Skip to main content
Erschienen in: Experiments in Fluids 7/2018

01.07.2018 | Research Article

Evaluation of large-scale turbulent/non-turbulent interface detection methods for wall-bounded flows

verfasst von: Nico Reuther, Christian J. Kähler

Erschienen in: Experiments in Fluids | Ausgabe 7/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The experimental analysis of the spatial organization of turbulent/non-turbulent interfaces (TNTI) is an important task in many fields of fluid dynamics, especially to characterize mixing processes. Mixing processes are often associated with the macroscopic motion of coherent flow structures. A classical example for illustration is the turbulent mixing layer visualization by Brown and Roshko (J Fluid Mech 64:775–816, 1974). Today, a question of actual research is if coherent large-scale motions observed in turbulent boundary layer flows have an impact on the structure of the TNTI. As the length of these motions extends over many boundary layer thicknesses and their turbulent energy, and thus significance or impact, raises with Reynolds number, the TNTI detection technique must be accurate at large Reynolds numbers. Furthermore, the technique must be able to resolve the TNTI locally with microscopic spatial resolution and, at the same time, globally over a large macroscopic spatial domain. As the last two points require techniques with a large dynamic spatial range (ratio between largest and smallest scales that can be resolved), only tracer particle-based imaging techniques are suited, as the spatial resolution and field of view (FOV) can both be tuned by adjusting the magnification of the lens and the size and number of camera sensors. In this work, three suited techniques are compared to assess the sensitivity of the TNTI measurement of the method applied. The techniques considered are based on the turbulent kinetic energy, the homogeneity of the non-turbulent flow region, and the particle image density. The effect of bias errors on the TNTI measurement is particularly considered, but the implication of the results for the working range of the various techniques is also outlined. The analysis illustrates exemplary the sensitivity of the intermittency factor and the length of the TNTI with respect to the method applied.

