A unifying perspective: the relaxed linear micromorphic continuum. Continuum Mech. Thermodyn. 26(5), 639–681 (2014)ADSMathSciNetCrossRef Neff, P., Ghiba, I.D., Madeo, A., Placidi, L., Rosi, G.: A unifying perspective: the relaxed linear micromorphic continuum. Continuum Mech. Thermodyn. 26(5), 639–681 (2014)ADSMathSciNetCrossRef
38.
Zurück zum Zitat Neff, P., Jeong, J.: A new paradigm: the linear isotropic Cosserat model with conformally invariant curvature energy. Zeitschrift für Angewandte Mathematik und Mechanik 89(2), 107–122 (2009)ADSMathSciNetCrossRef Neff, P., Jeong, J.: A new paradigm: the linear isotropic Cosserat model with conformally invariant curvature energy. Zeitschrift für Angewandte Mathematik und Mechanik 89(2), 107–122 (2009)ADSMathSciNetCrossRef
39.
Zurück zum Zitat Neff, P., Jeong, J., Fischle, A.: Stable identification of linear isotropic Cosserat parameters: bounded stiffness in bending and torsion implies conformal invariance of curvature. Acta Mech. 211(3–4), 237–249 (2010)CrossRef Neff, P., Jeong, J., Fischle, A.: Stable identification of linear isotropic Cosserat parameters: bounded stiffness in bending and torsion implies conformal invariance of curvature. Acta Mech. 211(3–4), 237–249 (2010)CrossRef
40.
Zurück zum Zitat Park, H.C., Lakes, R.S.: Torsion of a micropolar elastic prism of square cross-section. Int. J. Solids Struct. 23(4), 485–503 (1987)CrossRef Park, H.C., Lakes, R.S.: Torsion of a micropolar elastic prism of square cross-section. Int. J. Solids Struct. 23(4), 485–503 (1987)CrossRef
41.
Zurück zum Zitat Renda, F., Armanini, C., Lebastard, V., Candelier, F., Boyer, F.: A geometric variable-strain approach for static modeling of soft manipulators with tendon and fluidic actuation. IEEE Robot. Autom. Lett. 5(3), 4006–4013 (2020)CrossRef Renda, F., Armanini, C., Lebastard, V., Candelier, F., Boyer, F.: A geometric variable-strain approach for static modeling of soft manipulators with tendon and fluidic actuation. IEEE Robot. Autom. Lett. 5(3), 4006–4013 (2020)CrossRef
42.
Zurück zum Zitat Rizzi, G., Hütter, G., Madeo, A., Neff, P.: Analytical solutions of the cylindrical bending problem for the relaxed micromorphic continuum and other generalized continua (including full derivations). arXiv preprint (2020) Rizzi, G., Hütter, G., Madeo, A., Neff, P.: Analytical solutions of the cylindrical bending problem for the relaxed micromorphic continuum and other generalized continua (including full derivations). arXiv preprint (2020)
43.
Zurück zum Zitat Rizzi, G.,Hütter, G., Madeo, A., Neff, P.: Analytical solutions of the simple shear problem for micromorphic models and other generalized continua. Arch. Appl. Mech. 1–18 (2021) Rizzi, G.,Hütter, G., Madeo, A., Neff, P.: Analytical solutions of the simple shear problem for micromorphic models and other generalized continua. Arch. Appl. Mech. 1–18 (2021)
44.
Zurück zum Zitat Rueger, Z., Ha, C.S., Lakes, R.S.: Cosserat elastic lattices. Meccanica 54(13), 1983–1999 (2019)CrossRef Rueger, Z., Ha, C.S., Lakes, R.S.: Cosserat elastic lattices. Meccanica 54(13), 1983–1999 (2019)CrossRef
45.
Zurück zum Zitat Shaat, M.: A reduced micromorphic model for multiscale materials and its applications in wave propagation. Compos. Struct. 201, 446–454 (2018)CrossRef Shaat, M.: A reduced micromorphic model for multiscale materials and its applications in wave propagation. Compos. Struct. 201, 446–454 (2018)CrossRef
46.
Zurück zum Zitat Taliercio, A.: Torsion of micropolar hollow circular cylinders. Mech. Res. Commun. 37(4), 406–411 (2010)CrossRef Taliercio, A.: Torsion of micropolar hollow circular cylinders. Mech. Res. Commun. 37(4), 406–411 (2010)CrossRef
47.
Zurück zum Zitat Tekoğlu, C., Onck, P.R.: Size effects in two-dimensional Voronoi foams: a comparison between generalized continua and discrete models. J. Mech. Phys. Solids 56(12), 3541–3564 (2008)ADSCrossRef Tekoğlu, C., Onck, P.R.: Size effects in two-dimensional Voronoi foams: a comparison between generalized continua and discrete models. J. Mech. Phys. Solids 56(12), 3541–3564 (2008)ADSCrossRef
48.
Zurück zum Zitat Waseem, A., Beveridge, A.J., Wheel, M.A., Nash, D.H.: The influence of void size on the micropolar constitutive properties of model heterogeneous materials. Eur. J. Mech. A/Solids 40, 148–157 (2013)ADSMathSciNetCrossRef Waseem, A., Beveridge, A.J., Wheel, M.A., Nash, D.H.: The influence of void size on the micropolar constitutive properties of model heterogeneous materials. Eur. J. Mech. A/Solids 40, 148–157 (2013)ADSMathSciNetCrossRef
49.
Zurück zum Zitat Yang, J.F.C., Lakes, R.S.: Experimental study of micropolar and couple stress elasticity in compact bone in bending. J. Biomech. 15(2), 91–98 (1982)CrossRef Yang, J.F.C., Lakes, R.S.: Experimental study of micropolar and couple stress elasticity in compact bone in bending. J. Biomech. 15(2), 91–98 (1982)CrossRef
50.
Zurück zum Zitat Zhang, L., Binbin, L., Zhou, S., Wang, B., Xue, Y.: An application of a size-dependent model on microplate with elastic medium based on strain gradient elasticity theory. Meccanica 52(1–2), 251–262 (2017)MathSciNetCrossRef Zhang, L., Binbin, L., Zhou, S., Wang, B., Xue, Y.: An application of a size-dependent model on microplate with elastic medium based on strain gradient elasticity theory. Meccanica 52(1–2), 251–262 (2017)MathSciNetCrossRef
Metadaten
Titel
Analytical solutions of the cylindrical bending problem for the relaxed micromorphic continuum and other generalized continua
verfasst von
Gianluca Rizzi
Geralf Hütter
Angela Madeo
Patrizio Neff
Publikationsdatum
10.03.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Continuum Mechanics and Thermodynamics / Ausgabe 4/2021
Print ISSN: 0935-1175
Elektronische ISSN: 1432-0959
DOI
https://doi.org/10.1007/s00161-021-00984-7

Weitere Artikel der Ausgabe 4/2021

Continuum Mechanics and Thermodynamics 4/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.