Skip to main content
Erschienen in: The International Journal of Advanced Manufacturing Technology 7-8/2021

06.01.2021 | Critical Review

Spark plasma sintering of aluminium composites—a review

verfasst von: Ujah Chika Oliver, Aigbodion Victor Sunday, Ezema Ike-Eze Ikechukwu Christain, Makhatha Mamookho Elizabeth

Erschienen in: The International Journal of Advanced Manufacturing Technology | Ausgabe 7-8/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Monolithic aluminium alloy lacks adequate mechanical and tribological properties necessary for optimal functionality in the industry. As a consequence, industrialists and manufacturers have experienced its frequent failures in service. This has necessitated the switch to Al matrix composites which possess better mechanical and tribological characteristics. Sintering has been one of the best fabrication methods of Al composites. However, for the fact that global cost of energy has risen tremendously, the conventional sintering has been replaced by much cheaper, unconventional sintering known as spark plasma sintering (SPS). Its popularity stems from its low energy consumption, short sintering time, and superior properties of products. In this paper, the progress made in the consolidation of aluminium matrix composites (AMCs) using spark plasma sintering, its prospects, and properties of their products were reviewed. Also, powder blending methods applied in SPS were considered.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Olevsky EA (1998) Theory of sintering: from discrete to continuum. Mater Sci Eng R Rep 23(2):41–100CrossRef Olevsky EA (1998) Theory of sintering: from discrete to continuum. Mater Sci Eng R Rep 23(2):41–100CrossRef
2.
Zurück zum Zitat Anderson K et al (1999) Surface oxide debonding in field assisted powder sintering. Mater Sci Eng A 270(2):278–282CrossRef Anderson K et al (1999) Surface oxide debonding in field assisted powder sintering. Mater Sci Eng A 270(2):278–282CrossRef
3.
Zurück zum Zitat Groza JR, Zavaliangos A (2000) Sintering activation by external electrical field. Mater Sci Eng A 287(2):171–177CrossRef Groza JR, Zavaliangos A (2000) Sintering activation by external electrical field. Mater Sci Eng A 287(2):171–177CrossRef
4.
Zurück zum Zitat Raichenko A, Burenkov G, Leshchinsky V (1973) Theoretical analysis of the elementary act of electric discharge sintering. Phys Sinter 5:2–2 Raichenko A, Burenkov G, Leshchinsky V (1973) Theoretical analysis of the elementary act of electric discharge sintering. Phys Sinter 5:2–2
5.
Zurück zum Zitat Thomson K et al (2012) Characterization and mechanical testing of alumina-based nanocomposites reinforced with niobium and/or carbon nanotubes fabricated by spark plasma sintering. Acta Mater 60(2):622–632CrossRef Thomson K et al (2012) Characterization and mechanical testing of alumina-based nanocomposites reinforced with niobium and/or carbon nanotubes fabricated by spark plasma sintering. Acta Mater 60(2):622–632CrossRef
6.
Zurück zum Zitat Ujah C, Popoola O, Aigbodion V (2019) Optimisation of spark plasma sintering parameters of Al-CNTs-Nb nano-composite using Taguchi Design of Experiment. Int J Adv Manuf Technol 100(5-8):1563–1573CrossRef Ujah C, Popoola O, Aigbodion V (2019) Optimisation of spark plasma sintering parameters of Al-CNTs-Nb nano-composite using Taguchi Design of Experiment. Int J Adv Manuf Technol 100(5-8):1563–1573CrossRef
7.
Zurück zum Zitat Li JF, Wang K, Zhang BP, Zhang LM (2006) Ferroelectric and piezoelectric properties of fine-grained Na0. 5K0. 5NbO3 lead-free piezoelectric ceramics prepared by spark plasma sintering. J Am Ceram Soc 89(2):706–709CrossRef Li JF, Wang K, Zhang BP, Zhang LM (2006) Ferroelectric and piezoelectric properties of fine-grained Na0. 5K0. 5NbO3 lead-free piezoelectric ceramics prepared by spark plasma sintering. J Am Ceram Soc 89(2):706–709CrossRef
8.
Zurück zum Zitat Heng W et al (2006) High-performance Ag {sub 0.8} Pb {sub 18+ x} SbTe {sub 20} thermoelectric bulk materials fabricated by mechanical alloying and spark plasma sintering. Appl Phys Lett 88:9 Heng W et al (2006) High-performance Ag {sub 0.8} Pb {sub 18+ x} SbTe {sub 20} thermoelectric bulk materials fabricated by mechanical alloying and spark plasma sintering. Appl Phys Lett 88:9
9.
Zurück zum Zitat Saheb N (2013) Spark plasma and microwave sintering of Al6061 and Al2124 alloys. Int J Miner Metall Mater 20(2):152–159CrossRef Saheb N (2013) Spark plasma and microwave sintering of Al6061 and Al2124 alloys. Int J Miner Metall Mater 20(2):152–159CrossRef
10.
Zurück zum Zitat Delaizir G, Bernard-Granger G, Monnier J, Grodzki R, Kim-Hak O, Szkutnik PD, Soulier M, Saunier S, Goeuriot D, Rouleau O, Simon J, Godart C, Navone C (2012) A comparative study of spark plasma sintering (SPS), hot isostatic pressing (hip) and microwaves sintering techniques on p-type Bi2Te3 thermoelectric properties. Mater Res Bull 47(8):1954–1960CrossRef Delaizir G, Bernard-Granger G, Monnier J, Grodzki R, Kim-Hak O, Szkutnik PD, Soulier M, Saunier S, Goeuriot D, Rouleau O, Simon J, Godart C, Navone C (2012) A comparative study of spark plasma sintering (SPS), hot isostatic pressing (hip) and microwaves sintering techniques on p-type Bi2Te3 thermoelectric properties. Mater Res Bull 47(8):1954–1960CrossRef
11.
Zurück zum Zitat Conrad H (2002) Thermally activated plastic flow of metals and ceramics with an electric field or current. Mater Sci Eng A 322(1-2):100–107CrossRef Conrad H (2002) Thermally activated plastic flow of metals and ceramics with an electric field or current. Mater Sci Eng A 322(1-2):100–107CrossRef
13.
Zurück zum Zitat Ujah C et al (2019) Enhanced mechanical, electrical and corrosion characteristics of Al-CNTs-Nb composite processed via spark plasma sintering for conductor core. J Compos Mater:0021998319848055 Ujah C et al (2019) Enhanced mechanical, electrical and corrosion characteristics of Al-CNTs-Nb composite processed via spark plasma sintering for conductor core. J Compos Mater:0021998319848055
14.
