Skip to main content
Erschienen in: Polymer Bulletin 6/2017

27.09.2016 | Review

Cellulosic materials as natural fillers in starch-containing matrix-based films: a review

verfasst von: Tomy J. Gutiérrez, Vera A. Alvarez

Erschienen in: Polymer Bulletin | Ausgabe 6/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, the different cellulosic materials, namely cellulose and lignin are analyzed. In addition, the starch-containing matrices (isolated starch and flour) reinforced with cellulosic materials to be used in packaging applications are described. Many efforts have been exerted to develop biopackaging based on renewable polymers, since these could reduce the environmental impact caused by petrochemical resources. Special attention has had the starch as macromolecule for forming biodegradable packaging. For these reasons, shall also be subject of this review the effect of each type of cellulosic material on the starch-containing matrix-based thermoplastic materials. In this manner, this review contains a description of films based on starch-containing matrices and biocomposites, and then has a review of cellulosic material-based fillers. In the same way, this review contains an analysis of the works carried out on starch-containing matrices reinforced with cellulose and lignin. Finally, the manufacturing processes of starch/cellulose composites are provided as well as the conclusions and the outlook for future works.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Davis G, Song JH (2006) Biodegradable packaging based on raw materials from crops and their impact on waste management. Ind Crop Prod 23(2):147–161CrossRef Davis G, Song JH (2006) Biodegradable packaging based on raw materials from crops and their impact on waste management. Ind Crop Prod 23(2):147–161CrossRef
2.
Zurück zum Zitat Marsh K, Bugusu B (2007) Food packaging—roles, materials, and environmental issues. J Food Sci 72(3):R39–R55CrossRef Marsh K, Bugusu B (2007) Food packaging—roles, materials, and environmental issues. J Food Sci 72(3):R39–R55CrossRef
3.
Zurück zum Zitat Chandra R, Rustgi R (1998) Biodegradable polymers. Prog Polym Sci 23(7):1273–1335CrossRef Chandra R, Rustgi R (1998) Biodegradable polymers. Prog Polym Sci 23(7):1273–1335CrossRef
4.
Zurück zum Zitat Krochta JM, Mulder-Johnston DE (1997) Edible and biodegradable polymer films: challenges and opportunities. Food Technol Chicago Krochta JM, Mulder-Johnston DE (1997) Edible and biodegradable polymer films: challenges and opportunities. Food Technol Chicago
5.
Zurück zum Zitat Gutiérrez TJ, Guzmán R, Medina Jaramillo C, Famá L (2015) Effect of beet flour on films made from biological macromolecules: native and modified plantain flour. Int J Biol Macromol 82:395–403CrossRef Gutiérrez TJ, Guzmán R, Medina Jaramillo C, Famá L (2015) Effect of beet flour on films made from biological macromolecules: native and modified plantain flour. Int J Biol Macromol 82:395–403CrossRef
6.
Zurück zum Zitat Gutiérrez TJ, Suniaga J, Monsalve A, García NL (2016) Influence of beet flour on the relationship surface-properties of edible and intelligent films made from native and modified plantain flour. Food Hydrocolloid 54:234–244CrossRef Gutiérrez TJ, Suniaga J, Monsalve A, García NL (2016) Influence of beet flour on the relationship surface-properties of edible and intelligent films made from native and modified plantain flour. Food Hydrocolloid 54:234–244CrossRef
7.
Zurück zum Zitat Pelissari FM, Andrade-Mahecha MM, do Amaral Sobral PJ, Menegalli FC (2013) Comparative study on the properties of flour and starch films of plantain bananas (Musa paradisiaca). Food Hydrocolloid 30(2):681–690CrossRef Pelissari FM, Andrade-Mahecha MM, do Amaral Sobral PJ, Menegalli FC (2013) Comparative study on the properties of flour and starch films of plantain bananas (Musa paradisiaca). Food Hydrocolloid 30(2):681–690CrossRef
8.
Zurück zum Zitat Mathew AP, Dufresne A (2002) Plasticized waxy maize starch: effect of polyols and relative humidity on material properties. Biomacromolecules 3(5):1101–1108CrossRef Mathew AP, Dufresne A (2002) Plasticized waxy maize starch: effect of polyols and relative humidity on material properties. Biomacromolecules 3(5):1101–1108CrossRef
9.
Zurück zum Zitat Shen L, Haufe J, Patel MK (2009) Product overview and market projection of emerging bio-based plastics PRO-BIP 2009. Report for European Polysaccharide Network of Excellence (EPNOE) and European Bioplastics, 243 Shen L, Haufe J, Patel MK (2009) Product overview and market projection of emerging bio-based plastics PRO-BIP 2009. Report for European Polysaccharide Network of Excellence (EPNOE) and European Bioplastics, 243
10.
Zurück zum Zitat Gutiérrez TJ, Morales NJ, Tapia MS, Pérez E, Famá L (2015) Corn starch 80: 20 “waxy”: regular, “native” and phosphated, as bio-matrixes for edible films. Procedia Mater Sci 8:304–310CrossRef Gutiérrez TJ, Morales NJ, Tapia MS, Pérez E, Famá L (2015) Corn starch 80: 20 “waxy”: regular, “native” and phosphated, as bio-matrixes for edible films. Procedia Mater Sci 8:304–310CrossRef
11.
Zurück zum Zitat Gutiérrez TJ, Morales NJ, Pérez E, Tapia MS, Famá L (2015) Physico-chemical properties of edible films derived from native and phosphated cush-cush yam and cassava starches. Food Packag Shelf Life 3:1–8CrossRef Gutiérrez TJ, Morales NJ, Pérez E, Tapia MS, Famá L (2015) Physico-chemical properties of edible films derived from native and phosphated cush-cush yam and cassava starches. Food Packag Shelf Life 3:1–8CrossRef
12.
Zurück zum Zitat Gutiérrez TJ, Tapia MS, Pérez E, Famá L (2015) Structural and mechanical properties of edible films made from native and modified cush-cush yam and cassava starch. Food Hydrocoll 45:211–217CrossRef Gutiérrez TJ, Tapia MS, Pérez E, Famá L (2015) Structural and mechanical properties of edible films made from native and modified cush-cush yam and cassava starch. Food Hydrocoll 45:211–217CrossRef
13.
Zurück zum Zitat Gutiérrez TJ, Tapia MS, Pérez E, Famá L (2015) Edible films based on native and phosphated 80: 20 waxy: normal corn starch. Starch-Stärke 67(1–2):90–97CrossRef Gutiérrez TJ, Tapia MS, Pérez E, Famá L (2015) Edible films based on native and phosphated 80: 20 waxy: normal corn starch. Starch-Stärke 67(1–2):90–97CrossRef
14.
Zurück zum Zitat Bordes P, Pollet E, Bourbigot S, Averous L (2008) Structure and properties of PHA/Clay nano-biocomposites prepared by melt Iintercalation. Macromol Chem Phys 209(14):1473–1484CrossRef Bordes P, Pollet E, Bourbigot S, Averous L (2008) Structure and properties of PHA/Clay nano-biocomposites prepared by melt Iintercalation. Macromol Chem Phys 209(14):1473–1484CrossRef
15.
Zurück zum Zitat Gonzalez JS, Ludueña LN, Ponce A, Alvarez VA (2014) Poly (vinyl alcohol)/cellulose nanowhiskers nanocomposite hydrogels for potential wound dressings. Mater Sci Eng, C 34:54–61CrossRef Gonzalez JS, Ludueña LN, Ponce A, Alvarez VA (2014) Poly (vinyl alcohol)/cellulose nanowhiskers nanocomposite hydrogels for potential wound dressings. Mater Sci Eng, C 34:54–61CrossRef
16.
Zurück zum Zitat Ollier RP, Perez CJ, Alvarez VA (2013) Preparation and characterization of micro and nanocomposites based on poly (vinyl alcohol) for packaging applications. J Mater Sci 48(20):7088–7096CrossRef Ollier RP, Perez CJ, Alvarez VA (2013) Preparation and characterization of micro and nanocomposites based on poly (vinyl alcohol) for packaging applications. J Mater Sci 48(20):7088–7096CrossRef
17.
