Skip to main content
Erschienen in: The International Journal of Advanced Manufacturing Technology 3-4/2020

06.12.2019 | ORIGINAL ARTICLE

Review and analysis of heat source models for additive manufacturing

verfasst von: Mohamed I. Al Hamahmy, Ibrahim Deiab

Erschienen in: The International Journal of Advanced Manufacturing Technology | Ausgabe 3-4/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

As additive manufacturing (AM) becomes a viable manufacturing solution, demand for an accurate thermo-structural model of the process increases. Iteratively correcting discrepancies between the CAD model and additively manufactured product through trial and error can be an expensive and time-consuming process, taking up to several hours to build and costing up to tens of thousands of dollars Lindgren et al. (Addit Manuf 12:144–158, 2016). A numerical model reduces manufacturing cost and time considerably by predicting discrepancies that will arise due to the complex thermal history induced by the AM process, thus reducing the need for iterative manufacturing. An important part of any additive manufacturing model is the heat source model. The heat source model is a mathematical function which represents how much of a heat source’s power actually goes into heating the powdered metal and how this heat is distributed across the heat-affected zone (HAZ). This paper provides a review and analysis of heat source models in the AM literature to date in order to alleviate some of the confusion and provide emerging researchers in the field with perspective on the issue. Both two-dimensional surface models and three dimensional volumetric models are explored. Next, an analysis of the models was performed and presented in an effort to validate their physical accuracy and mathematical usability. This analysis consisted of checking for sensible boundary conditions and ensuring that energy conservation is upheld. In surface models, the TEM00 model is a classic representation of the Gaussian power distribution of most heat sources used in AM. Researchers interested in simply modeling the heat distribution, without accounting for any other phenomena that intervene in the heat transfer process (such as molten pool dynamics) will find the TEM00 model suitable. The literature also shows cases where the TEM00 model has been modified to have a sharper radial gradient, and these modifications can be suitable for high-powered heat sources. For volumetric models, Goldak’s ellipsoidal model (Metall Trans B 15(2)299–305, 1984) remains a straightforward and accurate model that is physically sound and applicable to a variety of cases. The Gaussian cone model presented by Rogeon et al. [48] also performs well, meeting all the required physical and mathematical restrictions. This model’s linearly decaying penetration is better suited for high-energy applications. The non-Gaussian cone proposed by Tsirkas et al. (J Mater Process Technol 134(1):59–69, 2003) imposes inaccurate boundary conditions and violates the first law of thermodynamics, and is thus deemed an inadequate model. Other novel models have been introduced in recent years, most notably the line model and the elongated ellipsoidal model presented by Irwin and Michaleris (J Manuf Sci Eng 138(11):111004, 2016). Both of these models are based on Goldak’s ellipsoidal model and attempt to maintain the accuracy of that model while allowing for fewer time steps and requiring less computational resources. These models appear to function well and can be used effectively in some applications, but could benefit from further study and validation. Care must be taken to ensure that the parameters used with these models do not result in averaging errors or a discontinuous thermal field. These tools must be used carefully with a thorough understanding of the underlying mathematics.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Arrizubieta J, Tabernero I, Exequiel Ruiz J, Lamikiz A, Martinez S, Ukar E (2014) Continuous coaxial nozzle design for LMD based on numerical simulation. 56:429–438 Arrizubieta J, Tabernero I, Exequiel Ruiz J, Lamikiz A, Martinez S, Ukar E (2014) Continuous coaxial nozzle design for LMD based on numerical simulation. 56:429–438
2.
Zurück zum Zitat Thompson SM, Bian L, Shamsaei N, Yadollahi A (2015) An overview of direct laser deposition for additive manufacturing; part I: transport phenomena, modeling and diagnostics. Addit Manuf 8:36–62 Thompson SM, Bian L, Shamsaei N, Yadollahi A (2015) An overview of direct laser deposition for additive manufacturing; part I: transport phenomena, modeling and diagnostics. Addit Manuf 8:36–62
3.
