Skip to main content
Erschienen in: The International Journal of Advanced Manufacturing Technology 7-8/2019

09.11.2019 | ORIGINAL ARTICLE

Optimized hatch space selection in double-scanning track selective laser melting process

verfasst von: Yu-Lung Lo, Bung-Yo Liu, Hong-Chuong Tran

Erschienen in: The International Journal of Advanced Manufacturing Technology | Ausgabe 7-8/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Additive manufacturing (AM) techniques such as selective laser melting (SLM) have many advantages over traditional manufacturing methods. However, the quality of SLM products is critically dependent on the process parameters, e.g., the laser power, scanning speed, powder layer thickness, hatch space, and scan length. Determining the parameter settings which optimize the product quality is a challenging, but extremely important problem for manufacturers. In a previous study, the present group determined the optimal values of the laser power and scanning speed for 316L stainless steel powder beds. The present study extends this work to investigate the effects of the hatch space and scan length on the melting pool characteristics in a double-scanning track SLM process. A three-dimensional finite element model is constructed to predict the features of the scan track melt pool for various values of the hatch space and scan length. A circle packing design method is then used to select a representative set of hatch space and scan length parameters to train artificial neural networks (ANNs) to predict the melt pool temperature, melt pool depth, and overlap rate between adjacent tracks. Finally, the trained ANNs are used to create process maps relating the scan track features to the hatch space and scan length. The optimal hatch space and scan length region of the temperature process map is then determined based on a joint consideration of the peak temperature (less than 3300 K), the difference in depth of adjacent melt pools (less than 10 μm), and the overlap rate of adjacent scan tracks (25~35%). The results indicate that the optimal hatch space is equal to 61% of the laser spot size given an SLM system with a laser power of 180 W, a scanning speed of 680 mm/s, a laser spot size of 120 μm, and a 316L SS powder layer thickness of 50 μm.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Tran H-C, Lo Y-L (2019) Systematic approach for determing optimal processing parameters to produce parts with high density in selective laser melting process, major revision to The International Journal of Advanced Manufacturing Technology Tran H-C, Lo Y-L (2019) Systematic approach for determing optimal processing parameters to produce parts with high density in selective laser melting process, major revision to The International Journal of Advanced Manufacturing Technology
2.
Zurück zum Zitat Shi X, Ma S, Liu C, Wu Q (2017) Parameter optimization for Ti-47Al-2Cr-2Nb in selective laser melting based on geometric characteristics of single scan tracks. Opt Laser Technol 90:71–79CrossRef Shi X, Ma S, Liu C, Wu Q (2017) Parameter optimization for Ti-47Al-2Cr-2Nb in selective laser melting based on geometric characteristics of single scan tracks. Opt Laser Technol 90:71–79CrossRef
3.
Zurück zum Zitat Yadroitsev I, Gusarov A, Yadroitsava I, Smurov I (2010) Single track formation in selective laser melting of metal powders. J Mater Process Technol 210:1624–1631CrossRef Yadroitsev I, Gusarov A, Yadroitsava I, Smurov I (2010) Single track formation in selective laser melting of metal powders. J Mater Process Technol 210:1624–1631CrossRef
4.
Zurück zum Zitat Han Q, Setchi R, Lacan F, Gu D, Evans SL (2017) Selective laser melting of advanced Al-Al2O3 nanocomposites: simulation, microstructure and mechanical properties. Mater Sci Eng A 698:162–173CrossRef Han Q, Setchi R, Lacan F, Gu D, Evans SL (2017) Selective laser melting of advanced Al-Al2O3 nanocomposites: simulation, microstructure and mechanical properties. Mater Sci Eng A 698:162–173CrossRef
5.
Zurück zum Zitat Han X, Zhu H, Nie X, Wang G, Zeng X (2018) Investigation on selective laser melting AlSi10Mg cellular lattice strut: molten pool morphology, surface roughness and dimensional accuracy. Materials (Basel) 11:392CrossRef Han X, Zhu H, Nie X, Wang G, Zeng X (2018) Investigation on selective laser melting AlSi10Mg cellular lattice strut: molten pool morphology, surface roughness and dimensional accuracy. Materials (Basel) 11:392CrossRef
6.
Zurück zum Zitat Di W, Yang L, Yongqiang Y, Dongming X (2016) Theoretical and experimental study on surface roughness of 316L stainless steel metal parts obtained through selective laser melting. Rapid Prototyp J 22:706–716CrossRef Di W, Yang L, Yongqiang Y, Dongming X (2016) Theoretical and experimental study on surface roughness of 316L stainless steel metal parts obtained through selective laser melting. Rapid Prototyp J 22:706–716CrossRef
7.