Zurück zum Zitat Ludueña LN, Vecchio A, Stefani PM, Alvarez VA (2013) Extraction of cellulose nanowhiskers from natural fibers and agricultural byproducts. Fiber Polym 14(7):1118–1127CrossRef Ludueña LN, Vecchio A, Stefani PM, Alvarez VA (2013) Extraction of cellulose nanowhiskers from natural fibers and agricultural byproducts. Fiber Polym 14(7):1118–1127CrossRef
18.
Zurück zum Zitat Hoyos CG, Alvarez VA, Rojo PG, Vázquez A (2012) Fique fibers: enhancement of the tensile strength of alkali treated fibers during tensile load application. Fiber Polym 13(5):632–640CrossRef Hoyos CG, Alvarez VA, Rojo PG, Vázquez A (2012) Fique fibers: enhancement of the tensile strength of alkali treated fibers during tensile load application. Fiber Polym 13(5):632–640CrossRef
19.
Zurück zum Zitat Ludueña L, Vázquez A, Alvarez V (2012) Effect of lignocellulosic filler type and content on the behavior of polycaprolactone based eco-composites for packaging applications. Carbohyd Polym 87(1):411–421CrossRef Ludueña L, Vázquez A, Alvarez V (2012) Effect of lignocellulosic filler type and content on the behavior of polycaprolactone based eco-composites for packaging applications. Carbohyd Polym 87(1):411–421CrossRef
20.
Zurück zum Zitat Haque MMU, Alvarez V, Paci M, Pracella M (2011) Processing, compatibilization and properties of ternary composites of Mater-Bi with polyolefins and hemp fibres. Compos Part A-Appl S 42(12):2060–2069CrossRef Haque MMU, Alvarez V, Paci M, Pracella M (2011) Processing, compatibilization and properties of ternary composites of Mater-Bi with polyolefins and hemp fibres. Compos Part A-Appl S 42(12):2060–2069CrossRef
21.
Zurück zum Zitat Pracella M, Haque MMU, Alvarez V (2010) Functionalization, compatibilization and properties of polyolefin composites with natural fibers. Polymers 2(4):554–574CrossRef Pracella M, Haque MMU, Alvarez V (2010) Functionalization, compatibilization and properties of polyolefin composites with natural fibers. Polymers 2(4):554–574CrossRef
22.
Zurück zum Zitat Pracella M, Haque M, Alvarez V (2010) Compatibilization and properties of EVA copolymers containing surface-functionalized cellulose microfibers. Macromol Mater Eng 295(10):949–957CrossRef Pracella M, Haque M, Alvarez V (2010) Compatibilization and properties of EVA copolymers containing surface-functionalized cellulose microfibers. Macromol Mater Eng 295(10):949–957CrossRef
23.
Zurück zum Zitat Vázquez A, Alvarez VA (2009) Starch–cellulose fiber composites. Biodegradable polymer blends and composites from renewable resources, pp 239–286 Vázquez A, Alvarez VA (2009) Starch–cellulose fiber composites. Biodegradable polymer blends and composites from renewable resources, pp 239–286
24.
Zurück zum Zitat Stefani PM, Perez CJ, Alvarez VA, Vazquez A (2008) Microcellulose fibers-filled epoxy foams. J Appl Polym Sci 109(2):1009–1013CrossRef Stefani PM, Perez CJ, Alvarez VA, Vazquez A (2008) Microcellulose fibers-filled epoxy foams. J Appl Polym Sci 109(2):1009–1013CrossRef
25.
Zurück zum Zitat Morán JI, Alvarez VA, Cyras VP, Vázquez A (2008) Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15(1):149–159CrossRef Morán JI, Alvarez VA, Cyras VP, Vázquez A (2008) Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 15(1):149–159CrossRef
26.
Zurück zum Zitat Alvarez V, Mondragon I, Vazquez A (2007) Influence of chemical treatments on the interfacial adhesion between sisal fibre and different biodegradable polymers. Compos Interface 14(7–9):605–616CrossRef Alvarez V, Mondragon I, Vazquez A (2007) Influence of chemical treatments on the interfacial adhesion between sisal fibre and different biodegradable polymers. Compos Interface 14(7–9):605–616CrossRef
27.
Zurück zum Zitat Alvarez VA, Ruseckaite RA, Vazquez A (2007) Aqueous degradation of MATER BI Y—Sisal fibers biocomposites. J Thermoplast Compos 20(3):291–303CrossRef Alvarez VA, Ruseckaite RA, Vazquez A (2007) Aqueous degradation of MATER BI Y—Sisal fibers biocomposites. J Thermoplast Compos 20(3):291–303CrossRef
28.
Zurück zum Zitat Moran J, Alvarez V, Petrucci R, Kenny J, Vazquez A (2007) Mechanical properties of polypropylene composites based on natural fibers subjected to multiple extrusion cycles. J Appl Polym Sci 103(1):228–237CrossRef Moran J, Alvarez V, Petrucci R, Kenny J, Vazquez A (2007) Mechanical properties of polypropylene composites based on natural fibers subjected to multiple extrusion cycles. J Appl Polym Sci 103(1):228–237CrossRef
29.
Zurück zum Zitat Alvarez VA, Ruseckaite RA, Vazquez A (2006) Degradation of sisal fibre/Mater Bi-Y biocomposites buried in soil. Polym Degrad Stabil 91(12):3156–3162CrossRef Alvarez VA, Ruseckaite RA, Vazquez A (2006) Degradation of sisal fibre/Mater Bi-Y biocomposites buried in soil. Polym Degrad Stabil 91(12):3156–3162CrossRef
30.
Zurück zum Zitat Alvarez VA, Vázquez A (2006) Influence of fiber chemical modification procedure on the mechanical properties and water absorption of MaterBi-Y/sisal fiber composites. Compos Part A-Appl S 37(10):1672–1680CrossRef Alvarez VA, Vázquez A (2006) Influence of fiber chemical modification procedure on the mechanical properties and water absorption of MaterBi-Y/sisal fiber composites. Compos Part A-Appl S 37(10):1672–1680CrossRef
31.
Zurück zum Zitat De La Osa O, Alvarez VA, Fraga AN, Mammone EM, Vázquez A (2006) Loss of mechanical properties by water absorption of vinyl-ester reinforced with glass fiber. J Reinf Plast Comp 25(2):215–221CrossRef De La Osa O, Alvarez VA, Fraga AN, Mammone EM, Vázquez A (2006) Loss of mechanical properties by water absorption of vinyl-ester reinforced with glass fiber. J Reinf Plast Comp 25(2):215–221CrossRef
32.
Zurück zum Zitat Alvarez V, Vazquez A, Bernal C (2006) Effect of microstructure on the tensile and fracture properties of sisal fiber/starch-based composites. J Compos Mater 40(1):21–35CrossRef Alvarez V, Vazquez A, Bernal C (2006) Effect of microstructure on the tensile and fracture properties of sisal fiber/starch-based composites. J Compos Mater 40(1):21–35CrossRef
33.
Zurück zum Zitat Rodriguez E, Alvarez VA, Moran J, Moreno S, Petrucci R, Kenny JM, Vazquez A (2006) Mechanical properties evaluation of a recycled flax fiber-reinforced vinyl ester. J Compos Mater 40(3):245–256CrossRef Rodriguez E, Alvarez VA, Moran J, Moreno S, Petrucci R, Kenny JM, Vazquez A (2006) Mechanical properties evaluation of a recycled flax fiber-reinforced vinyl ester. J Compos Mater 40(3):245–256CrossRef
34.
Zurück zum Zitat Alvarez V, Vázquez A, Bernal C (2005) Fracture behavior of sisal fiber–reinforced starch-based composites. Polym Composite 26(3):316–323CrossRef Alvarez V, Vázquez A, Bernal C (2005) Fracture behavior of sisal fiber–reinforced starch-based composites. Polym Composite 26(3):316–323CrossRef
35.
Zurück zum Zitat Alvarez VA, Terenzi A, Kenny JM, Vazquez A (2004) Melt rheological behavior of starch-based matrix composites reinforced with short sisal fibers. Polym Eng Sci 44(10):1907–1914CrossRef Alvarez VA, Terenzi A, Kenny JM, Vazquez A (2004) Melt rheological behavior of starch-based matrix composites reinforced with short sisal fibers. Polym Eng Sci 44(10):1907–1914CrossRef
36.
Zurück zum Zitat Alvarez VA, Vázquez A (2004) Thermal degradation of cellulose derivatives/starch blends and sisal fibre biocomposites. Polym Degrad Stabil 84(1):13–21CrossRef Alvarez VA, Vázquez A (2004) Thermal degradation of cellulose derivatives/starch blends and sisal fibre biocomposites. Polym Degrad Stabil 84(1):13–21CrossRef
37.
