Skip to main content
Erschienen in: Polymer Bulletin 6/2020

30.07.2019 | Original Paper

Investigation on enhancement of electrical, dielectric and ion transport properties of nanoclay-based blend polymer nanocomposites

verfasst von: Anil Arya, A. L. Sharma

Erschienen in: Polymer Bulletin | Ausgabe 6/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

An intercalated blend polymer nanocomposite (PNC) films based on blend (PEO–PVC), LiPF6 as salt and modified montmorillonite (MMMT) as nanoclay are prepared via solution cast method. The impact of the nanoclay on the morphology, structure, polymer–polymer, polymer–ion interactions, ionic conductivity, voltage stability window, glass transition temperature, dielectric permittivity, and ac conductivity has been explored. The structural analysis evidenced the formation of blended and intercalated polymer nanocomposites. The FTIR analysis confirmed the interaction between polymer–ion-nanoclay, and polymer intercalation is evidenced by the out-of-the-plane mode [Si–O mode] of MMMT. An increase in the fraction of free anions with clay addition is confirmed. The highest ionic conductivity of about ~ 8.2 × 10−5 S cm−1 (at RT) and 1.01 × 10−3 S cm−1 (at 100 °C) is exhibited by 5 wt% MMMT based PNC. A strong correlation is observed between the glass transition temperature, crystallinity, melting temperature (Tm), ionic conductivity, relaxation time, and dielectric strength. The dielectric data have been fitted and enhanced dielectric strength and lowering of the relaxation time (\( \tau_{{\varepsilon^{\prime} }} \;{\text{and}}\;\tau_{\text{m}} \)) with clay addition evidences the faster segmental motion of polymer chain. The intercalated PNC shows thermal stability up to ~ 300 °C, high ion transference number (~ 1), and broad voltage stability window of ~ 5 V. An absolute agreement between ion mobility (μ), diffusion coefficient (D), and ionic conductivity is observed. An ion transport mechanism has been proposed on the basis of experimental results. Therefore, the proposed PNC can be adopted as electrolyte cum separator for energy storage devices.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Barbosa JC, Dias JP, Lanceros-Méndez S, Costa CM (2018) Recent advances in poly(Vinylidene fluoride) and its copolymers for lithium-ion battery separators. Membranes 8:45PubMedCentral Barbosa JC, Dias JP, Lanceros-Méndez S, Costa CM (2018) Recent advances in poly(Vinylidene fluoride) and its copolymers for lithium-ion battery separators. Membranes 8:45PubMedCentral
2.
Zurück zum Zitat Hong SY, Kim Y, Park Y et al (2013) Charge carriers in rechargeable batteries: Na ions vs. Li ions. Energy Environ Sci 6:2067–2081 Hong SY, Kim Y, Park Y et al (2013) Charge carriers in rechargeable batteries: Na ions vs. Li ions. Energy Environ Sci 6:2067–2081
3.
Zurück zum Zitat Yang Q, Zhang Z, Sun XG et al (2018) Ionic liquids and derived materials for lithium and sodium batteries. Chem Soc Rev 47:2020–2064PubMed Yang Q, Zhang Z, Sun XG et al (2018) Ionic liquids and derived materials for lithium and sodium batteries. Chem Soc Rev 47:2020–2064PubMed
4.
Zurück zum Zitat Armand MB (1980) Intercalation electrodes. Materials for advanced batteries. Springer, Boston, pp 145–161 Armand MB (1980) Intercalation electrodes. Materials for advanced batteries. Springer, Boston, pp 145–161
5.
Zurück zum Zitat Arya A, Sharma AL (2019) Electrolyte for energy storage/conversion (Li+, Na+, Mg2+) devices based on PVC and their associated polymer: a comprehensive review. J Solid State Electrochem 23(4):997–1059 Arya A, Sharma AL (2019) Electrolyte for energy storage/conversion (Li+, Na+, Mg2+) devices based on PVC and their associated polymer: a comprehensive review. J Solid State Electrochem 23(4):997–1059
6.