Zurück zum Zitat Kruth JP, Froyen L, Van Vaerenbergh J, Mercelis P, Rombouts M, Lauwers B (2004) Selective laser melting of iron-based powder. J Mater Process Technol 149:616–622CrossRef Kruth JP, Froyen L, Van Vaerenbergh J, Mercelis P, Rombouts M, Lauwers B (2004) Selective laser melting of iron-based powder. J Mater Process Technol 149:616–622CrossRef
8.
Zurück zum Zitat Liu Y, Yang Y, Wang D (2016) A study on the residual stress during selective laser melting (SLM) of metallic powder. Int J Adv Manuf Technol 87:647–656CrossRef Liu Y, Yang Y, Wang D (2016) A study on the residual stress during selective laser melting (SLM) of metallic powder. Int J Adv Manuf Technol 87:647–656CrossRef
9.
Zurück zum Zitat Mercelis P, Kruth JP (2006) Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyp J 12:254–265CrossRef Mercelis P, Kruth JP (2006) Residual stresses in selective laser sintering and selective laser melting. Rapid Prototyp J 12:254–265CrossRef
10.
Zurück zum Zitat Kamath C, El-dasher B, Gallegos GF, King WE, Sisto A (2014) Density of additively-manufactured, 316L SS parts using laser powder-bed fusion at powers up to 400 W. Int J Adv Manuf Technol 74:65–78CrossRef Kamath C, El-dasher B, Gallegos GF, King WE, Sisto A (2014) Density of additively-manufactured, 316L SS parts using laser powder-bed fusion at powers up to 400 W. Int J Adv Manuf Technol 74:65–78CrossRef
11.
Zurück zum Zitat Gusarov AV, Yadroitsev I, Bertrand P, Smurov I (2009) Model of radiation and heat transfer in laser-powder interaction zone at selective laser melting. J Heat Transf 131:072101–072101-10CrossRef Gusarov AV, Yadroitsev I, Bertrand P, Smurov I (2009) Model of radiation and heat transfer in laser-powder interaction zone at selective laser melting. J Heat Transf 131:072101–072101-10CrossRef
12.
Zurück zum Zitat Hodge NE, Ferencz RM, Solberg JM (2014) Implementation of a thermomechanical model for the simulation of selective laser melting. Comput Mech 54:33–51MathSciNetCrossRef Hodge NE, Ferencz RM, Solberg JM (2014) Implementation of a thermomechanical model for the simulation of selective laser melting. Comput Mech 54:33–51MathSciNetCrossRef
13.
Zurück zum Zitat Tran H-C, Lo Y-L (2018) Heat transfer simulations of selective laser melting process based on volumetric heat source with powder size consideration. J Mater Process Technol 255:411–425CrossRef Tran H-C, Lo Y-L (2018) Heat transfer simulations of selective laser melting process based on volumetric heat source with powder size consideration. J Mater Process Technol 255:411–425CrossRef
14.
Zurück zum Zitat Tran H-C, Lo Y-L, Huang M-H (2017) Analysis of scattering and absorption characteristics of metal powder layer for selective laser sintering. IEEE/ASME Trans Mechatron 22:1807–1817CrossRef Tran H-C, Lo Y-L, Huang M-H (2017) Analysis of scattering and absorption characteristics of metal powder layer for selective laser sintering. IEEE/ASME Trans Mechatron 22:1807–1817CrossRef
15.
Zurück zum Zitat Verhaeghe F, Craeghs T, Heulens J, Pandelaers L (2009) A pragmatic model for selective laser melting with evaporation. Acta Mater 57:6006–6012CrossRef Verhaeghe F, Craeghs T, Heulens J, Pandelaers L (2009) A pragmatic model for selective laser melting with evaporation. Acta Mater 57:6006–6012CrossRef
16.
Zurück zum Zitat King WE, Barth HD, Castillo VM, Gallegos GF, Gibbs JW, Hahn DE et al (2014) Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing. J Mater Process Technol 214:2915–2925CrossRef King WE, Barth HD, Castillo VM, Gallegos GF, Gibbs JW, Hahn DE et al (2014) Observation of keyhole-mode laser melting in laser powder-bed fusion additive manufacturing. J Mater Process Technol 214:2915–2925CrossRef
17.