Zurück zum Zitat De Freitas Teixeira PR, De Araújo DB, Da Cunha LAB (2014) Study of the Gaussian distribution heat source model applied to numerical thermal simulations of tig welding processes. Cienc y Eng Sci Eng J 23(1):115–122 De Freitas Teixeira PR, De Araújo DB, Da Cunha LAB (2014) Study of the Gaussian distribution heat source model applied to numerical thermal simulations of tig welding processes. Cienc y Eng Sci Eng J 23(1):115–122
4.
Zurück zum Zitat Hu D, Kovacevic R (2003) Modelling and measuring the thermal behaviour of the molten pool in closed-loop controlled laser-based additive manufacturing. Proc Inst Mech Eng Part B J Eng Manuf 217(4):441–452 Hu D, Kovacevic R (2003) Modelling and measuring the thermal behaviour of the molten pool in closed-loop controlled laser-based additive manufacturing. Proc Inst Mech Eng Part B J Eng Manuf 217(4):441–452
5.
Zurück zum Zitat Cline HE, Anthony TR (1977) Heat treating and melting material with a scanning laser or electron beam. J Appl Phys 48(9):3895–3900 Cline HE, Anthony TR (1977) Heat treating and melting material with a scanning laser or electron beam. J Appl Phys 48(9):3895–3900
6.
Zurück zum Zitat CVI Melles Griot (2009) Gaussian Beam Optics. Gaussian Beam Opt 2(1) CVI Melles Griot (2009) Gaussian Beam Optics. Gaussian Beam Opt 2(1)
7.
Zurück zum Zitat Han L, Phatak KM, Liou FW (2004) Modeling of laser cladding with powder injection. Metall Mater Trans B Process Metall Mater Process Sci 35(6):1139–1150 Han L, Phatak KM, Liou FW (2004) Modeling of laser cladding with powder injection. Metall Mater Trans B Process Metall Mater Process Sci 35(6):1139–1150
8.
Zurück zum Zitat Frenk A, Vandyoussefi M, Wagniere J-D, Zryd A, Kurz W (1997) Analysis of the laser-cladding process for stellite on steel. Metall Mater Trans B Process Metall Mater Process Sci 28B(June):501–508 Frenk A, Vandyoussefi M, Wagniere J-D, Zryd A, Kurz W (1997) Analysis of the laser-cladding process for stellite on steel. Metall Mater Trans B Process Metall Mater Process Sci 28B(June):501–508
9.
Zurück zum Zitat Qi H, Mazumder J, Ki H (2006) Numerical simulation of heat transfer and fluid flow in coaxial laser cladding process for direct metal deposition. J Appl Phys 100(2) Qi H, Mazumder J, Ki H (2006) Numerical simulation of heat transfer and fluid flow in coaxial laser cladding process for direct metal deposition. J Appl Phys 100(2)
10.
Zurück zum Zitat Roberts IA, Wang CJ, Esterlein R, Stanford M, Mynors DJ (2009) A three-dimensional finite element analysis of the temperature field during laser melting of metal powders in additive layer manufacturing. Int J Mach Tools Manuf 49(12–13):916–923 Roberts IA, Wang CJ, Esterlein R, Stanford M, Mynors DJ (2009) A three-dimensional finite element analysis of the temperature field during laser melting of metal powders in additive layer manufacturing. Int J Mach Tools Manuf 49(12–13):916–923
11.
Zurück zum Zitat Hitz CB, Ewing J, Hecht J (2012) Introduction to Laser Technology Hitz CB, Ewing J, Hecht J (2012) Introduction to Laser Technology
12.
Zurück zum Zitat Fischer P, Locher M, Romano V, Weber HP, Kolossov S, Glardon R (2004) Temperature measurements during selective laser sintering of titanium powder. Int J Mach Tools Manuf 44(12–13):1293–1296 Fischer P, Locher M, Romano V, Weber HP, Kolossov S, Glardon R (2004) Temperature measurements during selective laser sintering of titanium powder. Int J Mach Tools Manuf 44(12–13):1293–1296
13.
Zurück zum Zitat Lavery NP, Brown SGR, Sienz J, Cherry J (2014) A review of computational modelling of additive layer manufacturing – multi-scale and multi-physics. Sustain Des Manuf 1(1):651–673 Lavery NP, Brown SGR, Sienz J, Cherry J (2014) A review of computational modelling of additive layer manufacturing – multi-scale and multi-physics. Sustain Des Manuf 1(1):651–673
14.