Zurück zum Zitat Arya A, Sharma AL (2017) Polymer electrolytes for lithium ion batteries: a critical study. Ionics 23:497–540 Arya A, Sharma AL (2017) Polymer electrolytes for lithium ion batteries: a critical study. Ionics 23:497–540
7.
Zurück zum Zitat Zhang Z, Shao Y, Lotsch B et al (2018) New horizons for inorganic solid state ion conductors. Energy Environ Sci 11:1945–1976 Zhang Z, Shao Y, Lotsch B et al (2018) New horizons for inorganic solid state ion conductors. Energy Environ Sci 11:1945–1976
8.
Zurück zum Zitat Fenton DE, Parker JM, Wright PV (1973) Complexes of alkali metal ions with poly(ethylene oxide). Polymer 14:589 Fenton DE, Parker JM, Wright PV (1973) Complexes of alkali metal ions with poly(ethylene oxide). Polymer 14:589
9.
Zurück zum Zitat Shriver DF, Bruce PG, In Bruce PG (1995) Solid state electrochemistry. Cambridge University Press, Cambridge, p 95 Shriver DF, Bruce PG, In Bruce PG (1995) Solid state electrochemistry. Cambridge University Press, Cambridge, p 95
10.
Zurück zum Zitat Zhao C, Liu L, Qi X et al (2018) Solid-state sodium batteries. Adv Energy Mater 8:173012 Zhao C, Liu L, Qi X et al (2018) Solid-state sodium batteries. Adv Energy Mater 8:173012
11.
Zurück zum Zitat Arya A, Sharma AL (2017) Insights into the use of polyethylene oxide in energy storage/conversion devices: a critical review. J Phys D Appl Phys 50:443002 Arya A, Sharma AL (2017) Insights into the use of polyethylene oxide in energy storage/conversion devices: a critical review. J Phys D Appl Phys 50:443002
12.
Zurück zum Zitat Etacheri V, Marom R, Elazari R et al (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4:3243–3262 Etacheri V, Marom R, Elazari R et al (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy Environ Sci 4:3243–3262
13.
Zurück zum Zitat Vegge T, Younesi R, Johansson P et al (2015) Lithium salts for advanced lithium batteries: Li–metal, Li–O2, and Li–S. Energy Environ Sci 8:1905–1922 Vegge T, Younesi R, Johansson P et al (2015) Lithium salts for advanced lithium batteries: Li–metal, Li–O2, and Li–S. Energy Environ Sci 8:1905–1922
14.
Zurück zum Zitat Sharma AL, Thakur AK (2010) Improvement in voltage, thermal, mechanical stability and ion transport properties in polymer–clay nanocomposites. J Appl Polym Sci 118:2743–2753 Sharma AL, Thakur AK (2010) Improvement in voltage, thermal, mechanical stability and ion transport properties in polymer–clay nanocomposites. J Appl Polym Sci 118:2743–2753
15.
Zurück zum Zitat Arya A, Sadiq M, Sharma AL (2018) Effect of variation of different nanofillers on structural, electrical, dielectric, and transport properties of blend polymer nanocomposites. Ionics 24:2295–2319 Arya A, Sadiq M, Sharma AL (2018) Effect of variation of different nanofillers on structural, electrical, dielectric, and transport properties of blend polymer nanocomposites. Ionics 24:2295–2319
16.
Zurück zum Zitat Prasanth R, Shubha N, Hng HH, Srinivasan M (2013) Effect of nano-clay on ionic conductivity and electrochemical properties of poly(vinylidene fluoride) based nanocomposite porous polymer membranes and their application as polymer electrolyte in lithium ion batteries. Eur Polym J 49:307–318 Prasanth R, Shubha N, Hng HH, Srinivasan M (2013) Effect of nano-clay on ionic conductivity and electrochemical properties of poly(vinylidene fluoride) based nanocomposite porous polymer membranes and their application as polymer electrolyte in lithium ion batteries. Eur Polym J 49:307–318
17.