Graphical abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Anand RK, Boersma BJ, Agrawal A (2009) Detection of turbulent/non-turbulent interface for an axisymmetric turbulent jet: evaluation of known criteria and proposal of a new criterion. Exp Fluids 47:995–1007CrossRef Anand RK, Boersma BJ, Agrawal A (2009) Detection of turbulent/non-turbulent interface for an axisymmetric turbulent jet: evaluation of known criteria and proposal of a new criterion. Exp Fluids 47:995–1007CrossRef
Zurück zum Zitat Borrell G, Jiménez J (2016) Properties of the turbulent/non-turbulent interface in boundary layers. J Fluid Mech 801:554–596MathSciNetCrossRef Borrell G, Jiménez J (2016) Properties of the turbulent/non-turbulent interface in boundary layers. J Fluid Mech 801:554–596MathSciNetCrossRef
Zurück zum Zitat Brown GL, Roshko A (1974) On density effects and large structure in turbulent mixing layers. J Fluid Mech 64:775–816CrossRef Brown GL, Roshko A (1974) On density effects and large structure in turbulent mixing layers. J Fluid Mech 64:775–816CrossRef
Zurück zum Zitat Buchmann NA, Kücükosman YC, Ehrenfried K, Kähler CJ (2016) Wall pressure signature in compressible turbulent boundary layers. In: Progress in Wall Turbulence 2 Buchmann NA, Kücükosman YC, Ehrenfried K, Kähler CJ (2016) Wall pressure signature in compressible turbulent boundary layers. In: Progress in Wall Turbulence 2
Zurück zum Zitat Chauhan K, Philip J, de Silva CM, Hutchins N, Marusic I (2014) The turbulent/non-turbulent interface and entrainment in a boundary layer. J Fluid Mech 742:119–151CrossRef Chauhan K, Philip J, de Silva CM, Hutchins N, Marusic I (2014) The turbulent/non-turbulent interface and entrainment in a boundary layer. J Fluid Mech 742:119–151CrossRef
Zurück zum Zitat Cierpka C, Kähler CJ (2012) Particle imaging techniques for volumetric three-component (3D3C) velocity measurements in microfluidics. J Vis 15:1–31CrossRef Cierpka C, Kähler CJ (2012) Particle imaging techniques for volumetric three-component (3D3C) velocity measurements in microfluidics. J Vis 15:1–31CrossRef
Zurück zum Zitat Corrsin S (1943) Investigation of flow in an axially symmetrical heated jet of air. Tech. rep., NACA WR W-94 Corrsin S (1943) Investigation of flow in an axially symmetrical heated jet of air. Tech. rep., NACA WR W-94
Zurück zum Zitat Corrsin S, Kistler AL (1955) Free-Stream Boundaries of Turbulent Flows. Tech. rep., NACA-TR-1244 Corrsin S, Kistler AL (1955) Free-Stream Boundaries of Turbulent Flows. Tech. rep., NACA-TR-1244
Zurück zum Zitat Eckart C (1948) An analysis of the stirring and mixing processes in incompressible fluids. J Mar Res 7:265–275 Eckart C (1948) An analysis of the stirring and mixing processes in incompressible fluids. J Mar Res 7:265–275
Zurück zum Zitat Falco RE (1977) Coherent motion in the outer region of turbulent boundary layers. Phys Fluids 20:124–132CrossRef Falco RE (1977) Coherent motion in the outer region of turbulent boundary layers. Phys Fluids 20:124–132CrossRef
Zurück zum Zitat Fernholz HH, Finley PJ (1996) The incompressible zero-pressure gradient turbulent boundary layer: An assessment of data. Prog Aerosp Sci 32:245–311CrossRef Fernholz HH, Finley PJ (1996) The incompressible zero-pressure gradient turbulent boundary layer: An assessment of data. Prog Aerosp Sci 32:245–311CrossRef
Zurück zum Zitat Gampert M, Boschung J, Henning F, Gauding M, Peters N (2014) The vorticity versus the scalar criterion for the detection of the turbulent/non-turbulent interface. J Fluid Mech 750:578–596CrossRef Gampert M, Boschung J, Henning F, Gauding M, Peters N (2014) The vorticity versus the scalar criterion for the detection of the turbulent/non-turbulent interface. J Fluid Mech 750:578–596CrossRef
Zurück zum Zitat Ganapathisumbramani B, Clemens NT, Dolling DS (2006) Large-scale motions in a supersonic turbulent boundary layer. J Fluid Mech 556:271–282CrossRefMATH Ganapathisumbramani B, Clemens NT, Dolling DS (2006) Large-scale motions in a supersonic turbulent boundary layer. J Fluid Mech 556:271–282CrossRefMATH