Zurück zum Zitat Alvarez VA, Fraga AN, Vazquez A (2004) Effects of the moisture and fiber content on the mechanical properties of biodegradable polymer-sisal fiber biocomposites. J Appl Polym Sci 91(6):4007–4016CrossRef Alvarez VA, Fraga AN, Vazquez A (2004) Effects of the moisture and fiber content on the mechanical properties of biodegradable polymer-sisal fiber biocomposites. J Appl Polym Sci 91(6):4007–4016CrossRef
38.
Zurück zum Zitat Alvarez VA, Kenny JM, Vázquez A (2004) Creep behavior of biocomposites based on sisal fiber reinforced cellulose derivatives/starch blends. Polym Composite 25(3):280–288CrossRef Alvarez VA, Kenny JM, Vázquez A (2004) Creep behavior of biocomposites based on sisal fiber reinforced cellulose derivatives/starch blends. Polym Composite 25(3):280–288CrossRef
39.
Zurück zum Zitat Alvarez VA, Ruscekaite RA, Vazquez A (2003) Mechanical properties and water absorption behavior of composites made from a biodegradable matrix and alkaline-treated sisal fibers. J Compos Mater 37(17):1575–1588CrossRef Alvarez VA, Ruscekaite RA, Vazquez A (2003) Mechanical properties and water absorption behavior of composites made from a biodegradable matrix and alkaline-treated sisal fibers. J Compos Mater 37(17):1575–1588CrossRef
40.
Zurück zum Zitat Alvarez V, Bernal CR, Frontini PM, Vazquez A (2003) The influence of matrix chemical structure on the mode I and II interlaminar fracture toughness of glass-fiber/epoxy composites. Polym Composite 24(1):140–148CrossRef Alvarez V, Bernal CR, Frontini PM, Vazquez A (2003) The influence of matrix chemical structure on the mode I and II interlaminar fracture toughness of glass-fiber/epoxy composites. Polym Composite 24(1):140–148CrossRef
41.
Zurück zum Zitat Fraga AN, Alvarez VA, Vazquez A, De La Osa O (2003) Relationship between dynamic mechanical properties and water absorption of unsaturated polyester and vinyl ester glass fiber composites. J Compos Mater 37(17):1553–1574CrossRef Fraga AN, Alvarez VA, Vazquez A, De La Osa O (2003) Relationship between dynamic mechanical properties and water absorption of unsaturated polyester and vinyl ester glass fiber composites. J Compos Mater 37(17):1553–1574CrossRef
42.
Zurück zum Zitat Gwon JG, Cho HJ, Chun SJ, Lee S, Wu Q, Li MC, Lee SY (2016) Mechanical and thermal properties of toluene diisocyanate-modified cellulose nanocrystal nanocomposites using semi-crystalline poly (lactic acid) as a base matrix. RSC Adv 6(77):73879–73886CrossRef Gwon JG, Cho HJ, Chun SJ, Lee S, Wu Q, Li MC, Lee SY (2016) Mechanical and thermal properties of toluene diisocyanate-modified cellulose nanocrystal nanocomposites using semi-crystalline poly (lactic acid) as a base matrix. RSC Adv 6(77):73879–73886CrossRef
43.
Zurück zum Zitat Huang S, Zhou L, Li MC, Wu Q, Kojima Y, Zhou D (2016) Preparation and properties of electrospun poly (vinyl pyrrolidone)/cellulose nanocrystal/silver nanoparticle composite fibers. Materials 9(7):523CrossRef Huang S, Zhou L, Li MC, Wu Q, Kojima Y, Zhou D (2016) Preparation and properties of electrospun poly (vinyl pyrrolidone)/cellulose nanocrystal/silver nanoparticle composite fibers. Materials 9(7):523CrossRef
44.
Zurück zum Zitat Spence K, Habibi Y, Dufresne A (2011) In: Cellulose fibers: bio-and nano-polymer composites. Springer, Berlin, pp 179–213 Spence K, Habibi Y, Dufresne A (2011) In: Cellulose fibers: bio-and nano-polymer composites. Springer, Berlin, pp 179–213
45.
Zurück zum Zitat Khalil HA, Bhat AH, Bakar AA, Tahir PM, Zaidul ISM, Jawaid M (2015) In: Handbook of Polymer Nanocomposites. Processing, Performance and Application, Springer, Berlin, pp 475–511 Khalil HA, Bhat AH, Bakar AA, Tahir PM, Zaidul ISM, Jawaid M (2015) In: Handbook of Polymer Nanocomposites. Processing, Performance and Application, Springer, Berlin, pp 475–511
46.
Zurück zum Zitat Shahabi-Ghahafarrokhi I, Khodaiyan F, Mousavi M, Yousefi H (2015) Preparation and characterization of nanocellulose from beer industrial residues using acid hydrolysis/ultrasound. Fiber Polym 16(3):529–536CrossRef Shahabi-Ghahafarrokhi I, Khodaiyan F, Mousavi M, Yousefi H (2015) Preparation and characterization of nanocellulose from beer industrial residues using acid hydrolysis/ultrasound. Fiber Polym 16(3):529–536CrossRef
47.
Zurück zum Zitat Akil H, Omar MF, Mazuki AAM, Safiee SZAM, Ishak ZAM, Bakar AA (2011) Kenaf fiber reinforced composites: a review. Mater Design 32(8):4107–4121CrossRef Akil H, Omar MF, Mazuki AAM, Safiee SZAM, Ishak ZAM, Bakar AA (2011) Kenaf fiber reinforced composites: a review. Mater Design 32(8):4107–4121CrossRef
48.
Zurück zum Zitat Singha AS, Thakur VK (2009) Physical, chemical and mechanical properties of Hibiscus sabdariffa fiber/polymer composite. Int J Polym Mater 58(4):217–228CrossRef Singha AS, Thakur VK (2009) Physical, chemical and mechanical properties of Hibiscus sabdariffa fiber/polymer composite. Int J Polym Mater 58(4):217–228CrossRef
49.
Zurück zum Zitat Dufresne A, Medeiros ES, Orts WJ (2010) In: Starch: characterization, properties, and applications, Taylor and Francis Group, LLC Boca Raton, pp 250–252 Dufresne A, Medeiros ES, Orts WJ (2010) In: Starch: characterization, properties, and applications, Taylor and Francis Group, LLC Boca Raton, pp 250–252
50.
Zurück zum Zitat Thakur VK, Thakur MK (2014) Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohyd Polym 109:102–117CrossRef Thakur VK, Thakur MK (2014) Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohyd Polym 109:102–117CrossRef
51.
Zurück zum Zitat Sjöström E (1981) Wood chemistry: fundamentals and applications. Academic, New York Sjöström E (1981) Wood chemistry: fundamentals and applications. Academic, New York
52.
Zurück zum Zitat Whistler RL, Richards EL (1970) The Carbohydrates 2:447–469 Whistler RL, Richards EL (1970) The Carbohydrates 2:447–469
53.
Zurück zum Zitat Doherty WO, Mousavioun P, Fellows CM (2011) Value-adding to cellulosic ethanol: lignin polymers. Ind Crop Prod 33(2):259–276CrossRef Doherty WO, Mousavioun P, Fellows CM (2011) Value-adding to cellulosic ethanol: lignin polymers. Ind Crop Prod 33(2):259–276CrossRef
54.
Zurück zum Zitat Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Edit 44(22):3358–3393CrossRef Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Edit 44(22):3358–3393CrossRef
55.
Zurück zum Zitat Li MC, Wu Q, Song K, Lee S, Qing Y, Wu Y (2015) Cellulose nanoparticles: structure–morphology–rheology relationships. ACS Sustain Chem Eng 3(5):821–832CrossRef Li MC, Wu Q, Song K, Lee S, Qing Y, Wu Y (2015) Cellulose nanoparticles: structure–morphology–rheology relationships. ACS Sustain Chem Eng 3(5):821–832CrossRef
56.
Zurück zum Zitat Zhou L, He H, Li MC, Song K, Cheng HN, Wu Q (2016) Morphological influence of cellulose nanoparticles (CNs) from cottonseed hulls on rheological properties of polyvinyl alcohol/CN suspensions. Carbohyd Polym 153:445–454CrossRef Zhou L, He H, Li MC, Song K, Cheng HN, Wu Q (2016) Morphological influence of cellulose nanoparticles (CNs) from cottonseed hulls on rheological properties of polyvinyl alcohol/CN suspensions. Carbohyd Polym 153:445–454CrossRef
57.