Zurück zum Zitat Roberts I, Wang C, Esterlein R, Stanford M, Mynors D (2009) A three-dimensional finite element analysis of the temperature field during laser melting of metal powders in additive layer manufacturing. Int J Mach Tools Manuf 49:916–923CrossRef Roberts I, Wang C, Esterlein R, Stanford M, Mynors D (2009) A three-dimensional finite element analysis of the temperature field during laser melting of metal powders in additive layer manufacturing. Int J Mach Tools Manuf 49:916–923CrossRef
18.
Zurück zum Zitat Foroozmehr A, Badrossamay M, Foroozmehr E (2016) Finite element simulation of selective laser melting process considering optical penetration depth of laser in powder bed. Mater Des 89:255–263CrossRef Foroozmehr A, Badrossamay M, Foroozmehr E (2016) Finite element simulation of selective laser melting process considering optical penetration depth of laser in powder bed. Mater Des 89:255–263CrossRef
19.
Zurück zum Zitat Gusarov A, Laoui T, Froyen L, Titov V (2003) Contact thermal conductivity of a powder bed in selective laser sintering. Int J Heat Mass Transf 46:1103–1109CrossRef Gusarov A, Laoui T, Froyen L, Titov V (2003) Contact thermal conductivity of a powder bed in selective laser sintering. Int J Heat Mass Transf 46:1103–1109CrossRef
20.
Zurück zum Zitat Çengel YA, Ghajar AJ (2015) Heat and mass transfer: fundamentals & applications, 5th edn. McGraw-Hill Education, New York Çengel YA, Ghajar AJ (2015) Heat and mass transfer: fundamentals & applications, 5th edn. McGraw-Hill Education, New York
21.
Zurück zum Zitat Han L, Phatak K, Liou F (2004) Modeling of laser cladding with powder injection. Metall Mater Trans B 35:1139–1150CrossRef Han L, Phatak K, Liou F (2004) Modeling of laser cladding with powder injection. Metall Mater Trans B 35:1139–1150CrossRef
22.
Zurück zum Zitat Kamath C (2016) Data mining and statistical inference in selective laser melting. Int J Adv Manuf Technol 86:1659–1677CrossRef Kamath C (2016) Data mining and statistical inference in selective laser melting. Int J Adv Manuf Technol 86:1659–1677CrossRef
23.
Zurück zum Zitat Fang K-T, Li R, Sudjianto A (2005) Design and modeling for computer experiments. CRC Press, Boca RatonCrossRef Fang K-T, Li R, Sudjianto A (2005) Design and modeling for computer experiments. CRC Press, Boca RatonCrossRef
24.
Zurück zum Zitat Loh L-E, Chua C-K, Yeong W-Y, Song J, Mapar M, Sing S-L (2015) Z.-H. Liu and D-Q Zhang, Numerical investigation and an effective modelling on the selective laser melting (SLM) process with aluminium alloy 6061. Int J Heat Mass Transf 80:288–300CrossRef Loh L-E, Chua C-K, Yeong W-Y, Song J, Mapar M, Sing S-L (2015) Z.-H. Liu and D-Q Zhang, Numerical investigation and an effective modelling on the selective laser melting (SLM) process with aluminium alloy 6061. Int J Heat Mass Transf 80:288–300CrossRef
25.
Zurück zum Zitat Simson T, Emmel A, Dwars A, Böhm J (2017) Residual stress measurements on AISI 316L samples manufactured by selective laser melting. Addit Manuf 17:183–189CrossRef Simson T, Emmel A, Dwars A, Böhm J (2017) Residual stress measurements on AISI 316L samples manufactured by selective laser melting. Addit Manuf 17:183–189CrossRef
26.
Zurück zum Zitat Kruth J-P, Deckers J, Yasa E, Wauthlé R (2012) Assessing and comparing influencing factors of residual stresses in selective laser melting using a novel analysis method. Proc IME B J Eng Manufact 226:980–991CrossRef Kruth J-P, Deckers J, Yasa E, Wauthlé R (2012) Assessing and comparing influencing factors of residual stresses in selective laser melting using a novel analysis method. Proc IME B J Eng Manufact 226:980–991CrossRef
27.
Zurück zum Zitat Xia M, Gu D, Yu G, Dai D, Chen H, Shi Q (2016) Influence of hatch spacing on heat and mass transfer, thermodynamics and laser processability during additive manufacturing of Inconel 718 alloy. Int J Mach Tools Manuf 109:147–157CrossRef Xia M, Gu D, Yu G, Dai D, Chen H, Shi Q (2016) Influence of hatch spacing on heat and mass transfer, thermodynamics and laser processability during additive manufacturing of Inconel 718 alloy. Int J Mach Tools Manuf 109:147–157CrossRef
28.