Zurück zum Zitat Zeng K, Pal D, Stucker BE (2012) A review of thermal analysis methods in laser sintering and selective laser melting. Proc Solid Free Fabr Symp 796–814 Zeng K, Pal D, Stucker BE (2012) A review of thermal analysis methods in laser sintering and selective laser melting. Proc Solid Free Fabr Symp 796–814
15.
Zurück zum Zitat Alimardani M, Toyserkani E, Huissoon JP, Paul CP (2009) On the delamination and crack formation in a thin wall fabricated using laser solid freeform fabrication process: an experimental-numerical investigation. Opt Lasers Eng 47(11):1160–1168 Alimardani M, Toyserkani E, Huissoon JP, Paul CP (2009) On the delamination and crack formation in a thin wall fabricated using laser solid freeform fabrication process: an experimental-numerical investigation. Opt Lasers Eng 47(11):1160–1168
16.
Zurück zum Zitat Picasso M, Rappaz M (1994) A simple but realistic model for laser cladding. Metall Mater Trans B Process Metall Mater Process Sci 25(2):281–291 Picasso M, Rappaz M (1994) A simple but realistic model for laser cladding. Metall Mater Trans B Process Metall Mater Process Sci 25(2):281–291
17.
Zurück zum Zitat Steen WM, Mazumder J (2010) Laser material processing. Springer, New York Steen WM, Mazumder J (2010) Laser material processing. Springer, New York
18.
Zurück zum Zitat Kovalev OB, Kovaleva IO, Smurov IY (2017) Numerical investigation of gas-disperse jet flows created by coaxial nozzles during the laser direct material deposition. J Mater Process Technol 249(June):118–127 Kovalev OB, Kovaleva IO, Smurov IY (2017) Numerical investigation of gas-disperse jet flows created by coaxial nozzles during the laser direct material deposition. J Mater Process Technol 249(June):118–127
19.
Zurück zum Zitat Toyserkani E (1970) Laser Cladding. CRC Press, Boca Raton Toyserkani E (1970) Laser Cladding. CRC Press, Boca Raton
20.
Zurück zum Zitat Foteinopoulos P, Papacharalampopoulos A, Stavropoulos P (2018) On thermal modeling of additive manufacturing processes. CIRP J Manuf Sci Technol 20:66–83 Foteinopoulos P, Papacharalampopoulos A, Stavropoulos P (2018) On thermal modeling of additive manufacturing processes. CIRP J Manuf Sci Technol 20:66–83
21.
Zurück zum Zitat Cernuschi F, Ahmaniemi S, Vuoristo P, Mäntylä T (2004) Modelling of thermal conductivity of porous materials: application to thick thermal barrier coatings. J Eur Ceram Soc 24(9):2657–2667 Cernuschi F, Ahmaniemi S, Vuoristo P, Mäntylä T (2004) Modelling of thermal conductivity of porous materials: application to thick thermal barrier coatings. J Eur Ceram Soc 24(9):2657–2667
22.
Zurück zum Zitat German RM, Park SJ (2008) Handbook of mathematical relations in particulate materials processing: ceramics, powder metals, cermets, carbides, hard materials, and minerals. John Wiley & Sons, Inc. German RM, Park SJ (2008) Handbook of mathematical relations in particulate materials processing: ceramics, powder metals, cermets, carbides, hard materials, and minerals. John Wiley & Sons, Inc.
23.
Zurück zum Zitat Manvatkar VD, Gokhale AA, Jagan Reddy G, Venkataramana A, De A (2011) Estimation of melt pool dimensions, thermal cycle, and hardness distribution in the laser-engineered net shaping process of austenitic stainless steel. Metall Mater Trans A Phys Metall Mater Sci 42(13):4080–4087 Manvatkar VD, Gokhale AA, Jagan Reddy G, Venkataramana A, De A (2011) Estimation of melt pool dimensions, thermal cycle, and hardness distribution in the laser-engineered net shaping process of austenitic stainless steel. Metall Mater Trans A Phys Metall Mater Sci 42(13):4080–4087
24.
Zurück zum Zitat Manvatkar V, De A, Debroy T (2014) Heat transfer and material flow during laser assisted multi-layer additive manufacturing. J Appl Phys 116(12) Manvatkar V, De A, Debroy T (2014) Heat transfer and material flow during laser assisted multi-layer additive manufacturing. J Appl Phys 116(12)
25.