Zurück zum Zitat Holzner M, Liberzon A, Guala M, Tsinober A, Kinzelbach W (2006) Generalized detection of a turbulent front generated by an oscillating grid. Exp Fluids 41:711–719CrossRef Holzner M, Liberzon A, Guala M, Tsinober A, Kinzelbach W (2006) Generalized detection of a turbulent front generated by an oscillating grid. Exp Fluids 41:711–719CrossRef
Zurück zum Zitat Hutchins N, Marusic I (2007) Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J Fluid Mech 579:1–28CrossRefMATH Hutchins N, Marusic I (2007) Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J Fluid Mech 579:1–28CrossRefMATH
Zurück zum Zitat Kähler CJ, Sammler B, Kompenhans J (2002) Generation and control of tracer particles for optical flow investigations in air. Exp Fluids 33:736–742CrossRef Kähler CJ, Sammler B, Kompenhans J (2002) Generation and control of tracer particles for optical flow investigations in air. Exp Fluids 33:736–742CrossRef
Zurück zum Zitat Kähler CJ, Scholz U, Ortmanns J (2006) Wall-shear-stress and near-wall turbulence measurements up to single pixel resolution by means of long-distance micro-PIV. Exp Fluids 41:327–341CrossRef Kähler CJ, Scholz U, Ortmanns J (2006) Wall-shear-stress and near-wall turbulence measurements up to single pixel resolution by means of long-distance micro-PIV. Exp Fluids 41:327–341CrossRef
Zurück zum Zitat Khashehchi M, Ooi A, Soria J, Marusic I (2013) Evolution of the turbulent/non-turbulent interface of an axisymmetric turbulent jet. Exp Fluids 54 Khashehchi M, Ooi A, Soria J, Marusic I (2013) Evolution of the turbulent/non-turbulent interface of an axisymmetric turbulent jet. Exp Fluids 54
Zurück zum Zitat Klebanoff PS (1955) Characteristics of turbulence in a boundary layer with zero pressure gradient. 1135–1153, NACA-TR-1247 Klebanoff PS (1955) Characteristics of turbulence in a boundary layer with zero pressure gradient. 1135–1153, NACA-TR-1247
Zurück zum Zitat Knopp T, Buchmann NA, Schanz D, Eisfeld B, Cierpka C, Hain R, Schröder A, Kähler CJ (2015) Investigation of scaling laws in a turbulent boundary layer flow with adverse pressure gradient using PIV. J Turbul 16:250–272MathSciNetCrossRef Knopp T, Buchmann NA, Schanz D, Eisfeld B, Cierpka C, Hain R, Schröder A, Kähler CJ (2015) Investigation of scaling laws in a turbulent boundary layer flow with adverse pressure gradient using PIV. J Turbul 16:250–272MathSciNetCrossRef
Zurück zum Zitat Krug D, Holzner M, Lüthi B, Wolf M, Kinzelbach W, Tsinober A (2015) The turbulent/non-turbulent interface in an inclined dense gravity current. J Fluid Mech 765:303–324CrossRef Krug D, Holzner M, Lüthi B, Wolf M, Kinzelbach W, Tsinober A (2015) The turbulent/non-turbulent interface in an inclined dense gravity current. J Fluid Mech 765:303–324CrossRef
Zurück zum Zitat Kwon YS, Hutchins N, Monty JP (2016) On the use of the Reynolds decomposition in the intermittent region of turbulent boundary layers. J Fluid Mech 794:5–16MathSciNetCrossRef Kwon YS, Hutchins N, Monty JP (2016) On the use of the Reynolds decomposition in the intermittent region of turbulent boundary layers. J Fluid Mech 794:5–16MathSciNetCrossRef
Zurück zum Zitat Mandelbrot B (1967) How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science 156:636–638CrossRef Mandelbrot B (1967) How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science 156:636–638CrossRef
Zurück zum Zitat Mathew J, Basu AJ (2002) Some characteristics of entrainment at a cylindrical turbulence boundary. Phys Fluids 14:2065–2072MathSciNetCrossRefMATH Mathew J, Basu AJ (2002) Some characteristics of entrainment at a cylindrical turbulence boundary. Phys Fluids 14:2065–2072MathSciNetCrossRefMATH
Zurück zum Zitat Meinhart CD, Adrian RJ (1995) On the existence of uniform momentum zones in a turbulent boundary layer. Phys Fluids 7:694–696CrossRef Meinhart CD, Adrian RJ (1995) On the existence of uniform momentum zones in a turbulent boundary layer. Phys Fluids 7:694–696CrossRef