Zurück zum Zitat Rosa SM, Rehman N, de Miranda MIG, Nachtigall SM, Bica CI (2012) Chlorine-free extraction of cellulose from rice husk and whisker isolation. Carbohyd Polym 87(2):1131–1138CrossRef Rosa SM, Rehman N, de Miranda MIG, Nachtigall SM, Bica CI (2012) Chlorine-free extraction of cellulose from rice husk and whisker isolation. Carbohyd Polym 87(2):1131–1138CrossRef
58.
Zurück zum Zitat Shafiei-Sabet S, Hamad WY, Hatzikiriakos SG (2012) Rheology of nanocrystalline cellulose aqueous suspensions. Langmuir 28(49):17124–17133CrossRef Shafiei-Sabet S, Hamad WY, Hatzikiriakos SG (2012) Rheology of nanocrystalline cellulose aqueous suspensions. Langmuir 28(49):17124–17133CrossRef
59.
Zurück zum Zitat Shafiei-Sabet S, Hamad WY, Hatzikiriakos SG (2013) Influence of degree of sulfation on the rheology of cellulose nanocrystal suspensions. Rheol Acta 52(8–9):741–751CrossRef Shafiei-Sabet S, Hamad WY, Hatzikiriakos SG (2013) Influence of degree of sulfation on the rheology of cellulose nanocrystal suspensions. Rheol Acta 52(8–9):741–751CrossRef
60.
Zurück zum Zitat Shafiei-Sabet S, Hamad WY, Hatzikiriakos SG (2014) Ionic strength effects on the microstructure and shear rheology of cellulose nanocrystal suspensions. Cellulose 21(5):3347–3359CrossRef Shafiei-Sabet S, Hamad WY, Hatzikiriakos SG (2014) Ionic strength effects on the microstructure and shear rheology of cellulose nanocrystal suspensions. Cellulose 21(5):3347–3359CrossRef
61.
Zurück zum Zitat Thakur VK, Singha AS (2013) Biomass-based Biocomposites, pp 386, Smithers Rapra, ISBN 978147359803 Thakur VK, Singha AS (2013) Biomass-based Biocomposites, pp 386, Smithers Rapra, ISBN 978147359803
62.
Zurück zum Zitat Thakur VK (2013) Green composites from natural resources. CRC Press Taylor & Francis, p 419, ISBN, 9781466570696 Thakur VK (2013) Green composites from natural resources. CRC Press Taylor & Francis, p 419, ISBN, 9781466570696
63.
Zurück zum Zitat Sarkanen KV, Ludwig CH (1971) Lignins-occurence, formation, structure and reactions, vol 1. Wiley Interscience, New York Sarkanen KV, Ludwig CH (1971) Lignins-occurence, formation, structure and reactions, vol 1. Wiley Interscience, New York
64.
Zurück zum Zitat Meshitsuka G, Isogai A (1996) Chemical structures of cellulose, hemicelluloses and lignin, In: Chemical modification of lignocellulosic materials. Editor D-NS. Hon. Marcel Dekker Inc. New York, NY Meshitsuka G, Isogai A (1996) Chemical structures of cellulose, hemicelluloses and lignin, In: Chemical modification of lignocellulosic materials. Editor D-NS. Hon. Marcel Dekker Inc. New York, NY
65.
Zurück zum Zitat Thakur VK, Thakur MK, Raghavan P, Kessler MR (2014) Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustain Chem Eng 2(5):1072–1092CrossRef Thakur VK, Thakur MK, Raghavan P, Kessler MR (2014) Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustain Chem Eng 2(5):1072–1092CrossRef
66.
Zurück zum Zitat Nordström Y, Norberg I, Sjöholm E, Drougge R (2013) A new softening agent for melt spinning of softwood kraft lignin. J Appl Polym Sci 129(3):1274–1279CrossRef Nordström Y, Norberg I, Sjöholm E, Drougge R (2013) A new softening agent for melt spinning of softwood kraft lignin. J Appl Polym Sci 129(3):1274–1279CrossRef
67.
Zurück zum Zitat George J, Sreekala MS, Thomas S (2001) A review on interface modification and characterization of natural fiber reinforced plastic composites. Polym Eng Sci 41(9):1471–1485CrossRef George J, Sreekala MS, Thomas S (2001) A review on interface modification and characterization of natural fiber reinforced plastic composites. Polym Eng Sci 41(9):1471–1485CrossRef
68.
Zurück zum Zitat Bogoeva-Gaceva G, Avella M, Malinconico M, Buzarovska A, Grozdanov A, Gentile G, Errico ME (2007) Natural fiber eco-composites. Polym Composite 28(1):98–107CrossRef Bogoeva-Gaceva G, Avella M, Malinconico M, Buzarovska A, Grozdanov A, Gentile G, Errico ME (2007) Natural fiber eco-composites. Polym Composite 28(1):98–107CrossRef
69.
Zurück zum Zitat Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45(1):1–33CrossRef Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45(1):1–33CrossRef
70.
Zurück zum Zitat Erakovic S, Veljovic D, Diouf PN, Stevanovic T, Mitric M, Janackovic D, Matic IZ, Juranic ZD, Miskovic-Stankovic V (2012) The effect of lignin on the structure and characteristics of composite coatings electrodeposited on titanium. Prog Org Coat 75(4):275–283CrossRef Erakovic S, Veljovic D, Diouf PN, Stevanovic T, Mitric M, Janackovic D, Matic IZ, Juranic ZD, Miskovic-Stankovic V (2012) The effect of lignin on the structure and characteristics of composite coatings electrodeposited on titanium. Prog Org Coat 75(4):275–283CrossRef
71.
Zurück zum Zitat Singha AS, Thakur VK (2009) Synthesis, characterization and study of pine needles reinforced polymer matrix based composites. J Reinf Plast Comp 29(5):700–709CrossRef Singha AS, Thakur VK (2009) Synthesis, characterization and study of pine needles reinforced polymer matrix based composites. J Reinf Plast Comp 29(5):700–709CrossRef
72.
Zurück zum Zitat Singha AS, Thakur VK (2010) Mechanical, morphological, and thermal characterization of compression-molded polymer biocomposites. Int J Polym Anal Ch 15(2):87–97CrossRef Singha AS, Thakur VK (2010) Mechanical, morphological, and thermal characterization of compression-molded polymer biocomposites. Int J Polym Anal Ch 15(2):87–97CrossRef
73.
Zurück zum Zitat Pinkert A, Goeke DF, Marsh KN, Pang S (2011) Extracting wood lignin without dissolving or degrading cellulose: investigations on the use of food additive-derived ionic liquids. Green Chem 13(11):3124–3136CrossRef Pinkert A, Goeke DF, Marsh KN, Pang S (2011) Extracting wood lignin without dissolving or degrading cellulose: investigations on the use of food additive-derived ionic liquids. Green Chem 13(11):3124–3136CrossRef
74.
Zurück zum Zitat Bertini F, Canetti M, Cacciamani A, Elegir G, Orlandi M, Zoia L (2012) Effect of ligno-derivatives on thermal properties and degradation behavior of poly (3-hydroxybutyrate)-based biocomposites. Polym Degrad Stabil 97(10):1979–1987CrossRef Bertini F, Canetti M, Cacciamani A, Elegir G, Orlandi M, Zoia L (2012) Effect of ligno-derivatives on thermal properties and degradation behavior of poly (3-hydroxybutyrate)-based biocomposites. Polym Degrad Stabil 97(10):1979–1987CrossRef
75.
Zurück zum Zitat Uraki Y, Sugiyama Y, Koda K, Kubo S, Kishimoto T, Kadla JF (2012) Thermal mobility of β-O-4-type artificial lignin. Biomacromolecules 13(3):867–872CrossRef Uraki Y, Sugiyama Y, Koda K, Kubo S, Kishimoto T, Kadla JF (2012) Thermal mobility of β-O-4-type artificial lignin. Biomacromolecules 13(3):867–872CrossRef
76.
Zurück zum Zitat Dufresne A (2010) In: Encyclopedia of nanoscience and nanotechnology, 21:219–250 Dufresne A (2010) In: Encyclopedia of nanoscience and nanotechnology, 21:219–250
77.