Zurück zum Zitat Manvatkar V, De A, DebRoy T (2015) Spatial variation of melt pool geometry, peak temperature and solidification parameters during laser assisted additive manufacturing process. Mater Sci Technol 31(8):924–930 Manvatkar V, De A, DebRoy T (2015) Spatial variation of melt pool geometry, peak temperature and solidification parameters during laser assisted additive manufacturing process. Mater Sci Technol 31(8):924–930
26.
Zurück zum Zitat Mukherjee T, Zhang W, DebRoy T (2017) An improved prediction of residual stresses and distortion in additive manufacturing. Comput Mater Sci 126:360–372 Mukherjee T, Zhang W, DebRoy T (2017) An improved prediction of residual stresses and distortion in additive manufacturing. Comput Mater Sci 126:360–372
27.
Zurück zum Zitat Huang YL, Liang GY, Su JY, Li JG (2005) Interaction between laser beam and powder stream in the process of laser cladding with powder feeding. Model Simul Mater Sci Eng 13(1):47–56 Huang YL, Liang GY, Su JY, Li JG (2005) Interaction between laser beam and powder stream in the process of laser cladding with powder feeding. Model Simul Mater Sci Eng 13(1):47–56
28.
Zurück zum Zitat Born M, Wolf E, Bhatia AB (1980) Principles of optics : electromagnetic theory of propagation, interference and diffraction of light, 6th edn. Pergamon Press, Oxford Born M, Wolf E, Bhatia AB (1980) Principles of optics : electromagnetic theory of propagation, interference and diffraction of light, 6th edn. Pergamon Press, Oxford
29.
Zurück zum Zitat Kerker M (1969) The Scattering of Light; And Other Electromagnetic Radiation. Academic Press, New York Kerker M (1969) The Scattering of Light; And Other Electromagnetic Radiation. Academic Press, New York
30.
Zurück zum Zitat Jones AR (1983) Calculation of the ratios of complex Riccati-Bessel functions for Mie scattering. J Phys D Appl Phys 16(3) Jones AR (1983) Calculation of the ratios of complex Riccati-Bessel functions for Mie scattering. J Phys D Appl Phys 16(3)
31.
Zurück zum Zitat Jia X (2016) Calculation of auxiliary functions related to Riccati–Bessel functions in Mie scattering. J Mod Opt 63(21):2348–2355 Jia X (2016) Calculation of auxiliary functions related to Riccati–Bessel functions in Mie scattering. J Mod Opt 63(21):2348–2355
32.
Zurück zum Zitat Kovalev OB, Bedenko DV, Zaitsev AV (2018) Development and application of laser cladding modeling technique: from coaxial powder feeding to surface deposition and bead formation. Appl Math Model 57:339–359MathSciNet Kovalev OB, Bedenko DV, Zaitsev AV (2018) Development and application of laser cladding modeling technique: from coaxial powder feeding to surface deposition and bead formation. Appl Math Model 57:339–359MathSciNet
33.
Zurück zum Zitat Kovalev OB, Zaitsev AV, Novichenko D, Smurov I (2011) Theoretical and experimental investigation of gas flows, powder transport and heating in coaxial laser direct metal deposition (DMD) process. J Therm Spray Technol 20(3):465–478 Kovalev OB, Zaitsev AV, Novichenko D, Smurov I (2011) Theoretical and experimental investigation of gas flows, powder transport and heating in coaxial laser direct metal deposition (DMD) process. J Therm Spray Technol 20(3):465–478
34.
Zurück zum Zitat Bedenko DV, Kovalev OB, Smurov I, Zaitsev AV (2016) Numerical simulation of transport phenomena, formation the bead and thermal behavior in application to industrial DMD technology. Int J Heat Mass Transf 95:902–912 Bedenko DV, Kovalev OB, Smurov I, Zaitsev AV (2016) Numerical simulation of transport phenomena, formation the bead and thermal behavior in application to industrial DMD technology. Int J Heat Mass Transf 95:902–912
35.
