Skip to main content
Erschienen in: Polymer Bulletin 2/2020

20.04.2019 | Original Paper

Thermal characterization by DSC and TGA analyses of PVA hydrogels with organic and sodium MMT

verfasst von: Fatiha Reguieg, Lucia Ricci, Nabahat Bouyacoub, Mohamed Belbachir, Monica Bertoldo

Erschienen in: Polymer Bulletin | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Polyvinyl alcohol (PVA) hydrogels were prepared by a cyclic freezing–thawing technique without any cross-linker agent, using PVA and Maghnite water dispersion with different ratios. The obtained results have shown a higher thermal stability of samples with sodium than with alkylammonium Maghnite. Furthermore, thermal stability was maximum at the lowest investigated Maghnite/PVA ratio, but higher than for the pure PVA at all the investigated compositions. DSC analysis has shown both a low crystal degree and a low heat capacity jump at the glass transition temperature for samples with high Maghnite content. This phase does not seem to depend on the kind of cations, sodium or alkylammonium into the gallery of the clay.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Hassan CM, Trakampan P, Peppas NA (2002) Water solubility characteristics of poly(vinyl alcohol) and gels prepared by freezing/thawing processes. In: Amjad Z (ed) Water soluble polymers. Springer, Boston Hassan CM, Trakampan P, Peppas NA (2002) Water solubility characteristics of poly(vinyl alcohol) and gels prepared by freezing/thawing processes. In: Amjad Z (ed) Water soluble polymers. Springer, Boston
2.
Zurück zum Zitat Prashant PK, Vivek BR, Deepashree ND, Pranav PP (2012) Hydrogels as a drug delivery system and applications. Int J Pharm Sci 4(1):1–7 Prashant PK, Vivek BR, Deepashree ND, Pranav PP (2012) Hydrogels as a drug delivery system and applications. Int J Pharm Sci 4(1):1–7
3.
Zurück zum Zitat Muppalaneni S, Omidian H (2013) Polyvinyl alcohol in medicine and pharmacy: a perspective. J Dev Drugs 2:3CrossRef Muppalaneni S, Omidian H (2013) Polyvinyl alcohol in medicine and pharmacy: a perspective. J Dev Drugs 2:3CrossRef
4.
Zurück zum Zitat Paranhos M, Bluma Soares G, Renata Oliveira N, Luiz Pessan A (2007) Poly(vinylalcohol)/clay-based nanocomposite hydrogels: swelling behavior and characterization. Macromol Mater Eng 292(5):620–626CrossRef Paranhos M, Bluma Soares G, Renata Oliveira N, Luiz Pessan A (2007) Poly(vinylalcohol)/clay-based nanocomposite hydrogels: swelling behavior and characterization. Macromol Mater Eng 292(5):620–626CrossRef
5.
Zurück zum Zitat Hassan CM, Peppas NA (2000) Structure and morphology of freeze/thawed PVA hydrogels. Macromolecules 33:2472–2479CrossRef Hassan CM, Peppas NA (2000) Structure and morphology of freeze/thawed PVA hydrogels. Macromolecules 33:2472–2479CrossRef
6.
Zurück zum Zitat Peppas NA, Stauffer SR (1991) Reinforced uncrosslinked poly(vinyl alcohol) gels produced by cyclic freezing-thawing processes. J Control Release 16:305–310CrossRef Peppas NA, Stauffer SR (1991) Reinforced uncrosslinked poly(vinyl alcohol) gels produced by cyclic freezing-thawing processes. J Control Release 16:305–310CrossRef
7.
Zurück zum Zitat Zhao F, Yao D, Guo R, Deng L, Dong A, Zhang J (2015) Composites of polymer hydrogels and nanoparticulate systems for biomedical and pharmaceutical applications. Nanomaterials 5:2054–2130CrossRef Zhao F, Yao D, Guo R, Deng L, Dong A, Zhang J (2015) Composites of polymer hydrogels and nanoparticulate systems for biomedical and pharmaceutical applications. Nanomaterials 5:2054–2130CrossRef
8.