Zurück zum Zitat Sharma AL, Thakur AK (2010) Polymer–ion–clay interaction based model for ion conduction in intercalation-type polymer nanocomposite. Ionics 16:339–350 Sharma AL, Thakur AK (2010) Polymer–ion–clay interaction based model for ion conduction in intercalation-type polymer nanocomposite. Ionics 16:339–350
18.
Zurück zum Zitat Arya A, Sharma AL (2018) Structural, microstructural and electrochemical properties of dispersed-type polymer nanocomposite films. J Phys D Appl Phys 51:045504 Arya A, Sharma AL (2018) Structural, microstructural and electrochemical properties of dispersed-type polymer nanocomposite films. J Phys D Appl Phys 51:045504
19.
Zurück zum Zitat Kazim S, Ahmad S, Pfleger J et al (2012) Polyaniline–sodium montmorillonite clay nanocomposites: effect of clay concentration on thermal, structural, and electrical properties. J Mater Sci 47:420–428 Kazim S, Ahmad S, Pfleger J et al (2012) Polyaniline–sodium montmorillonite clay nanocomposites: effect of clay concentration on thermal, structural, and electrical properties. J Mater Sci 47:420–428
20.
Zurück zum Zitat Shukla N, Thakur AK (2010) Ion transport model in exfoliated and intercalated polymer–clay nanocomposites. Solid State Ion 181:921–932 Shukla N, Thakur AK (2010) Ion transport model in exfoliated and intercalated polymer–clay nanocomposites. Solid State Ion 181:921–932
21.
Zurück zum Zitat Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641 Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641
22.
Zurück zum Zitat Kim S, Hwang EJ, Jung Y et al (2008) Ionic conductivity of polymeric nanocomposite electrolytes based on poly(ethylene oxide) and organo-clay materials. Colloids Surf, A 313–314:216–219 Kim S, Hwang EJ, Jung Y et al (2008) Ionic conductivity of polymeric nanocomposite electrolytes based on poly(ethylene oxide) and organo-clay materials. Colloids Surf, A 313–314:216–219
23.
Zurück zum Zitat Choudhary S, Sengwa RJ (2012) Ionic conductivity of lithium perchlorate salt in polymeric electrolyte solutions and MMT nano-sheets dispersed colloids. Indian J Eng Mater Sci 19:245–252 Choudhary S, Sengwa RJ (2012) Ionic conductivity of lithium perchlorate salt in polymeric electrolyte solutions and MMT nano-sheets dispersed colloids. Indian J Eng Mater Sci 19:245–252
24.
Zurück zum Zitat Chen HW, Chiu CY, Chang FC (2002) Conductivity enhancement mechanism of the poly(ethylene oxide)/modified-clay/LiClO4 systems. J Polym Sci, Part B: Polym Phys 40:1342–1353 Chen HW, Chiu CY, Chang FC (2002) Conductivity enhancement mechanism of the poly(ethylene oxide)/modified-clay/LiClO4 systems. J Polym Sci, Part B: Polym Phys 40:1342–1353
25.
Zurück zum Zitat Chen HW, Lin TP, Chang FC (2002) Ionic conductivity enhancement of the plasticized PMMA/LiClO4 polymer nanocomposite electrolyte containing clay. Polymer 43:5281–5288 Chen HW, Lin TP, Chang FC (2002) Ionic conductivity enhancement of the plasticized PMMA/LiClO4 polymer nanocomposite electrolyte containing clay. Polymer 43:5281–5288
26.
Zurück zum Zitat Feldman D (2015) Polyblend nanocomposites. J Macromol Sci Part A: Pure Appl Chem 52:648–658 Feldman D (2015) Polyblend nanocomposites. J Macromol Sci Part A: Pure Appl Chem 52:648–658
27.
Zurück zum Zitat Fischer H (2003) Polymer nanocomposites: from fundamental research to specific applications. Mater Sci Eng, C 23:763–772 Fischer H (2003) Polymer nanocomposites: from fundamental research to specific applications. Mater Sci Eng, C 23:763–772
28.
29.