Zurück zum Zitat Woodcock C, Sarko A (1980) Packing analysis of carbohydrates and polysaccharides. 11. Molecular and crystal structure of native ramie cellulose. Macromolecules 13(5):1183–1187CrossRef Woodcock C, Sarko A (1980) Packing analysis of carbohydrates and polysaccharides. 11. Molecular and crystal structure of native ramie cellulose. Macromolecules 13(5):1183–1187CrossRef
78.
Zurück zum Zitat Marchessault RH, Sundararajan PR (1983) In: The polysaccharides. Aspinall GO (ed). Academic, New York Marchessault RH, Sundararajan PR (1983) In: The polysaccharides. Aspinall GO (ed). Academic, New York
79.
Zurück zum Zitat O’Sullivan AC (1997) Cellulose: the structure slowly unravels. Cellulose 4(3):173–207CrossRef O’Sullivan AC (1997) Cellulose: the structure slowly unravels. Cellulose 4(3):173–207CrossRef
80.
Zurück zum Zitat Ashori A, Babaee M, Jonoobi M, Hamzeh Y (2014) Solvent-free acetylation of cellulose nanofibers for improving compatibility and dispersion. Carbohyd Polym 102:369–375CrossRef Ashori A, Babaee M, Jonoobi M, Hamzeh Y (2014) Solvent-free acetylation of cellulose nanofibers for improving compatibility and dispersion. Carbohyd Polym 102:369–375CrossRef
81.
Zurück zum Zitat Babaee M, Jonoobi M, Hamzeh Y, Ashori A (2015) Biodegradability and mechanical properties of reinforced starch nanocomposites using cellulose nanofibers. Carbohyd Polym 132:1–8CrossRef Babaee M, Jonoobi M, Hamzeh Y, Ashori A (2015) Biodegradability and mechanical properties of reinforced starch nanocomposites using cellulose nanofibers. Carbohyd Polym 132:1–8CrossRef
82.
Zurück zum Zitat Bendahou A, Kaddami H, Dufresne A (2010) Investigation on the effect of cellulosic nanoparticles’ morphology on the properties of natural rubber based nanocomposites. Eur Polym J 46(4):609–620CrossRef Bendahou A, Kaddami H, Dufresne A (2010) Investigation on the effect of cellulosic nanoparticles’ morphology on the properties of natural rubber based nanocomposites. Eur Polym J 46(4):609–620CrossRef
83.
Zurück zum Zitat Khan A, Huq T, Khan RA, Riedl B, Lacroix M (2014) Nanocellulose-based composites and bioactive agents for food packaging. Crit Rev Food Sci 54(2):163–174CrossRef Khan A, Huq T, Khan RA, Riedl B, Lacroix M (2014) Nanocellulose-based composites and bioactive agents for food packaging. Crit Rev Food Sci 54(2):163–174CrossRef
84.
Zurück zum Zitat Avérous L (2004) Biodegradable multiphase systems based on plasticized starch: a review. J Macromol Sci C 44(3):231–274CrossRef Avérous L (2004) Biodegradable multiphase systems based on plasticized starch: a review. J Macromol Sci C 44(3):231–274CrossRef
85.
Zurück zum Zitat Zhao R, Torley P, Halley PJ (2008) Emerging biodegradable materials: starch-and protein-based bio-nanocomposites. J Mater Sci 43(9):3058–3071CrossRef Zhao R, Torley P, Halley PJ (2008) Emerging biodegradable materials: starch-and protein-based bio-nanocomposites. J Mater Sci 43(9):3058–3071CrossRef
86.
Zurück zum Zitat Alemdar A, Sain M (2008) Biocomposites from wheat straw nanofibers: morphology, thermal and mechanical properties. Compos Sci Technol 68(2):557–565CrossRef Alemdar A, Sain M (2008) Biocomposites from wheat straw nanofibers: morphology, thermal and mechanical properties. Compos Sci Technol 68(2):557–565CrossRef
87.
Zurück zum Zitat Lu Y, Weng L, Cao X (2006) Morphological, thermal and mechanical properties of ramie crystallites—reinforced plasticized starch biocomposites. Carbohyd Polym 63(2):198–204CrossRef Lu Y, Weng L, Cao X (2006) Morphological, thermal and mechanical properties of ramie crystallites—reinforced plasticized starch biocomposites. Carbohyd Polym 63(2):198–204CrossRef
88.
Zurück zum Zitat Orts WJ, Shey J, Imam SH, Glenn GM, Guttman ME, Revol JF (2005) Application of cellulose microfibrils in polymer nanocomposites. J Polym Environ 13(4):301–306CrossRef Orts WJ, Shey J, Imam SH, Glenn GM, Guttman ME, Revol JF (2005) Application of cellulose microfibrils in polymer nanocomposites. J Polym Environ 13(4):301–306CrossRef
89.
Zurück zum Zitat Lu Y, Weng L, Cao X (2005) Biocomposites of plasticized starch reinforced with cellulose crystallites from cottonseed linter. Macromol Biosci 5(11):1101–1107CrossRef Lu Y, Weng L, Cao X (2005) Biocomposites of plasticized starch reinforced with cellulose crystallites from cottonseed linter. Macromol Biosci 5(11):1101–1107CrossRef
90.
Zurück zum Zitat Rodney J, Sahari J, Kamal M, Shah M, Sapuan SM (2015) Thermochemical and mechanical properties of tea tree (Melaleuca alternifolia) fibre reinforced tapioca starch composites. e-Polymers 15(6):401–409CrossRef Rodney J, Sahari J, Kamal M, Shah M, Sapuan SM (2015) Thermochemical and mechanical properties of tea tree (Melaleuca alternifolia) fibre reinforced tapioca starch composites. e-Polymers 15(6):401–409CrossRef
91.
Zurück zum Zitat Anglès MN, Dufresne A (2000) Plasticized starch/tunicin whiskers nanocomposites. 1. Structural analysis. Macromolecules 33(22):8344–8353CrossRef Anglès MN, Dufresne A (2000) Plasticized starch/tunicin whiskers nanocomposites. 1. Structural analysis. Macromolecules 33(22):8344–8353CrossRef
92.
Zurück zum Zitat Anglès MN, Dufresne A (2001) Plasticized starch/tunicin whiskers nanocomposite materials. 2. Mechanical behavior. Macromolecules 34(9):2921–2931CrossRef Anglès MN, Dufresne A (2001) Plasticized starch/tunicin whiskers nanocomposite materials. 2. Mechanical behavior. Macromolecules 34(9):2921–2931CrossRef
93.
Zurück zum Zitat Dufresne A, Dupeyre D, Vignon MR (2000) Cellulose microfibrils from potato tuber cells: processing and characterization of starch–cellulose microfibril composites. J Appl Polym Sci 76(14):2080–2092CrossRef Dufresne A, Dupeyre D, Vignon MR (2000) Cellulose microfibrils from potato tuber cells: processing and characterization of starch–cellulose microfibril composites. J Appl Polym Sci 76(14):2080–2092CrossRef
94.
Zurück zum Zitat Sonkaew P, Sane A, Suppakul P (2012) Antioxidant activities of curcumin and ascorbyl dipalmitate nanoparticles and their activities after incorporation into cellulose-based packaging films. J Agr Food Chem 60(21):5388–5399CrossRef Sonkaew P, Sane A, Suppakul P (2012) Antioxidant activities of curcumin and ascorbyl dipalmitate nanoparticles and their activities after incorporation into cellulose-based packaging films. J Agr Food Chem 60(21):5388–5399CrossRef
95.
Zurück zum Zitat Dufresne A (2008) In: Monomers, polymers and composites from renewable resources, pp 401–418 Dufresne A (2008) In: Monomers, polymers and composites from renewable resources, pp 401–418
96.
Zurück zum Zitat Weeton JW, Peters DM, Thomas KL (1987) In: Engineers´ guide to composite materials. American Society for metals, Metals Park, Ohio Weeton JW, Peters DM, Thomas KL (1987) In: Engineers´ guide to composite materials. American Society for metals, Metals Park, Ohio
97.
Zurück zum Zitat Kokta BV, Raj RG, Daneault C (1989) Use of wood flour as filler in polypropylene: studies on mechanical properties. Polym Plast Technol 28(3):247–259CrossRef Kokta BV, Raj RG, Daneault C (1989) Use of wood flour as filler in polypropylene: studies on mechanical properties. Polym Plast Technol 28(3):247–259CrossRef
98.