Zurück zum Zitat Lakouraj MM, Tajbakhsh M, Mokhtary M (2005) Synthesis and swelling characterization of cross-linked PVP/PVA hydrogels. Iran Polym J 14(12):1022–1030 Lakouraj MM, Tajbakhsh M, Mokhtary M (2005) Synthesis and swelling characterization of cross-linked PVP/PVA hydrogels. Iran Polym J 14(12):1022–1030
9.
Zurück zum Zitat Gonzalez JS, Maiolo AS, Hoppe CE, Alvarez VA (2012) Composite gels based on poly(vinyl alcohol) for biomedical Uses. Proc Mat Sci 1:483–490 Gonzalez JS, Maiolo AS, Hoppe CE, Alvarez VA (2012) Composite gels based on poly(vinyl alcohol) for biomedical Uses. Proc Mat Sci 1:483–490
10.
Zurück zum Zitat Kokabi M, Sirousazar M, Hassan ZM (2007) PVA-clay nanocomposite hydrogels for wound dressing. Eur Polym J 43(3):773–781CrossRef Kokabi M, Sirousazar M, Hassan ZM (2007) PVA-clay nanocomposite hydrogels for wound dressing. Eur Polym J 43(3):773–781CrossRef
11.
Zurück zum Zitat Sirousazar M, Kokabi M, Hassan ZM (2012) Swelling behavior and structural characteristics of polyvinyl alcohol/montmorillonite nanocomposite hydrogels. J Appl Polym Sci 123(1):50–58CrossRef Sirousazar M, Kokabi M, Hassan ZM (2012) Swelling behavior and structural characteristics of polyvinyl alcohol/montmorillonite nanocomposite hydrogels. J Appl Polym Sci 123(1):50–58CrossRef
12.
Zurück zum Zitat Karimi A, Wan Daud WMA (2017) Materials, preparation, and characterization of PVA/MMT nanocomposite hydrogels. Rev Polym Compos 38(6):1086–1102CrossRef Karimi A, Wan Daud WMA (2017) Materials, preparation, and characterization of PVA/MMT nanocomposite hydrogels. Rev Polym Compos 38(6):1086–1102CrossRef
13.
Zurück zum Zitat Noor S, Kokabia M, Hassan ZM (2015) Nanoclay enhanced the mechanical properties of poly(vinylalcohol)/chitosan/montmorillonite nanocomposite hydrogel as wound dressing. Proc Mat Sci 11:152–156 Noor S, Kokabia M, Hassan ZM (2015) Nanoclay enhanced the mechanical properties of poly(vinylalcohol)/chitosan/montmorillonite nanocomposite hydrogel as wound dressing. Proc Mat Sci 11:152–156
14.
Zurück zum Zitat Reguieg F, Sahli N, Belbachir M (2017) Hydrogel composite of poly(vinylalcool) with unmodified montmorillonite. Curr Chem Lett 6:69–76CrossRef Reguieg F, Sahli N, Belbachir M (2017) Hydrogel composite of poly(vinylalcool) with unmodified montmorillonite. Curr Chem Lett 6:69–76CrossRef
15.
Zurück zum Zitat Karimi A, Wan Daud WMA (2016) Comparison the properties of PVA/Na + MMT nanocomposite hydrogels prepared by physical and physicochemical crosslinking. Polym Compos 37(3):897–906CrossRef Karimi A, Wan Daud WMA (2016) Comparison the properties of PVA/Na + MMT nanocomposite hydrogels prepared by physical and physicochemical crosslinking. Polym Compos 37(3):897–906CrossRef
16.
Zurück zum Zitat Sirousazar M, Kokabi M, Hassan ZM, Bahramian AR (2012) Polyvinyl alcohol/Na-montmorillonite nanocomposite hydrogels prepared by freezing–thawing method: structural, mechanical, thermal, and swelling properties. J Macromol Sci B 51(7):1335–1350CrossRef Sirousazar M, Kokabi M, Hassan ZM, Bahramian AR (2012) Polyvinyl alcohol/Na-montmorillonite nanocomposite hydrogels prepared by freezing–thawing method: structural, mechanical, thermal, and swelling properties. J Macromol Sci B 51(7):1335–1350CrossRef
17.