Zurück zum Zitat Sharma AL, Thakur AK (2011) Polymer matrix-clay interaction mediated mechanism of electrical transport in exfoliated and intercalated polymer nanocomposites. J Mater Sci 46:1916–1931 Sharma AL, Thakur AK (2011) Polymer matrix-clay interaction mediated mechanism of electrical transport in exfoliated and intercalated polymer nanocomposites. J Mater Sci 46:1916–1931
30.
Zurück zum Zitat Araujo EM, Leite AMD, da Paz RA et al (2011) Polyamide 6 nanocomposites with inorganic particles modified with three quaternary ammonium salts. Materials 4:1956–1966PubMedPubMedCentral Araujo EM, Leite AMD, da Paz RA et al (2011) Polyamide 6 nanocomposites with inorganic particles modified with three quaternary ammonium salts. Materials 4:1956–1966PubMedPubMedCentral
31.
Zurück zum Zitat Fawaz J, Mittal V (2015) Synthesis of polymer nanocomposites: review of various techniques. Wiley, Weinheim, pp 992–1057 Fawaz J, Mittal V (2015) Synthesis of polymer nanocomposites: review of various techniques. Wiley, Weinheim, pp 992–1057
32.
Zurück zum Zitat Fu X, Qutubuddin S (2001) Polymer–clay nanocomposites: exfoliation of organophilic montmorillonite nanolayers in polystyrene. Polymer 42:807–813 Fu X, Qutubuddin S (2001) Polymer–clay nanocomposites: exfoliation of organophilic montmorillonite nanolayers in polystyrene. Polymer 42:807–813
33.
Zurück zum Zitat Ni’Mah YL, Cheng MY, Cheng JH et al (2015) Solid-state polymer nanocomposite electrolyte of TiO2/PEO/NaClO4 for sodium ion batteries. J Power Sources 278:375–381 Ni’Mah YL, Cheng MY, Cheng JH et al (2015) Solid-state polymer nanocomposite electrolyte of TiO2/PEO/NaClO4 for sodium ion batteries. J Power Sources 278:375–381
34.
Zurück zum Zitat Subban RHY, Arof AK (2004) Plasticiser interactions with polymer and salt in PVC-LiCF 3SO3-DMF electrolytes. Eur Polym J 40:1841–1847 Subban RHY, Arof AK (2004) Plasticiser interactions with polymer and salt in PVC-LiCF 3SO3-DMF electrolytes. Eur Polym J 40:1841–1847
35.
Zurück zum Zitat Cole KC (2008) Use of infrared spectroscopy to characterize clay intercalation and exfoliation in polymer nanocomposites. Macromolecules 41:834–843 Cole KC (2008) Use of infrared spectroscopy to characterize clay intercalation and exfoliation in polymer nanocomposites. Macromolecules 41:834–843
36.
Zurück zum Zitat Sengwa RJ, Dhatarwal P, Choudhary S (2018) Study of time-ageing effect on the ionic conduction and structural dynamics in solid polymer electrolytes by dielectric relaxation spectroscopy. Solid State Ion 324:247–259 Sengwa RJ, Dhatarwal P, Choudhary S (2018) Study of time-ageing effect on the ionic conduction and structural dynamics in solid polymer electrolytes by dielectric relaxation spectroscopy. Solid State Ion 324:247–259
37.
Zurück zum Zitat Ibrahim S, Yassin MM, Ahmad R, Johan MR (2011) Effects of various LiPF6 salt concentrations on PEO-based solid polymer electrolytes. Ionics 17:399–405 Ibrahim S, Yassin MM, Ahmad R, Johan MR (2011) Effects of various LiPF6 salt concentrations on PEO-based solid polymer electrolytes. Ionics 17:399–405
38.
Zurück zum Zitat Anilkumar KM, Jinisha B, Manoj M, Jayalekshmi S (2017) Poly(ethylene oxide) (PEO)—Poly(vinyl pyrrolidone) (PVP) blend polymer based solid electrolyte membranes for developing solid state magnesium ion cells. Eur Polym J 89:249–262 Anilkumar KM, Jinisha B, Manoj M, Jayalekshmi S (2017) Poly(ethylene oxide) (PEO)—Poly(vinyl pyrrolidone) (PVP) blend polymer based solid electrolyte membranes for developing solid state magnesium ion cells. Eur Polym J 89:249–262
39.