Zurück zum Zitat Ujah C, Popoola O, Aigbodion V (2019) Enhanced tribology, thermal and electrical properties of Al-CNT composite processed via spark plasma sintering for transmission conductor. J Mater Sci 54(22):14064–14073CrossRef Ujah C, Popoola O, Aigbodion V (2019) Enhanced tribology, thermal and electrical properties of Al-CNT composite processed via spark plasma sintering for transmission conductor. J Mater Sci 54(22):14064–14073CrossRef
15.
Zurück zum Zitat Ujah C, Popoola O, Aigbodion V (2018) Electrical conductivity, mechanical strength and corrosion characteristics of spark plasma sintered Al-Nb nanocomposite. Int J Adv Manuf Technol 101:2275–2282CrossRef Ujah C, Popoola O, Aigbodion V (2018) Electrical conductivity, mechanical strength and corrosion characteristics of spark plasma sintered Al-Nb nanocomposite. Int J Adv Manuf Technol 101:2275–2282CrossRef
16.
Zurück zum Zitat Oladijo O, Ujah C, Namoshe M (2019) Dataset of spark plasma sintering of AlZnSn alloy for soft solder application. Data brief 24:103948CrossRef Oladijo O, Ujah C, Namoshe M (2019) Dataset of spark plasma sintering of AlZnSn alloy for soft solder application. Data brief 24:103948CrossRef
17.
Zurück zum Zitat Ujah C, Popoola O, Aigbodion V (2020) Influence of CNTs addition on the mechanical, microstructural, and corrosion properties of Al alloy using spark plasma sintering technique. Int J Adv Manuf Technol 106(7-8):2961–2969CrossRef Ujah C, Popoola O, Aigbodion V (2020) Influence of CNTs addition on the mechanical, microstructural, and corrosion properties of Al alloy using spark plasma sintering technique. Int J Adv Manuf Technol 106(7-8):2961–2969CrossRef
18.
Zurück zum Zitat Ujah CO, Popoola P, Popoola O, Aigbodion V (2019) Modification of Al alloy nanopowder with Nb nanopowder on its thermal and tribological properties with SPS for power conductors. Mater Res Expr 6(11):116592CrossRef Ujah CO, Popoola P, Popoola O, Aigbodion V (2019) Modification of Al alloy nanopowder with Nb nanopowder on its thermal and tribological properties with SPS for power conductors. Mater Res Expr 6(11):116592CrossRef
19.
Zurück zum Zitat Chieh K et al (2009) The influences of powder mixing process on the quality of W-cu composites. J Trans Can Soc Mech Eng 33:3 Chieh K et al (2009) The influences of powder mixing process on the quality of W-cu composites. J Trans Can Soc Mech Eng 33:3
20.
Zurück zum Zitat POPOOLA P et al (2020) Improving tribological and thermal properties of Al alloy using CNTs and Nb nanopowder via SPS for power transmission conductor. Trans Nonferrous Metals Soc China 30(2):333–343CrossRef POPOOLA P et al (2020) Improving tribological and thermal properties of Al alloy using CNTs and Nb nanopowder via SPS for power transmission conductor. Trans Nonferrous Metals Soc China 30(2):333–343CrossRef
21.
Zurück zum Zitat Suryanarayana C, Al-Aqeeli N (2013) Mechanically alloyed nanocomposites. Prog Mater Sci 58(4):383–502CrossRef Suryanarayana C, Al-Aqeeli N (2013) Mechanically alloyed nanocomposites. Prog Mater Sci 58(4):383–502CrossRef
22.
Zurück zum Zitat Saheb N, Mohammad K (2016) Microstructure and mechanical properties of spark plasma sintered Al2O3-SiC-CNTs hybrid nanocomposites. Ceram Int 42(10):12330–12340CrossRef Saheb N, Mohammad K (2016) Microstructure and mechanical properties of spark plasma sintered Al2O3-SiC-CNTs hybrid nanocomposites. Ceram Int 42(10):12330–12340CrossRef
23.
Zurück zum Zitat Saheb N, Hayat U, Hassan SF (2019) Recent advances and future prospects in spark plasma sintered alumina hybrid nanocomposites. Nanomaterials 9(11):1607CrossRef Saheb N, Hayat U, Hassan SF (2019) Recent advances and future prospects in spark plasma sintered alumina hybrid nanocomposites. Nanomaterials 9(11):1607CrossRef
24.
Zurück zum Zitat Ashwath P, Xavior MA (2014) The effect of ball milling & reinforcement percentage on sintered samples of aluminium alloy metal matrix composites. Procedia Eng 97:1027–1032CrossRef Ashwath P, Xavior MA (2014) The effect of ball milling & reinforcement percentage on sintered samples of aluminium alloy metal matrix composites. Procedia Eng 97:1027–1032CrossRef
25.
Zurück zum Zitat Han Q, Setchi R, Evans SL (2016) Synthesis and characterisation of advanced ball-milled Al-Al2O3 nanocomposites for selective laser melting. Powder Technol 297:183–192CrossRef Han Q, Setchi R, Evans SL (2016) Synthesis and characterisation of advanced ball-milled Al-Al2O3 nanocomposites for selective laser melting. Powder Technol 297:183–192CrossRef
26.
Zurück zum Zitat Nestler D et al (2011) Powder metallurgy of particle-reinforced aluminium matrix composites (AMC) by means of high-energy ball milling. In: Integrated systems, design and technology 2010. Springer, Berlin, pp 93–107CrossRef Nestler D et al (2011) Powder metallurgy of particle-reinforced aluminium matrix composites (AMC) by means of high-energy ball milling. In: Integrated systems, design and technology 2010. Springer, Berlin, pp 93–107CrossRef
27.
Zurück zum Zitat Dagasan E, Gercekcioglu E, Unalan S (2018) Characterization of ball milled Al-Al2O3 sub-micron composites. In: IOP Conference Series: Materials Science and Engineering. IOP Publishing, Bristol Dagasan E, Gercekcioglu E, Unalan S (2018) Characterization of ball milled Al-Al2O3 sub-micron composites. In: IOP Conference Series: Materials Science and Engineering. IOP Publishing, Bristol
28.
Zurück zum Zitat Corrochano J, Lieblich M, Ibáñez J (2011) The effect of ball milling on the microstructure of powder metallurgy aluminium matrix composites reinforced with MoSi2 intermetallic particles. Compos A: Appl Sci Manuf 42(9):1093–1099CrossRef Corrochano J, Lieblich M, Ibáñez J (2011) The effect of ball milling on the microstructure of powder metallurgy aluminium matrix composites reinforced with MoSi2 intermetallic particles. Compos A: Appl Sci Manuf 42(9):1093–1099CrossRef
29.
Zurück zum Zitat Bastwros M, Kim GY, Zhu C, Zhang K, Wang S, Tang X, Wang X (2014) Effect of ball milling on graphene reinforced Al6061 composite fabricated by semi-solid sintering. Compos Part B 60:111–118CrossRef Bastwros M, Kim GY, Zhu C, Zhang K, Wang S, Tang X, Wang X (2014) Effect of ball milling on graphene reinforced Al6061 composite fabricated by semi-solid sintering. Compos Part B 60:111–118CrossRef
30.