Zurück zum Zitat Gu Y, Ye L (2009) Study on the polyvinylalcohol/montmorillonite composite hydrogel. Polym Plast Technol Eng 48(6):595–601CrossRef Gu Y, Ye L (2009) Study on the polyvinylalcohol/montmorillonite composite hydrogel. Polym Plast Technol Eng 48(6):595–601CrossRef
18.
Zurück zum Zitat Sirousazar M, Kokabi M, Hassan ZM (2011) In vivo and cytotoxic assays of a poly(vinyl alcohol)/clay nanocomposite hydrogel wound dressing. J Biomater Sci Polym Ed 22(8):1023–1033CrossRef Sirousazar M, Kokabi M, Hassan ZM (2011) In vivo and cytotoxic assays of a poly(vinyl alcohol)/clay nanocomposite hydrogel wound dressing. J Biomater Sci Polym Ed 22(8):1023–1033CrossRef
19.
Zurück zum Zitat Paranhos CM, Soares BG, Machado JC, Windmoller D, Pessa LA (2007) Microstructure and free volume evaluation of poly(vinyl alcohol) nanocomposite hydrogels. Eur Polym J 43:4882–4890CrossRef Paranhos CM, Soares BG, Machado JC, Windmoller D, Pessa LA (2007) Microstructure and free volume evaluation of poly(vinyl alcohol) nanocomposite hydrogels. Eur Polym J 43:4882–4890CrossRef
20.
Zurück zum Zitat Belbachir M, Bensaoula A (2006) Composition and method for catalysis using bentonites. US 7094823 B2 Belbachir M, Bensaoula A (2006) Composition and method for catalysis using bentonites. US 7094823 B2
21.
Zurück zum Zitat Reguieg F, Sahli N, Belbachir M, Lutz PJ (2006) One-step synthesis of bis-macromonomers of poly(1,3-dioxolane) catalyzed by maghnite-H. J App Polym Sci 99(6):3147–3152CrossRef Reguieg F, Sahli N, Belbachir M, Lutz PJ (2006) One-step synthesis of bis-macromonomers of poly(1,3-dioxolane) catalyzed by maghnite-H. J App Polym Sci 99(6):3147–3152CrossRef
22.
Zurück zum Zitat Bensaada N, Ayat M, Meghabar R, Belbachir M (2015) The synthesis of polystyrene with a new chemical approach. Curr Chem Lett 4(2):55–60CrossRef Bensaada N, Ayat M, Meghabar R, Belbachir M (2015) The synthesis of polystyrene with a new chemical approach. Curr Chem Lett 4(2):55–60CrossRef
23.
Zurück zum Zitat Harrane A, Belbachir M (2007) Synthesis of biodegradable polycaprolactone/montmorillonite nanocomposites by direct in situ polymerization catalysed by exchanged clay. Macromol Symp 247(1):379–384CrossRef Harrane A, Belbachir M (2007) Synthesis of biodegradable polycaprolactone/montmorillonite nanocomposites by direct in situ polymerization catalysed by exchanged clay. Macromol Symp 247(1):379–384CrossRef
24.
Zurück zum Zitat Reguieg F, Sahli N, Belbachir M (2015) Nanocomposite hydrogels based on water soluble polymer and montmorillonite-Na+. Orient J Chem 31(3):1645–1657CrossRef Reguieg F, Sahli N, Belbachir M (2015) Nanocomposite hydrogels based on water soluble polymer and montmorillonite-Na+. Orient J Chem 31(3):1645–1657CrossRef
25.
Zurück zum Zitat Ricciardi R, Auriemma F, De Rosa C, Lauprêtre F (2004) X-ray diffraction analysis of poly(vinyl alcohol) hydrogels, obtained by freezing and thawing techniques. Macromolecules 37(5):1921–1927CrossRef Ricciardi R, Auriemma F, De Rosa C, Lauprêtre F (2004) X-ray diffraction analysis of poly(vinyl alcohol) hydrogels, obtained by freezing and thawing techniques. Macromolecules 37(5):1921–1927CrossRef
26.