Zurück zum Zitat Das A, Thakur AK, Kumar K (2013) Exploring low temperature Li+ ion conducting plastic battery electrolyte. Ionics 19:1811–1823 Das A, Thakur AK, Kumar K (2013) Exploring low temperature Li+ ion conducting plastic battery electrolyte. Ionics 19:1811–1823
40.
Zurück zum Zitat Arya A, Sharma AL (2018) Effect of salt concentration on dielectric properties of Li-ion conducting blend polymer electrolytes. J Mater Sci: Mater Electron 29:17903–17920 Arya A, Sharma AL (2018) Effect of salt concentration on dielectric properties of Li-ion conducting blend polymer electrolytes. J Mater Sci: Mater Electron 29:17903–17920
41.
Zurück zum Zitat Han SD, Yun SH, Borodin O, Seo D, Sommer DM, Young RD, Henderson WA (2015) Solvate structures and computational/spectroscopic characterization of LiPF6 electrolytes. J Phys Chem C 119:8492–8500 Han SD, Yun SH, Borodin O, Seo D, Sommer DM, Young RD, Henderson WA (2015) Solvate structures and computational/spectroscopic characterization of LiPF6 electrolytes. J Phys Chem C 119:8492–8500
42.
Zurück zum Zitat Ducasse L, Dussauze M, Grondin J, Lassègues JC, Naudin C, Servant L (2003) Spectroscopic study of poly(ethylene oxide)6: LiX complexes (X = PF6, AsF6, SbF6, ClO4. Phys Chem Chem Phys 5:567–574 Ducasse L, Dussauze M, Grondin J, Lassègues JC, Naudin C, Servant L (2003) Spectroscopic study of poly(ethylene oxide)6: LiX complexes (X = PF6, AsF6, SbF6, ClO4. Phys Chem Chem Phys 5:567–574
43.
Zurück zum Zitat Chen HW, Chang FC (2001) The novel polymer electrolyte nanocomposite composed of poly(ethylene oxide), lithium triflate and mineral clay. Polymer 42:9763–9769 Chen HW, Chang FC (2001) The novel polymer electrolyte nanocomposite composed of poly(ethylene oxide), lithium triflate and mineral clay. Polymer 42:9763–9769
44.
Zurück zum Zitat Jonscher AK (1983) Dielectric relaxation in solids. Chelsea Dielectric, London Jonscher AK (1983) Dielectric relaxation in solids. Chelsea Dielectric, London
45.
Zurück zum Zitat Scrosati B, Croce F, Persi L (2002) Impedance spectroscopy study of PEO-based nanocomposite polymer electrolytes. J Electrochem Soc 147:1718–1721 Scrosati B, Croce F, Persi L (2002) Impedance spectroscopy study of PEO-based nanocomposite polymer electrolytes. J Electrochem Soc 147:1718–1721
46.
Zurück zum Zitat Pritam Arya A, Sharma AL (2019) Dielectric relaxations and transport properties parameter analysis of novel blended solid polymer electrolyte for sodium ion rechargeable batteries. J Mater Sci 54:7131–7155 Pritam Arya A, Sharma AL (2019) Dielectric relaxations and transport properties parameter analysis of novel blended solid polymer electrolyte for sodium ion rechargeable batteries. J Mater Sci 54:7131–7155
47.
Zurück zum Zitat Ghadami A, Taheri Qazvini N, Nikfarjam N (2014) Ionic conductivity in gelatin-based hybrid solid electrolytes: the non-trivial role of nanoclay. J Mater Sci Technol 30:1096–1102 Ghadami A, Taheri Qazvini N, Nikfarjam N (2014) Ionic conductivity in gelatin-based hybrid solid electrolytes: the non-trivial role of nanoclay. J Mater Sci Technol 30:1096–1102
48.