Zurück zum Zitat Bumbudsanpharoke N, Choi J, Park I, Ko S (2015) J Nanomater, pp 1–9 Bumbudsanpharoke N, Choi J, Park I, Ko S (2015) J Nanomater, pp 1–9
99.
Zurück zum Zitat Kvien I, Sugiyama J, Votrubec M, Oksman K (2007) Characterization of starch based nanocomposites. J Mater Sci 42(19):8163–8171CrossRef Kvien I, Sugiyama J, Votrubec M, Oksman K (2007) Characterization of starch based nanocomposites. J Mater Sci 42(19):8163–8171CrossRef
100.
Zurück zum Zitat Dufresne A, Dupeyre D, Paillet M (2003) Lignocellulosic flour-reinforced poly (hydroxybutyrate-co-valerate) composites. J Appl Polym Sci 87(8):1302–1315CrossRef Dufresne A, Dupeyre D, Paillet M (2003) Lignocellulosic flour-reinforced poly (hydroxybutyrate-co-valerate) composites. J Appl Polym Sci 87(8):1302–1315CrossRef
101.
Zurück zum Zitat Reinsch VE, Kelley SS (1997) Crystallization of poly (hydroxybutrate-co-hydroxyvalerate) in wood fiber-reinforced composites. J Appl Polym Sci 64(9):1785–1796CrossRef Reinsch VE, Kelley SS (1997) Crystallization of poly (hydroxybutrate-co-hydroxyvalerate) in wood fiber-reinforced composites. J Appl Polym Sci 64(9):1785–1796CrossRef
102.
Zurück zum Zitat Luo S, Netravali AN (1999) Mechanical and thermal properties of environment-friendly “green” composites made from pineapple leaf fibers and poly (hydroxybutyrate-co-valerate) resin. Polym Composite 20(3):367–378CrossRef Luo S, Netravali AN (1999) Mechanical and thermal properties of environment-friendly “green” composites made from pineapple leaf fibers and poly (hydroxybutyrate-co-valerate) resin. Polym Composite 20(3):367–378CrossRef
103.
Zurück zum Zitat Kalia S, Dufresne A, Cherian BM, Kaith BS, Avérous L, Njuguna J, Nassiopoulos E (2011) Cellulose-based bio-and nanocomposites: a review. Int J Polym Sci Kalia S, Dufresne A, Cherian BM, Kaith BS, Avérous L, Njuguna J, Nassiopoulos E (2011) Cellulose-based bio-and nanocomposites: a review. Int J Polym Sci
104.
Zurück zum Zitat Raquez JM, Habibi Y, Murariu M, Dubois P (2013) Polylactide (PLA)-based nanocomposites. Prog Polym Sci 38(10):1504–1542CrossRef Raquez JM, Habibi Y, Murariu M, Dubois P (2013) Polylactide (PLA)-based nanocomposites. Prog Polym Sci 38(10):1504–1542CrossRef
105.
Zurück zum Zitat Hasani M, Cranston ED, Westman G, Gray DG (2008) Cationic surface functionalization of cellulose nanocrystals. Soft Matter 4(11):2238–2244CrossRef Hasani M, Cranston ED, Westman G, Gray DG (2008) Cationic surface functionalization of cellulose nanocrystals. Soft Matter 4(11):2238–2244CrossRef
106.
Zurück zum Zitat Peng BL, Dhar N, Liu HL, Tam KC (2011) Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective. Can J Chem Eng 89(5):1191–1206CrossRef Peng BL, Dhar N, Liu HL, Tam KC (2011) Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective. Can J Chem Eng 89(5):1191–1206CrossRef
107.
Zurück zum Zitat Morandi G, Heath L, Thielemans W (2009) Cellulose nanocrystals grafted with polystyrene chains through surface-initiated atom transfer radical polymerization (SI-ATRP). Langmuir 25(14):8280–8286CrossRef Morandi G, Heath L, Thielemans W (2009) Cellulose nanocrystals grafted with polystyrene chains through surface-initiated atom transfer radical polymerization (SI-ATRP). Langmuir 25(14):8280–8286CrossRef
108.
Zurück zum Zitat Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24(2):221–274CrossRef Bledzki AK, Gassan J (1999) Composites reinforced with cellulose based fibres. Prog Polym Sci 24(2):221–274CrossRef
109.
Zurück zum Zitat Trejo-O’reilly JA, Cavaille JY, Paillet M, Gandini A, Herrera-Franco P, Cauich J (2000) Interfacial properties of regenerated cellulose fiber/polystyrene composite materials. Effect of the coupling agent’s structure on the micromechanical behavior. Polym Composite 21(1):65–71 Trejo-O’reilly JA, Cavaille JY, Paillet M, Gandini A, Herrera-Franco P, Cauich J (2000) Interfacial properties of regenerated cellulose fiber/polystyrene composite materials. Effect of the coupling agent’s structure on the micromechanical behavior. Polym Composite 21(1):65–71
110.
Zurück zum Zitat Angellier H, Molina-Boisseau S, Belgacem MN, Dufresne A (2005) Surface chemical modification of waxy maize starch nanocrystals. Langmuir 21(6):2425–2433CrossRef Angellier H, Molina-Boisseau S, Belgacem MN, Dufresne A (2005) Surface chemical modification of waxy maize starch nanocrystals. Langmuir 21(6):2425–2433CrossRef
111.
Zurück zum Zitat Lu T, Jiang M, Jiang Z, Hui D, Wang Z, Zhou Z (2013) Effect of surface modification of bamboo cellulose fibers on mechanical properties of cellulose/epoxy composites. Compos Part B-Eng 51:28–34CrossRef Lu T, Jiang M, Jiang Z, Hui D, Wang Z, Zhou Z (2013) Effect of surface modification of bamboo cellulose fibers on mechanical properties of cellulose/epoxy composites. Compos Part B-Eng 51:28–34CrossRef
112.
Zurück zum Zitat Miao C, Hamad WY (2013) Cellulose reinforced polymer composites and nanocomposites: a critical review. Cellulose 20(5):2221–2262CrossRef Miao C, Hamad WY (2013) Cellulose reinforced polymer composites and nanocomposites: a critical review. Cellulose 20(5):2221–2262CrossRef
113.
Zurück zum Zitat Bledzki AK, Mamun AA, Volk J (2010) Barley husk and coconut shell reinforced polypropylene composites: the effect of fibre physical, chemical and surface properties. Compos Sci Technol 70(5):840–846CrossRef Bledzki AK, Mamun AA, Volk J (2010) Barley husk and coconut shell reinforced polypropylene composites: the effect of fibre physical, chemical and surface properties. Compos Sci Technol 70(5):840–846CrossRef
114.
Zurück zum Zitat Hietala M, Mathew AP, Oksman K (2013) Bionanocomposites of thermoplastic starch and cellulose nanofibers manufactured using twin-screw extrusion. Eur Polym J 49(4):950–956CrossRef Hietala M, Mathew AP, Oksman K (2013) Bionanocomposites of thermoplastic starch and cellulose nanofibers manufactured using twin-screw extrusion. Eur Polym J 49(4):950–956CrossRef
115.
Zurück zum Zitat Dufresne A (2000) Dynamic mechanical analysis of the interphase in bacterial polyester/cellulose whiskers natural composites. Compos Interface 7(1):53–67CrossRef Dufresne A (2000) Dynamic mechanical analysis of the interphase in bacterial polyester/cellulose whiskers natural composites. Compos Interface 7(1):53–67CrossRef
116.
Zurück zum Zitat Dong XM, Kimura T, Revol JF, Gray DG (1996) Effects of ionic strength on the isotropic-chiral nematic phase transition of suspensions of cellulose crystallites. Langmuir 12(8):2076–2082CrossRef Dong XM, Kimura T, Revol JF, Gray DG (1996) Effects of ionic strength on the isotropic-chiral nematic phase transition of suspensions of cellulose crystallites. Langmuir 12(8):2076–2082CrossRef
117.
Zurück zum Zitat Revol JF, Bradford H, Giasson J, Marchessault RH, Gray DG (1992) Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int J Biol Macromol 14(3):170–172CrossRef Revol JF, Bradford H, Giasson J, Marchessault RH, Gray DG (1992) Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int J Biol Macromol 14(3):170–172CrossRef
118.