Zurück zum Zitat Passaglia E, Bertoldo M, Ceriegi S, Sulcis R, Narducci P, Conzatti L (2008) Oxygen and water vapor barrier properties of MMT nanocomposites from low density polyethylene or EPM with grafted succinic groups. J Nanosci Nanotechnol 8(4):1690–1699CrossRef Passaglia E, Bertoldo M, Ceriegi S, Sulcis R, Narducci P, Conzatti L (2008) Oxygen and water vapor barrier properties of MMT nanocomposites from low density polyethylene or EPM with grafted succinic groups. J Nanosci Nanotechnol 8(4):1690–1699CrossRef
27.
Zurück zum Zitat Chang J, Jang T, Ihn KJ, Lee W, Sur GS (2003) Poly (vinyl alcohol) nanocomposites with different clays: pristine clays and organoclays. J App Polym Sci 90:3208–3214CrossRef Chang J, Jang T, Ihn KJ, Lee W, Sur GS (2003) Poly (vinyl alcohol) nanocomposites with different clays: pristine clays and organoclays. J App Polym Sci 90:3208–3214CrossRef
28.
Zurück zum Zitat Xi Y, Martens W, He H, Frost RL (2005) Thermogravimetric analysis of organoclays intercalated with the surfactant octadecyltrimethylammonium bromide. J Therm Anal Calorim 81:91–97CrossRef Xi Y, Martens W, He H, Frost RL (2005) Thermogravimetric analysis of organoclays intercalated with the surfactant octadecyltrimethylammonium bromide. J Therm Anal Calorim 81:91–97CrossRef
29.
Zurück zum Zitat Li CP, Hou TT, Vongsvivut J, Li YZ, She XD, She FH et al (2015) Simultaneous crystallization and decomposition of PVA/MMT composites during non-isothermal process. Thermochim Acta 618:26–35CrossRef Li CP, Hou TT, Vongsvivut J, Li YZ, She XD, She FH et al (2015) Simultaneous crystallization and decomposition of PVA/MMT composites during non-isothermal process. Thermochim Acta 618:26–35CrossRef
30.
Zurück zum Zitat Holland BJ, Hay JN (2001) The thermal degradation of poly(vinyl alcohol). Polymer 42(16):6775–6783CrossRef Holland BJ, Hay JN (2001) The thermal degradation of poly(vinyl alcohol). Polymer 42(16):6775–6783CrossRef
31.
Zurück zum Zitat Endo R, Amiya S, Hikosaka M (2003) Conditions for melt crystallization without thermal degradation and equilibrium melting temperature of atactic poly(vinyl alcohol). J Macromol Sci B 42(3–4):793–820CrossRef Endo R, Amiya S, Hikosaka M (2003) Conditions for melt crystallization without thermal degradation and equilibrium melting temperature of atactic poly(vinyl alcohol). J Macromol Sci B 42(3–4):793–820CrossRef
32.
Zurück zum Zitat Tubbs RK (1965) Melting point and heat of fusion of poly(vinyl alcohol). J Polym Sci Part A 3(12):4181–4189 Tubbs RK (1965) Melting point and heat of fusion of poly(vinyl alcohol). J Polym Sci Part A 3(12):4181–4189
33.
Zurück zum Zitat Peppas NA, Hansen PJ (1982) Crystallization kinetics of poly(vinyl alcohol). J Appl Polym Sci 27(12):4787–4797CrossRef Peppas NA, Hansen PJ (1982) Crystallization kinetics of poly(vinyl alcohol). J Appl Polym Sci 27(12):4787–4797CrossRef
34.
Zurück zum Zitat Hickey AS, Peppas NA (1995) Mesh size and diffusive characteristics of semicrystalline poly(vinyl alcohol) membranes prepared by freezing/thawing techniques. J Memb Sci 107:229–237CrossRef Hickey AS, Peppas NA (1995) Mesh size and diffusive characteristics of semicrystalline poly(vinyl alcohol) membranes prepared by freezing/thawing techniques. J Memb Sci 107:229–237CrossRef
35.