Zurück zum Zitat Hackett E, Manias E, Giannelis EP (2000) Computer simulation studies of PEO/layer silicate nanocomposites. Chem Mater 12:2161–2167 Hackett E, Manias E, Giannelis EP (2000) Computer simulation studies of PEO/layer silicate nanocomposites. Chem Mater 12:2161–2167
49.
Zurück zum Zitat Giannelis EP (1996) Polymer layered silicate nanocomposites. Adv Mater 8:29–35 Giannelis EP (1996) Polymer layered silicate nanocomposites. Adv Mater 8:29–35
50.
Zurück zum Zitat Dam T, Karan NK, Thomas R, Pradhan DK, Katiyar RS (2015) Observation of ionic transport and ion-coordinated segmental motions in composite (polymer–salt–clay) solid polymer electrolyte. Ionics 21:401–410 Dam T, Karan NK, Thomas R, Pradhan DK, Katiyar RS (2015) Observation of ionic transport and ion-coordinated segmental motions in composite (polymer–salt–clay) solid polymer electrolyte. Ionics 21:401–410
51.
Zurück zum Zitat Reddy Polu A, Kumar R (2012) Impedance spectroscopy and FTIR studies of PEG—based polymer electrolytes. E-J Chem 8:347–353 Reddy Polu A, Kumar R (2012) Impedance spectroscopy and FTIR studies of PEG—based polymer electrolytes. E-J Chem 8:347–353
52.
Zurück zum Zitat Mohamad AA, Mohamed NS, Yahya MZA et al (2003) Ionic conductivity studies of poly(vinyl alcohol) alkaline solid polymer electrolyte and its use in nickel-zinc cells. Solid State Ion 156:171–177 Mohamad AA, Mohamed NS, Yahya MZA et al (2003) Ionic conductivity studies of poly(vinyl alcohol) alkaline solid polymer electrolyte and its use in nickel-zinc cells. Solid State Ion 156:171–177
53.
Zurück zum Zitat Arya A, Sharma AL (2018) Optimization of salt concentration and explanation of two peak percolation in blend solid polymer nanocomposite films. J Solid State Electrochem 22:2725–2745 Arya A, Sharma AL (2018) Optimization of salt concentration and explanation of two peak percolation in blend solid polymer nanocomposite films. J Solid State Electrochem 22:2725–2745
54.
Zurück zum Zitat Chrissopoulou K, Andrikopoulos KS, Fotiadou S et al (2011) Crystallinity and chain conformation in PEO/layered silicate nanocomposites. Macromolecules 44:9710–9722 Chrissopoulou K, Andrikopoulos KS, Fotiadou S et al (2011) Crystallinity and chain conformation in PEO/layered silicate nanocomposites. Macromolecules 44:9710–9722
55.
Zurück zum Zitat Jinisha B, Anilkumar KM, Manoj M, Pradeep VS, Jayalekshmi S (2017) Development of a novel type of solid polymer electrolyte for solid state lithium battery applications based on lithium enriched poly (ethylene oxide)(PEO)/poly (vinyl pyrrolidone)(PVP) blend polymer. Electrochim Acta 235:210–222 Jinisha B, Anilkumar KM, Manoj M, Pradeep VS, Jayalekshmi S (2017) Development of a novel type of solid polymer electrolyte for solid state lithium battery applications based on lithium enriched poly (ethylene oxide)(PEO)/poly (vinyl pyrrolidone)(PVP) blend polymer. Electrochim Acta 235:210–222
56.
Zurück zum Zitat Fan L, Dang Z, Nan CW, Li M (2002) Thermal, electrical and mechanical properties of plasticized polymer electrolytes based on PEO/P (VDF-HFP) blends. Electrochim Acta 48:205–209 Fan L, Dang Z, Nan CW, Li M (2002) Thermal, electrical and mechanical properties of plasticized polymer electrolytes based on PEO/P (VDF-HFP) blends. Electrochim Acta 48:205–209
57.
Zurück zum Zitat Arof AK, Amirudin S, Yusof SZ, Noor IM (2014) A method based on impedance spectroscopy to determine transport properties of polymer electrolytes. Phys Chem Chem Phys 16:1856–1867PubMed Arof AK, Amirudin S, Yusof SZ, Noor IM (2014) A method based on impedance spectroscopy to determine transport properties of polymer electrolytes. Phys Chem Chem Phys 16:1856–1867PubMed
58.