Zurück zum Zitat Fleming K, Gray DG, Matthews S (2001) Cellulose crystallites. Chem-Eur J 7(9):1831–1836 Fleming K, Gray DG, Matthews S (2001) Cellulose crystallites. Chem-Eur J 7(9):1831–1836
119.
Zurück zum Zitat Marchessault RH, Morehead FF, Walter NM (1959) Liquid crystal systems from fibrillar polysaccharides. Nature 184:632–633CrossRef Marchessault RH, Morehead FF, Walter NM (1959) Liquid crystal systems from fibrillar polysaccharides. Nature 184:632–633CrossRef
120.
Zurück zum Zitat Onsager L (1949) The effects of shape on the interaction of colloidal particles. Ann Ny Acad Sci 51(4):627–659CrossRef Onsager L (1949) The effects of shape on the interaction of colloidal particles. Ann Ny Acad Sci 51(4):627–659CrossRef
121.
Zurück zum Zitat Stroobants A, Lekkerkerker HNW, Odijk T (1986) Effect of electrostatic interaction on the liquid crystal phase transition in solutions of rodlike polyelectrolytes. Macromolecules 19(8):2232–2238CrossRef Stroobants A, Lekkerkerker HNW, Odijk T (1986) Effect of electrostatic interaction on the liquid crystal phase transition in solutions of rodlike polyelectrolytes. Macromolecules 19(8):2232–2238CrossRef
122.
Zurück zum Zitat Speranza A, Sollich P (2002) Simplified Onsager theory for isotropic–nematic phase equilibria of length polydisperse hard rods. J Chem Phys 117(11):5421–5436CrossRef Speranza A, Sollich P (2002) Simplified Onsager theory for isotropic–nematic phase equilibria of length polydisperse hard rods. J Chem Phys 117(11):5421–5436CrossRef
123.
Zurück zum Zitat Dong XM, Gray DG (1997) Effect of counterions on ordered phase formation in suspensions of charged rodlike cellulose crystallites. Langmuir 13(8):2404–2409CrossRef Dong XM, Gray DG (1997) Effect of counterions on ordered phase formation in suspensions of charged rodlike cellulose crystallites. Langmuir 13(8):2404–2409CrossRef
124.
Zurück zum Zitat Bercea M, Navard P (2000) Shear dynamics of aqueous suspensions of cellulose whiskers. Macromolecules 33(16):6011–6016CrossRef Bercea M, Navard P (2000) Shear dynamics of aqueous suspensions of cellulose whiskers. Macromolecules 33(16):6011–6016CrossRef
125.
Zurück zum Zitat Sugiyama J, Chanzy H, Maret G (1992) Orientation of cellulose microcrystals by strong magnetic fields. Macromolecules 25(16):4232–4234CrossRef Sugiyama J, Chanzy H, Maret G (1992) Orientation of cellulose microcrystals by strong magnetic fields. Macromolecules 25(16):4232–4234CrossRef
126.
Zurück zum Zitat Yoshiharu N, Shigenori K, Masahisa W, Takeshi O (1997) Cellulose microcrystal film of high uniaxial orientation. Macromolecules 30(20):6395–6397CrossRef Yoshiharu N, Shigenori K, Masahisa W, Takeshi O (1997) Cellulose microcrystal film of high uniaxial orientation. Macromolecules 30(20):6395–6397CrossRef
127.
Zurück zum Zitat Revol JF, Godbout L, Dong XM, Gray DG, Chanzy H, Maret G (1994) Chiral nematic suspensions of cellulose crystallites; phase separation and magnetic field orientation. Liq Cryst 16(1):127–134CrossRef Revol JF, Godbout L, Dong XM, Gray DG, Chanzy H, Maret G (1994) Chiral nematic suspensions of cellulose crystallites; phase separation and magnetic field orientation. Liq Cryst 16(1):127–134CrossRef
128.
Zurück zum Zitat Kimura F, Kimura T, Tamura M, Hirai A, Ikuno M, Horii F (2005) Magnetic alignment of the chiral nematic phase of a cellulose microfibril suspension. Langmuir 21(5):2034–2037CrossRef Kimura F, Kimura T, Tamura M, Hirai A, Ikuno M, Horii F (2005) Magnetic alignment of the chiral nematic phase of a cellulose microfibril suspension. Langmuir 21(5):2034–2037CrossRef
129.
Zurück zum Zitat Revol JF, Godbout L, Gray DG (1998) PPR 1331 report Revol JF, Godbout L, Gray DG (1998) PPR 1331 report
130.
Zurück zum Zitat Revol JF, Godbout L, Gray DG US5629055, Washington, DC: U.S. Government Printing Office Revol JF, Godbout L, Gray DG US5629055, Washington, DC: U.S. Government Printing Office
131.
Zurück zum Zitat Hooshmand S, Aitomäki Y, Norberg N, Mathew AP, Oksman K (2015) Dry-Spun single-filament fibers comprising solely cellulose nanofibers from bioresidue. ACS Appl Mater Interfaces 7(23):13022–13028CrossRef Hooshmand S, Aitomäki Y, Norberg N, Mathew AP, Oksman K (2015) Dry-Spun single-filament fibers comprising solely cellulose nanofibers from bioresidue. ACS Appl Mater Interfaces 7(23):13022–13028CrossRef
132.
Zurück zum Zitat Valadez-Gonzalez A, Cervantes-Uc JM, Olayo RJIP, Herrera-Franco PJ (1999) Effect of fiber surface treatment on the fiber–matrix bond strength of natural fiber reinforced composites. Compos Part B-Eng 30(3):309–320CrossRef Valadez-Gonzalez A, Cervantes-Uc JM, Olayo RJIP, Herrera-Franco PJ (1999) Effect of fiber surface treatment on the fiber–matrix bond strength of natural fiber reinforced composites. Compos Part B-Eng 30(3):309–320CrossRef
133.
Zurück zum Zitat Li MC, Wu Q, Song K, Cheng HN, Suzuki S, Lei T (2016) Chitin nanofibers as reinforcing and antimicrobial agents in carboxymethyl cellulose films: influence of partial deacetylation. ACS Sustainable Chem Eng 4(8):4385–4395CrossRef Li MC, Wu Q, Song K, Cheng HN, Suzuki S, Lei T (2016) Chitin nanofibers as reinforcing and antimicrobial agents in carboxymethyl cellulose films: influence of partial deacetylation. ACS Sustainable Chem Eng 4(8):4385–4395CrossRef
134.
Zurück zum Zitat Angles MN, Salvadó J, Dufresne A (1999) Steam-exploded residual softwood-filled polypropylene composites. J Appl Polym Sci 74(8):1962–1977CrossRef Angles MN, Salvadó J, Dufresne A (1999) Steam-exploded residual softwood-filled polypropylene composites. J Appl Polym Sci 74(8):1962–1977CrossRef
135.
Zurück zum Zitat Faria H, Cordeiro N, Belgacem MN, Dufresne A (2006) Dwarf cavendish as a source of natural fibers in poly (propylene)-based composites. Macromol Mater Eng 291(1):16–26CrossRef Faria H, Cordeiro N, Belgacem MN, Dufresne A (2006) Dwarf cavendish as a source of natural fibers in poly (propylene)-based composites. Macromol Mater Eng 291(1):16–26CrossRef
136.
Zurück zum Zitat Li X, Tabil LG, Panigrahi S (2007) Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Environ 15(1):25–33CrossRef Li X, Tabil LG, Panigrahi S (2007) Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Environ 15(1):25–33CrossRef
137.
Zurück zum Zitat Juntaro J, Pommet M, Mantalaris A, Shaffer M, Bismarck A (2007) Nanocellulose enhanced interfaces in truly green unidirectional fibre reinforced composites. Compos Interfaces 14:753–762CrossRef Juntaro J, Pommet M, Mantalaris A, Shaffer M, Bismarck A (2007) Nanocellulose enhanced interfaces in truly green unidirectional fibre reinforced composites. Compos Interfaces 14:753–762CrossRef
138.
Zurück zum Zitat Juntaro J, Pommet M, Kalinka G, Mantalaris A, Shaffer MSP, Bismarck A (2008) Creating hierarchical structures in renewable composites by attaching bacterial cellulose onto sisal fibers. Adv Mater 20:3122–3126CrossRef Juntaro J, Pommet M, Kalinka G, Mantalaris A, Shaffer MSP, Bismarck A (2008) Creating hierarchical structures in renewable composites by attaching bacterial cellulose onto sisal fibers. Adv Mater 20:3122–3126CrossRef
139.