Zurück zum Zitat Novara M, Schanz D, Reuther N, Kähler CJ, Schröder A (2016) Lagrangian 3D particle tracking in high-speed flows: Shake-The-Box for multi-pulse systems. Exp Fluids 57:128CrossRef Novara M, Schanz D, Reuther N, Kähler CJ, Schröder A (2016) Lagrangian 3D particle tracking in high-speed flows: Shake-The-Box for multi-pulse systems. Exp Fluids 57:128CrossRef
Zurück zum Zitat Poreh M, Cermak JE (1964) Study of diffusion from a line source in a turbulent boundary layer. Int J Heat Mass Transfer 7:1083–1095CrossRef Poreh M, Cermak JE (1964) Study of diffusion from a line source in a turbulent boundary layer. Int J Heat Mass Transfer 7:1083–1095CrossRef
Zurück zum Zitat Prasad RR, Sreenivasan KR (1989) Scalar interfaces in digital images of turbulent flows. Exp Fluids 7:259–264CrossRef Prasad RR, Sreenivasan KR (1989) Scalar interfaces in digital images of turbulent flows. Exp Fluids 7:259–264CrossRef
Zurück zum Zitat Raffel M, Willert CE, Scarano F, Kähler CJ, Werely ST, Kompenhans J (2018) Particle image velocimetry—a practical guide. Springer International Publishing Raffel M, Willert CE, Scarano F, Kähler CJ, Werely ST, Kompenhans J (2018) Particle image velocimetry—a practical guide. Springer International Publishing
Zurück zum Zitat Richardson LF (1926) Atmospheric diffusion shown on a distance-neighbour graph. Proc R Soc Lond A: Math, Phys Eng Sci 110:709–737CrossRef Richardson LF (1926) Atmospheric diffusion shown on a distance-neighbour graph. Proc R Soc Lond A: Math, Phys Eng Sci 110:709–737CrossRef
Zurück zum Zitat Saxton-Fox T, McKeon BJ (2017) Coherent structures, uniform momentum zones and the streamwise energy spectrum in wall-bounded turbulent fows. J Fluid Mech 826:R6CrossRef Saxton-Fox T, McKeon BJ (2017) Coherent structures, uniform momentum zones and the streamwise energy spectrum in wall-bounded turbulent fows. J Fluid Mech 826:R6CrossRef
Zurück zum Zitat Sreenivasan KR (1991) On local isotropy of passive scalars in turbulent shear flows. Proc R Soc Lond 434:165–182CrossRefMATH Sreenivasan KR (1991) On local isotropy of passive scalars in turbulent shear flows. Proc R Soc Lond 434:165–182CrossRefMATH
Zurück zum Zitat Taylor GI (1922) Diffusion by continous movement. Proc London Math Soc Taylor GI (1922) Diffusion by continous movement. Proc London Math Soc
Zurück zum Zitat Townsend AA (1948) Local isotropy in the turbulent wake of a cylinder. Aust J Sci Res 1:161–174 Townsend AA (1948) Local isotropy in the turbulent wake of a cylinder. Aust J Sci Res 1:161–174
Zurück zum Zitat Welander P (1955) Sudies of general development of motion in a two-dimensional, ideal fluid. Tellus 7:141–156MathSciNetCrossRef Welander P (1955) Sudies of general development of motion in a two-dimensional, ideal fluid. Tellus 7:141–156MathSciNetCrossRef
Zurück zum Zitat Westerweel J, Hoffmann T, Fukushima C, Hunt JCR (2002) The turbulent/non-turbulent interface at the outer boundary of a self-similar turbulent jet. Exp Fluids 33:873–878CrossRef Westerweel J, Hoffmann T, Fukushima C, Hunt JCR (2002) The turbulent/non-turbulent interface at the outer boundary of a self-similar turbulent jet. Exp Fluids 33:873–878CrossRef
Zurück zum Zitat Westerweel J, Fukushima C, Pedersen JM, Hunt JCR (2009) Momentum and scalar transport at the turbulent/non-turbulent interface of a jet. J Fluid Mech 631:199–230CrossRefMATH Westerweel J, Fukushima C, Pedersen JM, Hunt JCR (2009) Momentum and scalar transport at the turbulent/non-turbulent interface of a jet. J Fluid Mech 631:199–230CrossRefMATH
Metadaten
Titel
Evaluation of large-scale turbulent/non-turbulent interface detection methods for wall-bounded flows
verfasst von
Nico Reuther
Christian J. Kähler
Publikationsdatum
01.07.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Experiments in Fluids / Ausgabe 7/2018
Print ISSN: 0723-4864
Elektronische ISSN: 1432-1114
DOI
https://doi.org/10.1007/s00348-018-2576-2

Weitere Artikel der Ausgabe 7/2018

Experiments in Fluids 7/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.