Zurück zum Zitat Di W, Yongqiang Y, Xubin S, Yonghua C (2012) Study on energy input and its influences on single-track, multi-track, and multi-layer in SLM. Int J Adv Manuf Technol 58:1189–1199CrossRef Di W, Yongqiang Y, Xubin S, Yonghua C (2012) Study on energy input and its influences on single-track, multi-track, and multi-layer in SLM. Int J Adv Manuf Technol 58:1189–1199CrossRef
29.
Zurück zum Zitat Wang D, Wu S, Fu F, Mai S, Yang Y, Liu Y, Song C (2017) Mechanisms and characteristics of spatter generation in SLM processing and its effect on the properties. Mater Des 117:121–130CrossRef Wang D, Wu S, Fu F, Mai S, Yang Y, Liu Y, Song C (2017) Mechanisms and characteristics of spatter generation in SLM processing and its effect on the properties. Mater Des 117:121–130CrossRef
30.
Zurück zum Zitat Taheri Andani M, Dehghani R, Karamooz-Ravari MR, Mirzaeifar R, Ni J (2018) A study on the effect of energy input on spatter particles creation during selective laser melting process. Additive Manufacturing 20:33–43CrossRef Taheri Andani M, Dehghani R, Karamooz-Ravari MR, Mirzaeifar R, Ni J (2018) A study on the effect of energy input on spatter particles creation during selective laser melting process. Additive Manufacturing 20:33–43CrossRef
31.
Zurück zum Zitat Shi X, Ma S, Liu C, Chen C, Wu Q, Chen X, Lu J (2016) Performance of high layer thickness in selective laser melting of Ti6Al4V. Materials (Basel) 9:12 Shi X, Ma S, Liu C, Chen C, Wu Q, Chen X, Lu J (2016) Performance of high layer thickness in selective laser melting of Ti6Al4V. Materials (Basel) 9:12
32.
Zurück zum Zitat Wang S, Liu Y, Shi W, Qi B, Yang J, Zhang F, Han D, Ma Y (2017) Research on high layer thickness fabricated of 316L by selective laser melting. Materials (Basel) 10:9 Wang S, Liu Y, Shi W, Qi B, Yang J, Zhang F, Han D, Ma Y (2017) Research on high layer thickness fabricated of 316L by selective laser melting. Materials (Basel) 10:9
33.
Zurück zum Zitat Gong H, Rafi H, Starr T, Stucker B (2013) The effects of processing parameters on defect regularity in Ti-6Al-4V parts fabricated by selective laser melting and electron beam melting, presented at the 24th, Annual international solid freeform fabrication symposium; an additive manufacturing conference, proceedings Gong H, Rafi H, Starr T, Stucker B (2013) The effects of processing parameters on defect regularity in Ti-6Al-4V parts fabricated by selective laser melting and electron beam melting, presented at the 24th, Annual international solid freeform fabrication symposium; an additive manufacturing conference, proceedings
34.
Zurück zum Zitat Yasa E, Kruth JP (2011) Microstructural investigation of selective laser melting 316L stainless steel parts exposed to laser re-melting. Procedia Eng 19:389–395CrossRef Yasa E, Kruth JP (2011) Microstructural investigation of selective laser melting 316L stainless steel parts exposed to laser re-melting. Procedia Eng 19:389–395CrossRef
35.
Zurück zum Zitat Chuang C-H, Sung T-W, Huang C-L, Lo Y-L (2012) Relative two-dimensional nanoparticle concentration measurement based on scanned laser pico-projection. Sensors Actuators B Chem 173:281–287CrossRef Chuang C-H, Sung T-W, Huang C-L, Lo Y-L (2012) Relative two-dimensional nanoparticle concentration measurement based on scanned laser pico-projection. Sensors Actuators B Chem 173:281–287CrossRef
36.
Zurück zum Zitat Haralick RM (1979) Statistical and structural approaches to texture. Proc IEEE 67:786–804CrossRef Haralick RM (1979) Statistical and structural approaches to texture. Proc IEEE 67:786–804CrossRef
Metadaten
Titel
Optimized hatch space selection in double-scanning track selective laser melting process
verfasst von
Yu-Lung Lo
Bung-Yo Liu
Hong-Chuong Tran
Publikationsdatum
09.11.2019
Verlag
Springer London
Erschienen in
The International Journal of Advanced Manufacturing Technology / Ausgabe 7-8/2019
Print ISSN: 0268-3768
Elektronische ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-019-04456-w

Weitere Artikel der Ausgabe 7-8/2019

The International Journal of Advanced Manufacturing Technology 7-8/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.