Zurück zum Zitat Bandara TMWJ, Dissanayake MAKL, Albinsson I, Mellander BE (2011) Mobile charge carrier concentration and mobility of a polymer electrolyte containing PEO and Pr4N + I− using electrical and dielectric measurements. Solid State Ion 189:63–68 Bandara TMWJ, Dissanayake MAKL, Albinsson I, Mellander BE (2011) Mobile charge carrier concentration and mobility of a polymer electrolyte containing PEO and Pr4N + I using electrical and dielectric measurements. Solid State Ion 189:63–68
59.
Zurück zum Zitat Salehiyan R, Yussuf AA, Hanani NF, Hassan A, Akbari A (2015) Polylactic acid/polycaprolactone nanocomposite: influence of montmorillonite and impact modifier on mechanical, thermal, and morphological properties. J Elastomers Plast 47:69–87 Salehiyan R, Yussuf AA, Hanani NF, Hassan A, Akbari A (2015) Polylactic acid/polycaprolactone nanocomposite: influence of montmorillonite and impact modifier on mechanical, thermal, and morphological properties. J Elastomers Plast 47:69–87
60.
Zurück zum Zitat Kanimozhi G, Vinoth S, Harish K, Srinadhu ES, Satyanarayana N (2018) Conductivity and dielectric permittivity studies of KI- based Nanocomposite (PEO/PMMA/KI/I2/ZnO nanorods) polymer solid electrolytes. Polym Compos 40(7):2919–2928 Kanimozhi G, Vinoth S, Harish K, Srinadhu ES, Satyanarayana N (2018) Conductivity and dielectric permittivity studies of KI- based Nanocomposite (PEO/PMMA/KI/I2/ZnO nanorods) polymer solid electrolytes. Polym Compos 40(7):2919–2928
61.
Zurück zum Zitat Ravi M, Pavani y, Kiran Kumar K, Bhavani S, Sharma AK, Narasimha Rao VVR (2011) Studies on electrical and dielectric properties of PVP:KBr O4 complexed polymer electrolyte films. Mater Chem Phys 131:442–448 Ravi M, Pavani y, Kiran Kumar K, Bhavani S, Sharma AK, Narasimha Rao VVR (2011) Studies on electrical and dielectric properties of PVP:KBr O4 complexed polymer electrolyte films. Mater Chem Phys 131:442–448
62.
Zurück zum Zitat Jiang X, Zhao X, Peng G, Liu W, Liu K, Zhan Z (2017) Investigation on crystalline structure and dielectric relaxation behaviors of hot pressed poly (vinylidene fluoride) film. Curr Appl Phys 17:15–23 Jiang X, Zhao X, Peng G, Liu W, Liu K, Zhan Z (2017) Investigation on crystalline structure and dielectric relaxation behaviors of hot pressed poly (vinylidene fluoride) film. Curr Appl Phys 17:15–23
63.
Zurück zum Zitat Karmakar A, Ghosh A (2012) Dielectric permittivity and electric modulus of polyethylene oxide (PEO)–LiClO4 composite electrolytes. Curr Appl Phys 12:539–543 Karmakar A, Ghosh A (2012) Dielectric permittivity and electric modulus of polyethylene oxide (PEO)–LiClO4 composite electrolytes. Curr Appl Phys 12:539–543
64.
Zurück zum Zitat Wei YZ, Sridhar S (1993) A new graphical representation for dielectric data. J Chem Phys 99:3119–3124 Wei YZ, Sridhar S (1993) A new graphical representation for dielectric data. J Chem Phys 99:3119–3124
65.
Zurück zum Zitat Arya A, Sharma AL (2018) Structural, electrical properties and dielectric relaxations in Na+-ion-conducting solid polymer electrolyte. J Phys: Condens Matter 30:165402 Arya A, Sharma AL (2018) Structural, electrical properties and dielectric relaxations in Na+-ion-conducting solid polymer electrolyte. J Phys: Condens Matter 30:165402
66.