Zurück zum Zitat Novichenko D, Marants A, Thivillon L, Bertrand P, Smurov I (2011) Metal matrix composite material by direct metal deposition. Phys Procedia 12(PART 1):296–302 Novichenko D, Marants A, Thivillon L, Bertrand P, Smurov I (2011) Metal matrix composite material by direct metal deposition. Phys Procedia 12(PART 1):296–302
36.
Zurück zum Zitat Peyre P, Aubry P, Fabbro R, Neveu R, Longuet A (2008) Analytical and numerical modelling of the direct metal deposition laser process. J Phys D Appl Phys 41(2) Peyre P, Aubry P, Fabbro R, Neveu R, Longuet A (2008) Analytical and numerical modelling of the direct metal deposition laser process. J Phys D Appl Phys 41(2)
37.
Zurück zum Zitat Zhao X, Iyer A, Promoppatum P, Yao SC (2017) Numerical modeling of the thermal behavior and residual stress in the direct metal laser sintering process of titanium alloy products. Addit Manuf 14:126–136 Zhao X, Iyer A, Promoppatum P, Yao SC (2017) Numerical modeling of the thermal behavior and residual stress in the direct metal laser sintering process of titanium alloy products. Addit Manuf 14:126–136
38.
Zurück zum Zitat Goldak J, Chakravarti A, Bibby M (1984) A new finite element model for welding heat sources. Metall Trans B 15(2):299–305 Goldak J, Chakravarti A, Bibby M (1984) A new finite element model for welding heat sources. Metall Trans B 15(2):299–305
39.
Zurück zum Zitat Paley Z, Hibbert PD (1975) Computation of temperatures in actual weld designs. Weld J 54(11):385–392 Paley Z, Hibbert PD (1975) Computation of temperatures in actual weld designs. Weld J 54(11):385–392
40.
Zurück zum Zitat Christensen N, Davies LDV, Gjermundsen K (1965) No Title. Br Weld J 12:54–75 Christensen N, Davies LDV, Gjermundsen K (1965) No Title. Br Weld J 12:54–75
41.
Zurück zum Zitat Chong LM 1982“Predicting weld hardness,” Carleton University Chong LM 1982“Predicting weld hardness,” Carleton University
42.
Zurück zum Zitat Krutz GW, Segerlind LJ (1978) Finited element analysis of welded structures. Weld J Res Suppl 57:211 s–216 s Krutz GW, Segerlind LJ (1978) Finited element analysis of welded structures. Weld J Res Suppl 57:211 s–216 s
43.
Zurück zum Zitat Pavelic V, Tanbakuchi R, Uyehara OA, Myers PS (1969) Experimental and computed temperature histories in gas tungsten arc welding of thin plates. Weld J Res Suppl 48:295–305 Pavelic V, Tanbakuchi R, Uyehara OA, Myers PS (1969) Experimental and computed temperature histories in gas tungsten arc welding of thin plates. Weld J Res Suppl 48:295–305
44.
Zurück zum Zitat Michaleris P (2014) Modeling metal deposition in heat transfer analyses of additive manufacturing processes. Finite Elem Anal Des 86:51–60 Michaleris P (2014) Modeling metal deposition in heat transfer analyses of additive manufacturing processes. Finite Elem Anal Des 86:51–60
45.
Zurück zum Zitat Heigel JC, Michaleris P, Reutzel EW (2015) Thermo-mechanical model development and validation of directed energy deposition additive manufacturing of Ti-6Al-4V. Addit Manuf 5:9–19 Heigel JC, Michaleris P, Reutzel EW (2015) Thermo-mechanical model development and validation of directed energy deposition additive manufacturing of Ti-6Al-4V. Addit Manuf 5:9–19
46.
Zurück zum Zitat Yang Q, Zhang P, Cheng L, Min Z, Chyu M, TO AC (2016) Finite element modeling and validation of thermomechanical behavior of Ti-6Al-4V in directed energy deposition additive manufacturing. Addit Manuf 12:169–177 Yang Q, Zhang P, Cheng L, Min Z, Chyu M, TO AC (2016) Finite element modeling and validation of thermomechanical behavior of Ti-6Al-4V in directed energy deposition additive manufacturing. Addit Manuf 12:169–177
47.