Zurück zum Zitat Sajjadi SP (2005) Sol-gel process and its application in Nanotechnology. J Polym Eng Technol 13:38–41 Sajjadi SP (2005) Sol-gel process and its application in Nanotechnology. J Polym Eng Technol 13:38–41
31.
Zurück zum Zitat Rao BG, Mukherjee D, Reddy BM (2017) Novel approaches for preparation of nanoparticles, in Nanostructures for novel therapy. Elsevier, Amsterdam, pp 1–36CrossRef Rao BG, Mukherjee D, Reddy BM (2017) Novel approaches for preparation of nanoparticles, in Nanostructures for novel therapy. Elsevier, Amsterdam, pp 1–36CrossRef
32.
Zurück zum Zitat Zapata-Solvas E, Gómez-García D, Domínguez-Rodríguez A (2012) Towards physical properties tailoring of carbon nanotubes-reinforced ceramic matrix composites. J Eur Ceram Soc 32(12):3001–3020CrossRef Zapata-Solvas E, Gómez-García D, Domínguez-Rodríguez A (2012) Towards physical properties tailoring of carbon nanotubes-reinforced ceramic matrix composites. J Eur Ceram Soc 32(12):3001–3020CrossRef
33.
Zurück zum Zitat Idris J, Nee NNN (2005) The effect of sol-gel technique on the aluminium SiCp composite. Jurnal Mekanikal 2005:19 Idris J, Nee NNN (2005) The effect of sol-gel technique on the aluminium SiCp composite. Jurnal Mekanikal 2005:19
34.
Zurück zum Zitat Amateau M (1976) Progress in the development of graphite-aluminum composites using liquid infiltration technology. J Compos Mater 10(4):279–296CrossRef Amateau M (1976) Progress in the development of graphite-aluminum composites using liquid infiltration technology. J Compos Mater 10(4):279–296CrossRef
35.
Zurück zum Zitat Clement J et al (1990) Interfacial modification in metal matrix composites by the sol-gel process. Mater Manuafact Process 5(1):17–33MathSciNetCrossRef Clement J et al (1990) Interfacial modification in metal matrix composites by the sol-gel process. Mater Manuafact Process 5(1):17–33MathSciNetCrossRef
36.
Zurück zum Zitat Deborah, D.C., Composite materials: science and applications. Engineering Materials and Processes, 2010. Deborah, D.C., Composite materials: science and applications. Engineering Materials and Processes, 2010.
37.
Zurück zum Zitat Štengl V (2012) Preparation of graphene by using an intense cavitation field in a pressurized ultrasonic reactor. Chem Eur J 18(44):14047–14054CrossRef Štengl V (2012) Preparation of graphene by using an intense cavitation field in a pressurized ultrasonic reactor. Chem Eur J 18(44):14047–14054CrossRef
38.
Zurück zum Zitat Simões S, Viana F, Reis M, Vieira M (2017) Aluminum and nickel matrix composites reinforced by CNTs: dispersion/mixture by ultrasonication. Metals 7(7):279CrossRef Simões S, Viana F, Reis M, Vieira M (2017) Aluminum and nickel matrix composites reinforced by CNTs: dispersion/mixture by ultrasonication. Metals 7(7):279CrossRef
39.
Zurück zum Zitat Thomas S et al (2019) Effect of sonication in enhancing the uniformity of MWCNT distribution in aluminium alloy AA2219 matrix. Mater Today: Proc 18:4058–4066 Thomas S et al (2019) Effect of sonication in enhancing the uniformity of MWCNT distribution in aluminium alloy AA2219 matrix. Mater Today: Proc 18:4058–4066
40.
Zurück zum Zitat Javadi A, Mirdamadi S, Faghihisani M, Shakhesi S, Soltani R (2013) Well-dispersion of multi-walled carbon nanotubes in aluminum matrix composites by controlling the mixing process. Fullerenes, Nanotubes Carbon Nanostructures 21(5):436–447CrossRef Javadi A, Mirdamadi S, Faghihisani M, Shakhesi S, Soltani R (2013) Well-dispersion of multi-walled carbon nanotubes in aluminum matrix composites by controlling the mixing process. Fullerenes, Nanotubes Carbon Nanostructures 21(5):436–447CrossRef
41.
Zurück zum Zitat Rais L, Sharma R, Sharma V (2013) Synthesis and structural characterization of Al-CNT metal matrix composite using physical mixing method. IOSR J Appl Phys 5(4):54–57CrossRef Rais L, Sharma R, Sharma V (2013) Synthesis and structural characterization of Al-CNT metal matrix composite using physical mixing method. IOSR J Appl Phys 5(4):54–57CrossRef
42.
Zurück zum Zitat Maqbool A et al (2014) Synthesis of copper coated carbon nanotubes for aluminium matrix composites. In: IOP Conference Series: Materials Science and Engineering. IOP Publishing, Bristol Maqbool A et al (2014) Synthesis of copper coated carbon nanotubes for aluminium matrix composites. In: IOP Conference Series: Materials Science and Engineering. IOP Publishing, Bristol
43.
Zurück zum Zitat Cha S, Kim KT, Arshad SN, Mo CB, Hong SH (2005) Extraordinary strengthening effect of carbon nanotubes in metal-matrix nanocomposites processed by molecularlevel mixing. Adv Mater 17(11):1377–1381CrossRef Cha S, Kim KT, Arshad SN, Mo CB, Hong SH (2005) Extraordinary strengthening effect of carbon nanotubes in metal-matrix nanocomposites processed by molecularlevel mixing. Adv Mater 17(11):1377–1381CrossRef
44.
Zurück zum Zitat Mohammed SM, Chen DL (2020) Carbon nanotube-reinforced aluminum matrix composites. Adv Eng Mater 22(4):1901176CrossRef Mohammed SM, Chen DL (2020) Carbon nanotube-reinforced aluminum matrix composites. Adv Eng Mater 22(4):1901176CrossRef
45.
Zurück zum Zitat Kim M et al (2015) Fabrication of Al2O3/AlN micro-composites designed for tailored physical properties. Mater Des 86:1–5CrossRef Kim M et al (2015) Fabrication of Al2O3/AlN micro-composites designed for tailored physical properties. Mater Des 86:1–5CrossRef
46.
Zurück zum Zitat Nam DH, Cha SI, Jeong YJ, Hong SH (2013) Enhanced graphitization of carbon around carbon nanotubes during the formation of carbon nanotube/graphite composites by pyrolysis of carbon nanotube/polyaniline composites. J Nanosci Nanotechnol 13(11):7365–7369CrossRef Nam DH, Cha SI, Jeong YJ, Hong SH (2013) Enhanced graphitization of carbon around carbon nanotubes during the formation of carbon nanotube/graphite composites by pyrolysis of carbon nanotube/polyaniline composites. J Nanosci Nanotechnol 13(11):7365–7369CrossRef
47.