Zurück zum Zitat Thomas D, Cebe P (2017) Self-nucleation and crystallization of polyvinyl alcohol. J Therm Anal Calorim 127(1):885–894CrossRef Thomas D, Cebe P (2017) Self-nucleation and crystallization of polyvinyl alcohol. J Therm Anal Calorim 127(1):885–894CrossRef
36.
Zurück zum Zitat Schick CA, Wurm MA (2001) Vitrification and devitrification of the rigid amorphous fraction of semicrystalline polymers revealed from frequency-dependent heat capacity. Colloid Polym Sci 279:800–806CrossRef Schick CA, Wurm MA (2001) Vitrification and devitrification of the rigid amorphous fraction of semicrystalline polymers revealed from frequency-dependent heat capacity. Colloid Polym Sci 279:800–806CrossRef
37.
Zurück zum Zitat Signori F, Pelagaggi M, Bronco S, Righetti MC (2012) Amorphous/crystal and polymer/filler interphases in biocomposites from poly(butylene succinate). Thermochim Acta 543:74–81CrossRef Signori F, Pelagaggi M, Bronco S, Righetti MC (2012) Amorphous/crystal and polymer/filler interphases in biocomposites from poly(butylene succinate). Thermochim Acta 543:74–81CrossRef
38.
Zurück zum Zitat Wurm MA, Kretzschmar IB, Pospiech D, Schick CA (2010) Retarded crystallization in polyamide/layered silicates nanocomposites caused by an immobilized interphase. Macromolecules 43(3):1480–1487CrossRef Wurm MA, Kretzschmar IB, Pospiech D, Schick CA (2010) Retarded crystallization in polyamide/layered silicates nanocomposites caused by an immobilized interphase. Macromolecules 43(3):1480–1487CrossRef
39.
Zurück zum Zitat Prevosto D, Lucchesi M, Bertoldo M, Passaglia E, Ciardelli F, Rolla P (2010) Interfacial effects on the dynamics of ethylene-propylene copolymer nanocomposite with inorganic clays. J Non-Cryst Solids 356(11–17):568–573CrossRef Prevosto D, Lucchesi M, Bertoldo M, Passaglia E, Ciardelli F, Rolla P (2010) Interfacial effects on the dynamics of ethylene-propylene copolymer nanocomposite with inorganic clays. J Non-Cryst Solids 356(11–17):568–573CrossRef
40.
Zurück zum Zitat Passaglia E, Bertoldo M, Ciardelli F, Prevosto D, Lucchesi M (2008) Evidences of macromolecular chains confinement of ethylene-propylene copolymer in organophilic montmorillonite nanocomposites. Eur Polym J 44(5):1296–1308CrossRef Passaglia E, Bertoldo M, Ciardelli F, Prevosto D, Lucchesi M (2008) Evidences of macromolecular chains confinement of ethylene-propylene copolymer in organophilic montmorillonite nanocomposites. Eur Polym J 44(5):1296–1308CrossRef
41.
Zurück zum Zitat Peppas N (1977) Infrared spectroscopy of semicrystalline poly(vinylalcohol) networks. Makcromol Chem 178(2):595–601CrossRef Peppas N (1977) Infrared spectroscopy of semicrystalline poly(vinylalcohol) networks. Makcromol Chem 178(2):595–601CrossRef
Metadaten
Titel
Thermal characterization by DSC and TGA analyses of PVA hydrogels with organic and sodium MMT
verfasst von
Fatiha Reguieg
Lucia Ricci
Nabahat Bouyacoub
Mohamed Belbachir
Monica Bertoldo
Publikationsdatum
20.04.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Polymer Bulletin / Ausgabe 2/2020
Print ISSN: 0170-0839
Elektronische ISSN: 1436-2449
DOI
https://doi.org/10.1007/s00289-019-02782-3

Weitere Artikel der Ausgabe 2/2020

Polymer Bulletin 2/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.