Zurück zum Zitat Denlinger ER, Michaleris P (2016) Effect of stress relaxation on distortion in additive manufacturing process modeling. Addit Manuf 12:51–59 Denlinger ER, Michaleris P (2016) Effect of stress relaxation on distortion in additive manufacturing process modeling. Addit Manuf 12:51–59
48.
Zurück zum Zitat Rogeon Ph, Couedel D, Carron D, et al. (2001) Numerical simulation of electron beam welding of metals: sensitivity study of a predictive model. In: Cerjak H, Bhadeshia H K D H, eds. Mathematical Modelling of Weld Phenomena. Graz: The Institute of Materials, Minerals and Mining, 5:913–943 Rogeon Ph, Couedel D, Carron D, et al. (2001) Numerical simulation of electron beam welding of metals: sensitivity study of a predictive model. In: Cerjak H, Bhadeshia H K D H, eds. Mathematical Modelling of Weld Phenomena. Graz: The Institute of Materials, Minerals and Mining, 5:913–943
49.
Zurück zum Zitat Rouquette S, Guo J, Le Masson P (2007) Estimation of the parameters of a Gaussian heat source by the Levenberg-Marquardt method: application to the electron beam welding. Int J Therm Sci 46(2):128–138 Rouquette S, Guo J, Le Masson P (2007) Estimation of the parameters of a Gaussian heat source by the Levenberg-Marquardt method: application to the electron beam welding. Int J Therm Sci 46(2):128–138
50.
Zurück zum Zitat Shen N, Chou K (2012) Thermal modeling of electron beam sdditive manufacturing process: powder sintering effects. In: ASME 2012 International Manufacturing Science and Engineering Conference. p 287 Shen N, Chou K (2012) Thermal modeling of electron beam sdditive manufacturing process: powder sintering effects. In: ASME 2012 International Manufacturing Science and Engineering Conference. p 287
51.
Zurück zum Zitat Romano J, Ladani L, Sadowski M (2015) Thermal modeling of laser based additive manufacturing processes within common materials. Procedia Manuf 1:238–250 Romano J, Ladani L, Sadowski M (2015) Thermal modeling of laser based additive manufacturing processes within common materials. Procedia Manuf 1:238–250
52.
Zurück zum Zitat Romano J, Ladani L, Sadowski M (2016) Laser additive melting and solidification of Inconel 718: finite element simulation and experiment. Jom 68(3):967–977 Romano J, Ladani L, Sadowski M (2016) Laser additive melting and solidification of Inconel 718: finite element simulation and experiment. Jom 68(3):967–977
53.
Zurück zum Zitat Tsirkas SA, Papanikos P, Kermanidis T (2003) Numerical simulation of the laser welding process in butt-joint specimens. J Mater Process Technol 134(1):59–69 Tsirkas SA, Papanikos P, Kermanidis T (2003) Numerical simulation of the laser welding process in butt-joint specimens. J Mater Process Technol 134(1):59–69
54.
Zurück zum Zitat Wang L, Felicelli S (2007) Process modeling in laser deposition of multilayer SS410 steel. J Manuf Sci Eng 129(6):1028 Wang L, Felicelli S (2007) Process modeling in laser deposition of multilayer SS410 steel. J Manuf Sci Eng 129(6):1028
55.
Zurück zum Zitat Wang L, Felicelli S, Gooroochurn Y, Wang PT, Horstemeyer MF (2008) Optimization of the LENS® process for steady molten pool size. Mater Sci Eng A 474(1–2):148–156 Wang L, Felicelli S, Gooroochurn Y, Wang PT, Horstemeyer MF (2008) Optimization of the LENS® process for steady molten pool size. Mater Sci Eng A 474(1–2):148–156
56.
Zurück zum Zitat Hofmeister W, Wert M, Smugeresky J, Philliber JA, Griffith M (1999) Investigating solidification with the laser-engineered net shaping (LENSTM) process. Miner Met Mater Soc 51(7) Hofmeister W, Wert M, Smugeresky J, Philliber JA, Griffith M (1999) Investigating solidification with the laser-engineered net shaping (LENSTM) process. Miner Met Mater Soc 51(7)
57.