Zurück zum Zitat Mohammad K, Saheb N (2016) Molecular level mixing: an approach for synthesis of homogenous hybrid ceramic nanocomposite powders. Powder Technol 291:121–130CrossRef Mohammad K, Saheb N (2016) Molecular level mixing: an approach for synthesis of homogenous hybrid ceramic nanocomposite powders. Powder Technol 291:121–130CrossRef
48.
Zurück zum Zitat Murugesan R, Gopal M, Murali G (2019) Effect of Cu, Ni addition on the CNTs dispersion, wear and thermal expansion behavior of Al-CNT composites by molecular mixing and mechanical alloying. Appl Surf Sci 495:143542CrossRef Murugesan R, Gopal M, Murali G (2019) Effect of Cu, Ni addition on the CNTs dispersion, wear and thermal expansion behavior of Al-CNT composites by molecular mixing and mechanical alloying. Appl Surf Sci 495:143542CrossRef
49.
Zurück zum Zitat Lal M, Singhal SK, Sharma I, Mathur RB (2013) An alternative improved method for the homogeneous dispersion of CNTs in Cu matrix for the fabrication of Cu/CNTs composites. Appl Nanosci 3(1):29–35CrossRef Lal M, Singhal SK, Sharma I, Mathur RB (2013) An alternative improved method for the homogeneous dispersion of CNTs in Cu matrix for the fabrication of Cu/CNTs composites. Appl Nanosci 3(1):29–35CrossRef
50.
Zurück zum Zitat Zhang Z-H, Liu ZF, Lu JF, Shen XB, Wang FC, Wang YD (2014) The sintering mechanism in spark plasma sintering–proof of the occurrence of spark discharge. Scr Mater 81:56–59CrossRef Zhang Z-H, Liu ZF, Lu JF, Shen XB, Wang FC, Wang YD (2014) The sintering mechanism in spark plasma sintering–proof of the occurrence of spark discharge. Scr Mater 81:56–59CrossRef
51.
Zurück zum Zitat Orru R et al (2009) Consolidation/synthesis of materials by electric current activated/assisted sintering. Mater Sci Eng R Rep 63(4-6):127–287CrossRef Orru R et al (2009) Consolidation/synthesis of materials by electric current activated/assisted sintering. Mater Sci Eng R Rep 63(4-6):127–287CrossRef
52.
Zurück zum Zitat Saheb N, Iqbal Z, Khalil A, Hakeem AS, al Aqeeli N, Laoui T, al-Qutub A, Kirchner R (2012) Spark plasma sintering of metals and metal matrix nanocomposites: a review. J Nanomater 2012:1–13CrossRef Saheb N, Iqbal Z, Khalil A, Hakeem AS, al Aqeeli N, Laoui T, al-Qutub A, Kirchner R (2012) Spark plasma sintering of metals and metal matrix nanocomposites: a review. J Nanomater 2012:1–13CrossRef
53.
Zurück zum Zitat Munir Z, Anselmi-Tamburini U, Ohyanagi M (2006) The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method. J Mater Sci 41(3):763–777CrossRef Munir Z, Anselmi-Tamburini U, Ohyanagi M (2006) The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method. J Mater Sci 41(3):763–777CrossRef
54.
Zurück zum Zitat Grasso S, Sakka Y, Maizza G (2009) Electric current activated/assisted sintering (ECAS): a review of patents 1906–2008. Sci Technol Adv Mater 10(5):053001CrossRef Grasso S, Sakka Y, Maizza G (2009) Electric current activated/assisted sintering (ECAS): a review of patents 1906–2008. Sci Technol Adv Mater 10(5):053001CrossRef
55.
Zurück zum Zitat Hulbert DM, Anders A, Andersson J, Lavernia EJ, Mukherjee AK (2009) A discussion on the absence of plasma in spark plasma sintering. Scr Mater 60(10):835–838CrossRef Hulbert DM, Anders A, Andersson J, Lavernia EJ, Mukherjee AK (2009) A discussion on the absence of plasma in spark plasma sintering. Scr Mater 60(10):835–838CrossRef
56.
Zurück zum Zitat Guyot P, Rat V, Coudert JF, Jay F, Maître A, Pradeilles N (2012) Does the Branly effect occur in spark plasma sintering? J Phys D Appl Phys 45(9):092001CrossRef Guyot P, Rat V, Coudert JF, Jay F, Maître A, Pradeilles N (2012) Does the Branly effect occur in spark plasma sintering? J Phys D Appl Phys 45(9):092001CrossRef
57.
Zurück zum Zitat Chaim R (2016) On densification mechanisms of ceramic particles during spark plasma sintering. Scr Mater 115:84–86CrossRef Chaim R (2016) On densification mechanisms of ceramic particles during spark plasma sintering. Scr Mater 115:84–86CrossRef
58.
Zurück zum Zitat Chakravarty D, Chokshi AH (2014) Direct characterizing of densification mechanisms during spark plasma sintering. J Am Ceram Soc 97(3):765–771CrossRef Chakravarty D, Chokshi AH (2014) Direct characterizing of densification mechanisms during spark plasma sintering. J Am Ceram Soc 97(3):765–771CrossRef
59.
Zurück zum Zitat Kieback B (2011) A review of spark plasma sintering. In: Proceedings of the Hagen symposium Hagen Germany Kieback B (2011) A review of spark plasma sintering. In: Proceedings of the Hagen symposium Hagen Germany
60.
Zurück zum Zitat Hitchcock D, Livingston R, Liebenberg D (2015) Improved understanding of the spark plasma sintering process. J Appl Phys 117(17):174505CrossRef Hitchcock D, Livingston R, Liebenberg D (2015) Improved understanding of the spark plasma sintering process. J Appl Phys 117(17):174505CrossRef
61.
Zurück zum Zitat Aguilar-Elguézabal A, Bocanegra-Bernal M (2014) Fracture behaviour of α-Al2O3 ceramics reinforced with a mixture of single-wall and multi-wall carbon nanotubes. Compos Part B 60:463–470CrossRef Aguilar-Elguézabal A, Bocanegra-Bernal M (2014) Fracture behaviour of α-Al2O3 ceramics reinforced with a mixture of single-wall and multi-wall carbon nanotubes. Compos Part B 60:463–470CrossRef
62.
Zurück zum Zitat Yazdani B, Xia Y, Ahmad I, Zhu Y (2015) Graphene and carbon nanotube (GNT)-reinforced alumina nanocomposites. J Eur Ceram Soc 35(1):179–186CrossRef Yazdani B, Xia Y, Ahmad I, Zhu Y (2015) Graphene and carbon nanotube (GNT)-reinforced alumina nanocomposites. J Eur Ceram Soc 35(1):179–186CrossRef
63.