Zurück zum Zitat Choudhary S (2017) Dielectric dispersion and relaxations in (PVA–PEO)–ZnO polymer nanocomposites. Phys B 522:48–56 Choudhary S (2017) Dielectric dispersion and relaxations in (PVA–PEO)–ZnO polymer nanocomposites. Phys B 522:48–56
67.
Zurück zum Zitat Abutalib MM (2019) Effect of zinc oxide nanorods on the structural, thermal, dielectric and electrical properties of polyvinyl alcohol/carboxymethyle cellulose composites. Phys B 557:108–116 Abutalib MM (2019) Effect of zinc oxide nanorods on the structural, thermal, dielectric and electrical properties of polyvinyl alcohol/carboxymethyle cellulose composites. Phys B 557:108–116
68.
Zurück zum Zitat Arya A, Sharma AL (2019) Tailoring of the structural, morphological, electrochemical, and dielectric properties of solid polymer electrolyte. Ionics 25:1617–1632 Arya A, Sharma AL (2019) Tailoring of the structural, morphological, electrochemical, and dielectric properties of solid polymer electrolyte. Ionics 25:1617–1632
69.
Zurück zum Zitat Casar G, Li X, Malic B, Zhang QM, Bobnar V (2015) Impact of structural changes on dielectric and thermal properties of vinylidene fluoride–trifluoroethylene-based terpolymer/copolymer blends. Phys B 461:5–9 Casar G, Li X, Malic B, Zhang QM, Bobnar V (2015) Impact of structural changes on dielectric and thermal properties of vinylidene fluoride–trifluoroethylene-based terpolymer/copolymer blends. Phys B 461:5–9
70.
Zurück zum Zitat Arya A, Sharma AL (2018) Temperature and salt-dependent dielectric properties of blend solid polymer electrolyte complexed with LiBOB. Macromol Res 27(4):334–345 Arya A, Sharma AL (2018) Temperature and salt-dependent dielectric properties of blend solid polymer electrolyte complexed with LiBOB. Macromol Res 27(4):334–345
71.
Zurück zum Zitat García-Bernabé A, Rivera A, Granados A, Luis SV, Compañ V (2016) Ionic transport on composite polymers containing covalently attached and absorbed ionic liquid fragments. Electrochim Acta 213:887–897 García-Bernabé A, Rivera A, Granados A, Luis SV, Compañ V (2016) Ionic transport on composite polymers containing covalently attached and absorbed ionic liquid fragments. Electrochim Acta 213:887–897
72.
Zurück zum Zitat Das S, Ghosh A (2017) Charge carrier relaxation in different plasticized PEO/PVDF-HFP blend solid polymer electrolytes. J Phys Chem B 121:5422–5432PubMed Das S, Ghosh A (2017) Charge carrier relaxation in different plasticized PEO/PVDF-HFP blend solid polymer electrolytes. J Phys Chem B 121:5422–5432PubMed
73.
Zurück zum Zitat Arya A, Saykar NG, Sharma AL (2019) Impact of Shape (nanofiller vs. nanorod) of TiO2 nanoparticle on free standing solid polymeric separator for energy storage/conversion devices. J Appl Polym Sci 136:47361 Arya A, Saykar NG, Sharma AL (2019) Impact of Shape (nanofiller vs. nanorod) of TiO2 nanoparticle on free standing solid polymeric separator for energy storage/conversion devices. J Appl Polym Sci 136:47361
Metadaten
Titel
Investigation on enhancement of electrical, dielectric and ion transport properties of nanoclay-based blend polymer nanocomposites
verfasst von
Anil Arya
A. L. Sharma
Publikationsdatum
30.07.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Polymer Bulletin / Ausgabe 6/2020
Print ISSN: 0170-0839
Elektronische ISSN: 1436-2449
DOI
https://doi.org/10.1007/s00289-019-02893-x

Weitere Artikel der Ausgabe 6/2020

Polymer Bulletin 6/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.