Zurück zum Zitat Piekarska W, Kubiak M (2012) Theoretical investigations into heat transfer in laser-welded steel sheets. J Therm Anal Calorim 110(1):159–166 Piekarska W, Kubiak M (2012) Theoretical investigations into heat transfer in laser-welded steel sheets. J Therm Anal Calorim 110(1):159–166
58.
Zurück zum Zitat Irwin J, Michaleris P (2016) A line heat input model for additive manufacturing. J Manuf Sci Eng 138(11):111004 Irwin J, Michaleris P (2016) A line heat input model for additive manufacturing. J Manuf Sci Eng 138(11):111004
59.
Zurück zum Zitat Vásquez F, Ramos-Grez JA, Walczak M (2012) Multiphysics simulation of laser-material interaction during laser powder depositon. Int J Adv Manuf Technol 59(9–12):1037–1045 Vásquez F, Ramos-Grez JA, Walczak M (2012) Multiphysics simulation of laser-material interaction during laser powder depositon. Int J Adv Manuf Technol 59(9–12):1037–1045
60.
Zurück zum Zitat Lalas C, Tsirbas K, Salonitis K, Chryssolouris G (2007) An analytical model of the laser clad geometry. Int J Adv Manuf Technol 32(1–2):34–41 Lalas C, Tsirbas K, Salonitis K, Chryssolouris G (2007) An analytical model of the laser clad geometry. Int J Adv Manuf Technol 32(1–2):34–41
61.
Zurück zum Zitat Sankaranarayanan S, Kar A (1999) Nonlinear effects of laser-plasma interaction on melt-surface temperature. J Phys D Appl Phys 32(7):777–784 Sankaranarayanan S, Kar A (1999) Nonlinear effects of laser-plasma interaction on melt-surface temperature. J Phys D Appl Phys 32(7):777–784
62.
Zurück zum Zitat Yu G, Gu D, Dai D, Xia M, Ma C, Chang K (2016) Influence of processing parameters on laser penetration depth and melting/re-melting densification during selective laser melting of aluminum alloy. Appl Phys A Mater Sci Process 122(10):1–12 Yu G, Gu D, Dai D, Xia M, Ma C, Chang K (2016) Influence of processing parameters on laser penetration depth and melting/re-melting densification during selective laser melting of aluminum alloy. Appl Phys A Mater Sci Process 122(10):1–12
63.
Zurück zum Zitat Bag S, Trivedi A, De A (2009) Development of a finite element based heat transfer model for conduction mode laser spot welding process using an adaptive volumetric heat source. Int J Therm Sci 48(10):1923–1931 Bag S, Trivedi A, De A (2009) Development of a finite element based heat transfer model for conduction mode laser spot welding process using an adaptive volumetric heat source. Int J Therm Sci 48(10):1923–1931
64.
Zurück zum Zitat Sargent M, Scully MO, Lamb WE (2018) Laser physics Sargent M, Scully MO, Lamb WE (2018) Laser physics
65.
Zurück zum Zitat Goldak JA, Akhlaghi M (2005) Therm Anal Welds Goldak JA, Akhlaghi M (2005) Therm Anal Welds
66.
Zurück zum Zitat Lundbäck A, Lindgren LE (2011) Modelling of metal deposition. Finite Elem Anal Des 47(10):1169–1177 Lundbäck A, Lindgren LE (2011) Modelling of metal deposition. Finite Elem Anal Des 47(10):1169–1177
67.
Zurück zum Zitat Lindgren LE, Lundbäck A, Fisk M, Pederson R, Anderson J (2016) Simulation of additive manufacturing using coupled constitutive and microstructure models. Addit Manuf 12:144–158 Lindgren LE, Lundbäck A, Fisk M, Pederson R, Anderson J (2016) Simulation of additive manufacturing using coupled constitutive and microstructure models. Addit Manuf 12:144–158
Metadaten
Titel
Review and analysis of heat source models for additive manufacturing
verfasst von
Mohamed I. Al Hamahmy
Ibrahim Deiab
Publikationsdatum
06.12.2019
Verlag
Springer London
Erschienen in
The International Journal of Advanced Manufacturing Technology / Ausgabe 3-4/2020
Print ISSN: 0268-3768
Elektronische ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-019-04371-0

Weitere Artikel der Ausgabe 3-4/2020

The International Journal of Advanced Manufacturing Technology 3-4/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.