Zurück zum Zitat KANAMARU M, Tatsuno T, Kusaka T (1992) Hot-pressed Al2O3/SiC whisker/TiC nano-composites. J Ceram Soc Jpn 100(1160):408–412CrossRef KANAMARU M, Tatsuno T, Kusaka T (1992) Hot-pressed Al2O3/SiC whisker/TiC nano-composites. J Ceram Soc Jpn 100(1160):408–412CrossRef
64.
Zurück zum Zitat Yazdani B, Xu F, Ahmad I, Hou X, Xia Y, Zhu Y (2015) Tribological performance of graphene/carbon nanotube hybrid reinforced Al 2 O 3 composites. Sci Rep 5:11579CrossRef Yazdani B, Xu F, Ahmad I, Hou X, Xia Y, Zhu Y (2015) Tribological performance of graphene/carbon nanotube hybrid reinforced Al 2 O 3 composites. Sci Rep 5:11579CrossRef
65.
Zurück zum Zitat Michálek M, Sedláček J, Parchoviansky M, Michálková M, Galusek D (2014) Mechanical properties and electrical conductivity of alumina/MWCNT and alumina/zirconia/MWCNT composites. Ceram Int 40(1):1289–1295CrossRef Michálek M, Sedláček J, Parchoviansky M, Michálková M, Galusek D (2014) Mechanical properties and electrical conductivity of alumina/MWCNT and alumina/zirconia/MWCNT composites. Ceram Int 40(1):1289–1295CrossRef
66.
Zurück zum Zitat Ahmad K, Pan W, Qu Z (2009) Multifunctional properties of alumina composites reinforced by a hybrid filler. Int J Appl Ceram Technol 6(1):80–88CrossRef Ahmad K, Pan W, Qu Z (2009) Multifunctional properties of alumina composites reinforced by a hybrid filler. Int J Appl Ceram Technol 6(1):80–88CrossRef
67.
Zurück zum Zitat Ivanov R, Hussainova I, Aghayan M, Drozdova M, Pérez-Coll D, Rodríguez MA, Rubio-Marcos F (2015) Graphene-encapsulated aluminium oxide nanofibers as a novel type of nanofillers for electroconductive ceramics. J Eur Ceram Soc 35(14):4017–4021CrossRef Ivanov R, Hussainova I, Aghayan M, Drozdova M, Pérez-Coll D, Rodríguez MA, Rubio-Marcos F (2015) Graphene-encapsulated aluminium oxide nanofibers as a novel type of nanofillers for electroconductive ceramics. J Eur Ceram Soc 35(14):4017–4021CrossRef
68.
Zurück zum Zitat Mansoor M, Shahid M (2016) Carbon nanotube-reinforced aluminum composite produced by induction melting. Journal of Appl Res Technol 14(4):215–224CrossRef Mansoor M, Shahid M (2016) Carbon nanotube-reinforced aluminum composite produced by induction melting. Journal of Appl Res Technol 14(4):215–224CrossRef
69.
Zurück zum Zitat Laha T, Chen Y, Lahiri D, Agarwal A (2009) Tensile properties of carbon nanotube reinforced aluminum nanocomposite fabricated by plasma spray forming. Compos A: Appl Sci Manuf 40(5):589–594CrossRef Laha T, Chen Y, Lahiri D, Agarwal A (2009) Tensile properties of carbon nanotube reinforced aluminum nanocomposite fabricated by plasma spray forming. Compos A: Appl Sci Manuf 40(5):589–594CrossRef
70.
Zurück zum Zitat Kurita H, Kwon H, Estili M, Kawasaki A (2011) Multi-walled carbon nanotube-aluminum matrix composites prepared by combination of hetero-agglomeration method, spark plasma sintering and hot extrusion. Mater Trans 52(10):1960–1965CrossRef Kurita H, Kwon H, Estili M, Kawasaki A (2011) Multi-walled carbon nanotube-aluminum matrix composites prepared by combination of hetero-agglomeration method, spark plasma sintering and hot extrusion. Mater Trans 52(10):1960–1965CrossRef
71.
Zurück zum Zitat Sadeghi B, Shamanian M, Ashrafizadeh F, Cavaliere P, Rizzo A (2017) Influence of Al 2 O 3 nanoparticles on microstructure and strengthening mechanism of Al-based nanocomposites produced via spark plasma sintering. J Mater Eng Perform 26(6):2928–2936CrossRef Sadeghi B, Shamanian M, Ashrafizadeh F, Cavaliere P, Rizzo A (2017) Influence of Al 2 O 3 nanoparticles on microstructure and strengthening mechanism of Al-based nanocomposites produced via spark plasma sintering. J Mater Eng Perform 26(6):2928–2936CrossRef
72.
Zurück zum Zitat Dash K, Chaira D, Ray BC (2013) Synthesis and characterization of aluminium–alumina micro-and nano-composites by spark plasma sintering. Mater Res Bull 48(7):2535–2542CrossRef Dash K, Chaira D, Ray BC (2013) Synthesis and characterization of aluminium–alumina micro-and nano-composites by spark plasma sintering. Mater Res Bull 48(7):2535–2542CrossRef
73.
Zurück zum Zitat Garbiec D, Jurczyk M, Levintant-Zayonts N, Mościcki T (2015) Properties of Al–Al2O3 composites synthesized by spark plasma sintering method. Arch Civil Mechan Eng 15(4):933–939CrossRef Garbiec D, Jurczyk M, Levintant-Zayonts N, Mościcki T (2015) Properties of Al–Al2O3 composites synthesized by spark plasma sintering method. Arch Civil Mechan Eng 15(4):933–939CrossRef
74.
Zurück zum Zitat Vintila R, Charest A, Drew RAL, Brochu M (2011) Synthesis and consolidation via spark plasma sintering of nanostructured Al-5356/B4C composite. Mater Sci Eng A 528(13-14):4395–4407CrossRef Vintila R, Charest A, Drew RAL, Brochu M (2011) Synthesis and consolidation via spark plasma sintering of nanostructured Al-5356/B4C composite. Mater Sci Eng A 528(13-14):4395–4407CrossRef
75.
Zurück zum Zitat Morsi K, Esawi AMK, Borah P, Lanka S, Sayed A (2010) Characterization and spark plasma sintering of mechanically milled aluminum-carbon nanotube (CNT) composite powders. J Compos Mater 44(16):1991–2003CrossRef Morsi K, Esawi AMK, Borah P, Lanka S, Sayed A (2010) Characterization and spark plasma sintering of mechanically milled aluminum-carbon nanotube (CNT) composite powders. J Compos Mater 44(16):1991–2003CrossRef
76.