Zurück zum Zitat Lu J, Askeland P, Drzal LT (2008) Surface modification of microfibrillated cellulose for epoxy composite applications. Polymer 49:1285–1296CrossRef Lu J, Askeland P, Drzal LT (2008) Surface modification of microfibrillated cellulose for epoxy composite applications. Polymer 49:1285–1296CrossRef
140.
Zurück zum Zitat Çalgeris İ, Çakmakçı E, Ogan A, Kahraman MV, Kayaman-Apohan N (2012) Preparation and drug release properties of lignin–starch biodegradable films. Starch-Stärke 64(5):399–407CrossRef Çalgeris İ, Çakmakçı E, Ogan A, Kahraman MV, Kayaman-Apohan N (2012) Preparation and drug release properties of lignin–starch biodegradable films. Starch-Stärke 64(5):399–407CrossRef
141.
Zurück zum Zitat Spiridon I, Teaca CA, Bodirlau R (2011) Preparation and characterization of adipic acid-modified starch microparticles/plasticized starch composite films reinforced by lignin. J Mater Sci 46(10):3241–3251CrossRef Spiridon I, Teaca CA, Bodirlau R (2011) Preparation and characterization of adipic acid-modified starch microparticles/plasticized starch composite films reinforced by lignin. J Mater Sci 46(10):3241–3251CrossRef
142.
Zurück zum Zitat Sothornvit R, Olsen CW, McHugh TH, Krochta JM (2007) Tensile properties of compression-molded whey protein sheets: determination of molding condition and glycerol-content effects and comparison with solution-cast films. J Food Eng 78(3):855–860CrossRef Sothornvit R, Olsen CW, McHugh TH, Krochta JM (2007) Tensile properties of compression-molded whey protein sheets: determination of molding condition and glycerol-content effects and comparison with solution-cast films. J Food Eng 78(3):855–860CrossRef
143.
Zurück zum Zitat Thunwall M, Kuthanova V, Boldizar A, Rigdahl M (2008) Film blowing of thermoplastic starch. Carbohyd Polym 71(4):583–590CrossRef Thunwall M, Kuthanova V, Boldizar A, Rigdahl M (2008) Film blowing of thermoplastic starch. Carbohyd Polym 71(4):583–590CrossRef
144.
Zurück zum Zitat Thunwall M, Boldizar A, Rigdahl M (2006) Compression molding and tensile properties of thermoplastic potato starch materials. Biomacromolecules 7(3):981–986CrossRef Thunwall M, Boldizar A, Rigdahl M (2006) Compression molding and tensile properties of thermoplastic potato starch materials. Biomacromolecules 7(3):981–986CrossRef
145.
Zurück zum Zitat Flores SK, Costa D, Yamashita F, Gerschenson LN, Grossmann MV (2010) Mixture design for evaluation of potassium sorbate and xanthan gum effect on properties of tapioca starch films obtained by extrusion. Mater Sci Eng, C 30(1):196–202CrossRef Flores SK, Costa D, Yamashita F, Gerschenson LN, Grossmann MV (2010) Mixture design for evaluation of potassium sorbate and xanthan gum effect on properties of tapioca starch films obtained by extrusion. Mater Sci Eng, C 30(1):196–202CrossRef
146.
Zurück zum Zitat Pelissari FM, Yamashita F, Garcia MA, Martino MN, Zaritzky NE, Grossmann MVE (2012) Constrained mixture design applied to the development of cassava starch–chitosan blown films. J Food Eng 108(2):262–267CrossRef Pelissari FM, Yamashita F, Garcia MA, Martino MN, Zaritzky NE, Grossmann MVE (2012) Constrained mixture design applied to the development of cassava starch–chitosan blown films. J Food Eng 108(2):262–267CrossRef
147.
Zurück zum Zitat Šimkovic I (2013) Unexplored possibilities of all-polysaccharide composites. Carbohyd Polym 95(2):697–715CrossRef Šimkovic I (2013) Unexplored possibilities of all-polysaccharide composites. Carbohyd Polym 95(2):697–715CrossRef
148.
Zurück zum Zitat Mondragón M, Arroyo K, Romero-Garcia J (2008) Biocomposites of thermoplastic starch with surfactant. Carbohyd Polym 74(2):201–208CrossRef Mondragón M, Arroyo K, Romero-Garcia J (2008) Biocomposites of thermoplastic starch with surfactant. Carbohyd Polym 74(2):201–208CrossRef
149.
Zurück zum Zitat Chakraborty A, Sain M, Kortschot M, Cutler S (2007) Dispersion of wood microfibers in a matrix of thermoplastic starch and starch–polylactic acid blend. J Biobased Mater Bio 1(1):71–77 Chakraborty A, Sain M, Kortschot M, Cutler S (2007) Dispersion of wood microfibers in a matrix of thermoplastic starch and starch–polylactic acid blend. J Biobased Mater Bio 1(1):71–77
150.
Zurück zum Zitat Takagi H, Asano A (2008) Effects of processing conditions on flexural properties of cellulose nanofiber reinforced “green” composites. Compos Part A-Appl S 39(4):685–689CrossRef Takagi H, Asano A (2008) Effects of processing conditions on flexural properties of cellulose nanofiber reinforced “green” composites. Compos Part A-Appl S 39(4):685–689CrossRef
151.
Zurück zum Zitat Grande CJ, Torres FG, Gomez CM, Troncoso OP, Canet-Ferrer J, Martinez-Pastor J (2008) Morphological characterisation of bacterial cellulose-starch nanocomposites. Polym Polym Compos 16(3):181–186 Grande CJ, Torres FG, Gomez CM, Troncoso OP, Canet-Ferrer J, Martinez-Pastor J (2008) Morphological characterisation of bacterial cellulose-starch nanocomposites. Polym Polym Compos 16(3):181–186
152.
Zurück zum Zitat Yano H, Nakahara S (2004) Bio-composites produced from plant microfiber bundles with a nanometer unit web-like network. J Mater Sci 39(5):1635–1638CrossRef Yano H, Nakahara S (2004) Bio-composites produced from plant microfiber bundles with a nanometer unit web-like network. J Mater Sci 39(5):1635–1638CrossRef
153.
Zurück zum Zitat Psomiadou E, Arvanitoyannis I, Yamamoto N (1996) Edible films made from natural resources; microcrystalline cellulose (MCC), methylcellulose (MC) and corn starch and polyols-Part 2. Carbohyd Polym 31(4):193–204CrossRef Psomiadou E, Arvanitoyannis I, Yamamoto N (1996) Edible films made from natural resources; microcrystalline cellulose (MCC), methylcellulose (MC) and corn starch and polyols-Part 2. Carbohyd Polym 31(4):193–204CrossRef
154.
Zurück zum Zitat Suvorova AI, Tyukova IS, Trufanova EI (2000) Biodegradable starch-based polymeric materials. Russ Chem Rev 69(5):451CrossRef Suvorova AI, Tyukova IS, Trufanova EI (2000) Biodegradable starch-based polymeric materials. Russ Chem Rev 69(5):451CrossRef
155.
Zurück zum Zitat Rodríguez‐Castellanos W, Flores‐Ruiz FJ, Martínez‐Bustos F, Chiñas‐Castillo F, Espinoza‐Beltrán FJ (2015) Nanomechanical properties and thermal stability of recycled cellulose reinforced starch-gelatin polymer composite. J Appl Polym Sci 132(14) Rodríguez‐Castellanos W, Flores‐Ruiz FJ, Martínez‐Bustos F, Chiñas‐Castillo F, Espinoza‐Beltrán FJ (2015) Nanomechanical properties and thermal stability of recycled cellulose reinforced starch-gelatin polymer composite. J Appl Polym Sci 132(14)
Metadaten
Titel
Cellulosic materials as natural fillers in starch-containing matrix-based films: a review
verfasst von
Tomy J. Gutiérrez
Vera A. Alvarez
Publikationsdatum
27.09.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Polymer Bulletin / Ausgabe 6/2017
Print ISSN: 0170-0839
Elektronische ISSN: 1436-2449
DOI
https://doi.org/10.1007/s00289-016-1814-0

Weitere Artikel der Ausgabe 6/2017

Polymer Bulletin 6/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.