Zurück zum Zitat Cavaliere P, Sadeghi B, Shabani A (2017) Carbon nanotube reinforced aluminum matrix composites produced by spark plasma sintering. J Mater Sci 52(14):8618–8629CrossRef Cavaliere P, Sadeghi B, Shabani A (2017) Carbon nanotube reinforced aluminum matrix composites produced by spark plasma sintering. J Mater Sci 52(14):8618–8629CrossRef
77.
Zurück zum Zitat Kim I-Y, Lee JH, Lee GS, Baik SH, Kim YJ, Lee YZ (2009) Friction and wear characteristics of the carbon nanotube–aluminum composites with different manufacturing conditions. Wear 267(1-4):593–598CrossRef Kim I-Y, Lee JH, Lee GS, Baik SH, Kim YJ, Lee YZ (2009) Friction and wear characteristics of the carbon nanotube–aluminum composites with different manufacturing conditions. Wear 267(1-4):593–598CrossRef
78.
Zurück zum Zitat Wu J, Zhang H, Zhang Y, Wang X (2012) Mechanical and thermal properties of carbon nanotube/aluminum composites consolidated by spark plasma sintering. Mater Des 41:344–348CrossRef Wu J, Zhang H, Zhang Y, Wang X (2012) Mechanical and thermal properties of carbon nanotube/aluminum composites consolidated by spark plasma sintering. Mater Des 41:344–348CrossRef
79.
Zurück zum Zitat Wen H, Topping TD, Isheim D, Seidman DN, Lavernia EJ (2013) Strengthening mechanisms in a high-strength bulk nanostructured Cu–Zn–Al alloy processed via cryomilling and spark plasma sintering. Acta Mater 61(8):2769–2782CrossRef Wen H, Topping TD, Isheim D, Seidman DN, Lavernia EJ (2013) Strengthening mechanisms in a high-strength bulk nanostructured Cu–Zn–Al alloy processed via cryomilling and spark plasma sintering. Acta Mater 61(8):2769–2782CrossRef
80.
Zurück zum Zitat Bisht A, Srivastava M, Kumar RM, Lahiri I, Lahiri D (2017) Strengthening mechanism in graphene nanoplatelets reinforced aluminum composite fabricated through spark plasma sintering. Mater Sci Eng A 695:20–28CrossRef Bisht A, Srivastava M, Kumar RM, Lahiri I, Lahiri D (2017) Strengthening mechanism in graphene nanoplatelets reinforced aluminum composite fabricated through spark plasma sintering. Mater Sci Eng A 695:20–28CrossRef
81.
Zurück zum Zitat Tian W-M et al (2016) Graphene-reinforced aluminum matrix composites prepared by spark plasma sintering. Int J Miner Metall Mater 23(6):723–729CrossRef Tian W-M et al (2016) Graphene-reinforced aluminum matrix composites prepared by spark plasma sintering. Int J Miner Metall Mater 23(6):723–729CrossRef
82.
Zurück zum Zitat Bathula S, Anandani RC, Dhar A, Srivastava AK (2012) Microstructural features and mechanical properties of Al 5083/SiCp metal matrix nanocomposites produced by high energy ball milling and spark plasma sintering. Mater Sci Eng A 545:97–102CrossRef Bathula S, Anandani RC, Dhar A, Srivastava AK (2012) Microstructural features and mechanical properties of Al 5083/SiCp metal matrix nanocomposites produced by high energy ball milling and spark plasma sintering. Mater Sci Eng A 545:97–102CrossRef
83.
Zurück zum Zitat Ghasali E, Pakseresht A, Rahbari A, Eslami-shahed H, Alizadeh M, Ebadzadeh T (2016) Mechanical properties and microstructure characterization of spark plasma and conventional sintering of Al–SiC–TiC composites. J Alloys Compd 666:366–371CrossRef Ghasali E, Pakseresht A, Rahbari A, Eslami-shahed H, Alizadeh M, Ebadzadeh T (2016) Mechanical properties and microstructure characterization of spark plasma and conventional sintering of Al–SiC–TiC composites. J Alloys Compd 666:366–371CrossRef
84.
Zurück zum Zitat Babu NK, Kallip K, Leparoux M, AlOgab KA, Maeder X, Dasilva YAR (2016) Influence of microstructure and strengthening mechanism of AlMg5–Al2O3 nanocomposites prepared via spark plasma sintering. Mater Des 95:534–544CrossRef Babu NK, Kallip K, Leparoux M, AlOgab KA, Maeder X, Dasilva YAR (2016) Influence of microstructure and strengthening mechanism of AlMg5–Al2O3 nanocomposites prepared via spark plasma sintering. Mater Des 95:534–544CrossRef
85.
Zurück zum Zitat Ghasali E, Pakseresht AH, Alizadeh M, Shirvanimoghaddam K, Ebadzadeh T (2016) Vanadium carbide reinforced aluminum matrix composite prepared by conventional, microwave and spark plasma sintering. J Alloys Compd 688:527–533CrossRef Ghasali E, Pakseresht AH, Alizadeh M, Shirvanimoghaddam K, Ebadzadeh T (2016) Vanadium carbide reinforced aluminum matrix composite prepared by conventional, microwave and spark plasma sintering. J Alloys Compd 688:527–533CrossRef
86.
Zurück zum Zitat Cardinal S, Pelletier JM, Qiao JC, Bonnefont G, Xie G (2016) Influence of spark plasma sintering parameters on the mechanical properties of Cu50Zr45Al5 bulk metallic glass obtained using metallic glass powder. Mater Sci Eng A 677:116–124CrossRef Cardinal S, Pelletier JM, Qiao JC, Bonnefont G, Xie G (2016) Influence of spark plasma sintering parameters on the mechanical properties of Cu50Zr45Al5 bulk metallic glass obtained using metallic glass powder. Mater Sci Eng A 677:116–124CrossRef
87.
Zurück zum Zitat Liao J-Z, Tan M-J, Sridhar I (2010) Spark plasma sintered multi-wall carbon nanotube reinforced aluminum matrix composites. Mater Des 31:S96–S100CrossRef Liao J-Z, Tan M-J, Sridhar I (2010) Spark plasma sintered multi-wall carbon nanotube reinforced aluminum matrix composites. Mater Des 31:S96–S100CrossRef
88.
Zurück zum Zitat Kostecki M et al (2017) Tribological properties of aluminium alloy composites reinforced with multi-layer graphene—the influence of spark plasma texturing process. Materials 10(8):928CrossRef Kostecki M et al (2017) Tribological properties of aluminium alloy composites reinforced with multi-layer graphene—the influence of spark plasma texturing process. Materials 10(8):928CrossRef
89.
Zurück zum Zitat Wang W, Han Z, Wang Q, Wei B, Xin S, Gao Y (2020) Tribological properties of Ti2AlNb matrix composites containing few-layer graphene fabricated by spark plasma sintering. Metals 10(7):924CrossRef Wang W, Han Z, Wang Q, Wei B, Xin S, Gao Y (2020) Tribological properties of Ti2AlNb matrix composites containing few-layer graphene fabricated by spark plasma sintering. Metals 10(7):924CrossRef
90.
Zurück zum Zitat Manikandan P, Sieh R, Elayaperumal A, le HR, Basu S (2016) Micro/nanostructure and tribological characteristics of pressureless sintered carbon nanotubes reinforced aluminium matrix composites. J Nanomater 2016:1–10CrossRef Manikandan P, Sieh R, Elayaperumal A, le HR, Basu S (2016) Micro/nanostructure and tribological characteristics of pressureless sintered carbon nanotubes reinforced aluminium matrix composites. J Nanomater 2016:1–10CrossRef
91.
Zurück zum Zitat Yang K, An L, Cheng L (2019) Microstructure and tribological behavior of Al 2 O 3 particle reinforced al matrix composites fabricated by spark plasma sintering. J Wuhan Univ Technol-Mater Sci Ed 34(5):1013–1017CrossRef Yang K, An L, Cheng L (2019) Microstructure and tribological behavior of Al 2 O 3 particle reinforced al matrix composites fabricated by spark plasma sintering. J Wuhan Univ Technol-Mater Sci Ed 34(5):1013–1017CrossRef
92.
Zurück zum Zitat Srivyas P, Charoo M (2019) Effect of sintering temperature and reinforcement Concentration on the tribological behaviors of hybrid aluminum matrix nano composite. Tribol Industry 2019:41 Srivyas P, Charoo M (2019) Effect of sintering temperature and reinforcement Concentration on the tribological behaviors of hybrid aluminum matrix nano composite. Tribol Industry 2019:41
93.
Zurück zum Zitat Aliyu I, Saheb N, Hassan S, al-Aqeeli N (2015) Microstructure and properties of spark plasma sintered aluminum containing 1 wt.% SiC nanoparticles. Metals 5(1):70–83CrossRef Aliyu I, Saheb N, Hassan S, al-Aqeeli N (2015) Microstructure and properties of spark plasma sintered aluminum containing 1 wt.% SiC nanoparticles. Metals 5(1):70–83CrossRef
94.
Zurück zum Zitat Ghahremani D, Ebadzadeh T, Maghsodipour A (2015) Spark plasma sintering of mullite: relation between microstructure, properties and spark plasma sintering (SPS) parameters. Ceram Int 41(5):6409–6416CrossRef Ghahremani D, Ebadzadeh T, Maghsodipour A (2015) Spark plasma sintering of mullite: relation between microstructure, properties and spark plasma sintering (SPS) parameters. Ceram Int 41(5):6409–6416CrossRef
95.
Zurück zum Zitat Gu, P., et al., n.d. Fabrication of carbon nanotube-TiC nanocomposites by spark plasma sintering. Gu, P., et al., n.d. Fabrication of carbon nanotube-TiC nanocomposites by spark plasma sintering.
96.
Zurück zum Zitat Yamaoglu R, Olevsky EA (2016) Consolidation of Al-nanoSiC composites by spark plasma sintering. Int J Mater Mechan Manufact 4(2):119–122 Yamaoglu R, Olevsky EA (2016) Consolidation of Al-nanoSiC composites by spark plasma sintering. Int J Mater Mechan Manufact 4(2):119–122
97.
Zurück zum Zitat Dudina D, Bokhonov B, Mukherjee A (2016) Formation of aluminum particles with shell morphology during pressureless spark plasma sintering of Fe–Al mixtures: current-related or Kirkendall effect? Materials 9(5):375CrossRef Dudina D, Bokhonov B, Mukherjee A (2016) Formation of aluminum particles with shell morphology during pressureless spark plasma sintering of Fe–Al mixtures: current-related or Kirkendall effect? Materials 9(5):375CrossRef
98.
Zurück zum Zitat Razavi M, Farajipour AR, Zakeri M, Rahimipour MR, Firouzbakht AR (2017) Production of Al2O3–SiC nano-composites by spark plasma sintering. Boletín de la Sociedad Española de Cerámica y Vidrio 56(4):186–194CrossRef Razavi M, Farajipour AR, Zakeri M, Rahimipour MR, Firouzbakht AR (2017) Production of Al2O3–SiC nano-composites by spark plasma sintering. Boletín de la Sociedad Española de Cerámica y Vidrio 56(4):186–194CrossRef
99.
Zurück zum Zitat Housaer F, Beclin F, Touzin M, Tingaud D, Legris A, Addad A (2015) Interfacial characterization in carbon nanotube reinforced aluminum matrix composites. Mater Charact 110:94–101CrossRef Housaer F, Beclin F, Touzin M, Tingaud D, Legris A, Addad A (2015) Interfacial characterization in carbon nanotube reinforced aluminum matrix composites. Mater Charact 110:94–101CrossRef
100.
Zurück zum Zitat Kasperski A, Weibel A, Alkattan D, Estournès C, Laurent C, Peigney A (2015) Double-walled carbon nanotube/zirconia composites: preparation by spark plasma sintering, electrical conductivity and mechanical properties. Ceram Int 41(10):13731–13738CrossRef Kasperski A, Weibel A, Alkattan D, Estournès C, Laurent C, Peigney A (2015) Double-walled carbon nanotube/zirconia composites: preparation by spark plasma sintering, electrical conductivity and mechanical properties. Ceram Int 41(10):13731–13738CrossRef
101.
Zurück zum Zitat Chen B, Kondoh K (2016) Sintering behaviors of carbon nanotubes—aluminum composite powders. Metals 6(9):213CrossRef Chen B, Kondoh K (2016) Sintering behaviors of carbon nanotubes—aluminum composite powders. Metals 6(9):213CrossRef
102.
Zurück zum Zitat Bunakov N et al (2016) Fabrication of multi-walled carbon nanotubes–aluminum matrix composite by powder metallurgy technique. Results in physics 6:231–232CrossRef Bunakov N et al (2016) Fabrication of multi-walled carbon nanotubes–aluminum matrix composite by powder metallurgy technique. Results in physics 6:231–232CrossRef
103.
Zurück zum Zitat Guo B, Song M, Yi J, Ni S, Shen T, du Y (2017) Improving the mechanical properties of carbon nanotubes reinforced pure aluminum matrix composites by achieving non-equilibrium interface. Mater Des 120:56–65CrossRef Guo B, Song M, Yi J, Ni S, Shen T, du Y (2017) Improving the mechanical properties of carbon nanotubes reinforced pure aluminum matrix composites by achieving non-equilibrium interface. Mater Des 120:56–65CrossRef
104.
Zurück zum Zitat Maiti A, Laha T (2018) Study of distribution of carbon nanotube in Al-CNT nanocomposite synthesized via spark-plasma sintering. In: IOP Conference Series: Materials Science and Engineering. IOP Publishing, Bristol Maiti A, Laha T (2018) Study of distribution of carbon nanotube in Al-CNT nanocomposite synthesized via spark-plasma sintering. In: IOP Conference Series: Materials Science and Engineering. IOP Publishing, Bristol
105.
Zurück zum Zitat Singh LK, Bhadauria A, Laha T (2018) Al-MWCNT nanocomposite synthesized via spark plasma sintering: effect of powder milling and reinforcement addition on sintering kinetics and mechanical properties. J Mater Res Technol 8:503–512CrossRef Singh LK, Bhadauria A, Laha T (2018) Al-MWCNT nanocomposite synthesized via spark plasma sintering: effect of powder milling and reinforcement addition on sintering kinetics and mechanical properties. J Mater Res Technol 8:503–512CrossRef
106.
Zurück zum Zitat Ujah C, Popoola O, Aigbodion V Enhanced tribology, thermal and electrical properties of Al-CNT composite processed via spark plasma sintering for transmission conductor. J Mater Sci 54:1–10 Ujah C, Popoola O, Aigbodion V Enhanced tribology, thermal and electrical properties of Al-CNT composite processed via spark plasma sintering for transmission conductor. J Mater Sci 54:1–10
107.
Zurück zum Zitat Singh LK, Bhadauria A, Oraon A, Laha T (2019) Spark plasma sintered Al-0.5 wt% MWCNT nanocomposite: effect of sintering pressure on the densification behavior and multi-scale mechanical properties. Diam Relat Mater 91:144–155CrossRef Singh LK, Bhadauria A, Oraon A, Laha T (2019) Spark plasma sintered Al-0.5 wt% MWCNT nanocomposite: effect of sintering pressure on the densification behavior and multi-scale mechanical properties. Diam Relat Mater 91:144–155CrossRef
108.
Zurück zum Zitat Sadeghi B, Cavaliere P, Perrone A (2018) Effect of Al2O3, SiO2 and carbon nanotubes on the microstructural and mechanical behavior of spark plasma sintered aluminum based nanocomposites. Part Sci Technol:1–8 Sadeghi B, Cavaliere P, Perrone A (2018) Effect of Al2O3, SiO2 and carbon nanotubes on the microstructural and mechanical behavior of spark plasma sintered aluminum based nanocomposites. Part Sci Technol:1–8
109.
Zurück zum Zitat So KP, Kushima A, Park JG, Liu X, Keum DH, Jeong HY, Yao F, Joo SH, Kim HS, Kim H, Li J, Lee YH (2018) Intragranular dispersion of carbon nanotubes comprehensively improves aluminum alloys. Adv Sci 5(7):1800115CrossRef So KP, Kushima A, Park JG, Liu X, Keum DH, Jeong HY, Yao F, Joo SH, Kim HS, Kim H, Li J, Lee YH (2018) Intragranular dispersion of carbon nanotubes comprehensively improves aluminum alloys. Adv Sci 5(7):1800115CrossRef
110.
Zurück zum Zitat Thomas S, Umasankar V (2018) Effect of MWCNT reinforcement on the precipitation-hardening behavior of AA2219. Int J Miner Metall Mater 25(1):53–61CrossRef Thomas S, Umasankar V (2018) Effect of MWCNT reinforcement on the precipitation-hardening behavior of AA2219. Int J Miner Metall Mater 25(1):53–61CrossRef
111.
Zurück zum Zitat Sairam K, Sonber JK, Murthy TSRC, Subramanian C, Fotedar RK, Nanekar P, Hubli RC (2014) Influence of spark plasma sintering parameters on densification and mechanical properties of boron carbide. Int J Refract Met Hard Mater 42:185–192CrossRef Sairam K, Sonber JK, Murthy TSRC, Subramanian C, Fotedar RK, Nanekar P, Hubli RC (2014) Influence of spark plasma sintering parameters on densification and mechanical properties of boron carbide. Int J Refract Met Hard Mater 42:185–192CrossRef
112.
Zurück zum Zitat Ameri S, Sadeghian Z, Kazeminezhad I (2016) Effect of CNT addition approach on the microstructure and properties of NiAl-CNT nanocomposites produced by mechanical alloying and spark plasma sintering. Intermetallics 76:41–48CrossRef Ameri S, Sadeghian Z, Kazeminezhad I (2016) Effect of CNT addition approach on the microstructure and properties of NiAl-CNT nanocomposites produced by mechanical alloying and spark plasma sintering. Intermetallics 76:41–48CrossRef
113.
Zurück zum Zitat Yan Y, Zhang H, Fan J, Wang L, Zhang Q, Hou M, Dong H, Xu B (2016) Improved mechanical properties of Mg matrix composites reinforced with Al and carbon nanotubes fabricated by spark plasma sintering followed by hot extrusion. J Mater Res 31(23):3745–3756CrossRef Yan Y, Zhang H, Fan J, Wang L, Zhang Q, Hou M, Dong H, Xu B (2016) Improved mechanical properties of Mg matrix composites reinforced with Al and carbon nanotubes fabricated by spark plasma sintering followed by hot extrusion. J Mater Res 31(23):3745–3756CrossRef
114.
Zurück zum Zitat Wang J, Wang Y, Liu Y, Li J, He L, Zhang C (2015) Densification and microstructural evolution of a high niobium containing TiAl alloy consolidated by spark plasma sintering. Intermetallics 64:70–77CrossRef Wang J, Wang Y, Liu Y, Li J, He L, Zhang C (2015) Densification and microstructural evolution of a high niobium containing TiAl alloy consolidated by spark plasma sintering. Intermetallics 64:70–77CrossRef
115.
Zurück zum Zitat Wang D, Yuan H, Qiang J (2017) The microstructure evolution, mechanical properties and densification mechanism of TiAl-based alloys prepared by spark plasma sintering. Metals 7(6):201CrossRef Wang D, Yuan H, Qiang J (2017) The microstructure evolution, mechanical properties and densification mechanism of TiAl-based alloys prepared by spark plasma sintering. Metals 7(6):201CrossRef
Metadaten
Titel
Spark plasma sintering of aluminium composites—a review
verfasst von
Ujah Chika Oliver
Aigbodion Victor Sunday
Ezema Ike-Eze Ikechukwu Christain
Makhatha Mamookho Elizabeth
Publikationsdatum
06.01.2021
Verlag
Springer London
Erschienen in
The International Journal of Advanced Manufacturing Technology / Ausgabe 7-8/2021
Print ISSN: 0268-3768
Elektronische ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-020-06480-7

Weitere Artikel der Ausgabe 7-8/2021

The International Journal of Advanced Manufacturing Technology 7-8/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.