Skip to main content
Erschienen in: Engineering with Computers 3/2017

03.09.2016 | Original Article

Tetrahedral mesh improvement by shell transformation

verfasst von: Jianjun Chen, Jianjing Zheng, Yao Zheng, Zhoufang Xiao, Hang Si, Yufeng Yao

Erschienen in: Engineering with Computers | Ausgabe 3/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Existing flips for tetrahedral meshes simply make a selection from a few possible configurations within a single shell (i.e., a polyhedron that can be filled up with a mesh composed of a set of elements that meet each other at one edge), and their effectiveness is usually confined. A new topological operation for tetrahedral meshes named shell transformation is proposed. Its recursive callings execute a sequence of shell transformations on neighboring shells, acting like composite edge removal transformations. Such topological transformations are able to perform on a much larger element set than that of a single flip, thereby leading the way towards a better local optimum solution. Hence, a new mesh improvement algorithm is developed by combining this recursive scheme with other schemes, including smoothing, point insertion, and point suppression. Numerical experiments reveal that the proposed algorithm can well balance some stringent and yet sometimes even conflict requirements of mesh improvement, i.e., resulting in high-quality meshes and reducing computing time at the same time. Therefore, it can be used for mesh quality improvement tasks involving millions of elements, in which it is essential not only to generate high-quality meshes, but also to reduce total computational time for mesh improvement.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Here, the degree of a covering mesh refers to the number of elements that share the supporting edge in this mesh. A shell is reduced if the degree of the new covering mesh is becoming smaller than that of the old mesh. In particular, if the degree of the new mesh becomes zero, the shell is completely reduced, and the new mesh is a completely reduced mesh; otherwise, the shell is partially reduced, and the new mesh is a partially reduced mesh.
 
2
It is worth noting that both numbers could vary case by case, depending on mesh topologies. Nevertheless, the meshes considered in this study are inputs for numerical simulations, where only a small percentage of elements are badly shaped. For different meshes of this type, it is observed that both numbers usually remain within the ranges we mentioned in the text. For instance, for the unimproved F16 and Bridge meshes to be presented in Sect. 7 for tests, the average numbers of elements surrounding interior mesh nodes are both 5.50. After mesh improvement, these two numbers are reduced to 5.21 and 5.20 respectively. The numbers of elements surrounding interior mesh edges are 26.05 and 26.21, respectively. After mesh improvement, these two numbers are reduced to 23.82 and 23.80 respectively.
 
Literatur
1.
Zurück zum Zitat Weatherill NP, Hassan O (1994) Efficient three-dimensional Delaunay triangulation with automatic point creation and imposed boundary constraints. Int J Numer Methods Eng 37:2005–2039CrossRefMATH Weatherill NP, Hassan O (1994) Efficient three-dimensional Delaunay triangulation with automatic point creation and imposed boundary constraints. Int J Numer Methods Eng 37:2005–2039CrossRefMATH
2.
Zurück zum Zitat George PL, Borouchaki H, Saltel E (2003) ‘Ultimate’ robustness in meshing an arbitrary polyhedron. Int J Numer Methods Eng 58:1061–1089MathSciNetCrossRefMATH George PL, Borouchaki H, Saltel E (2003) ‘Ultimate’ robustness in meshing an arbitrary polyhedron. Int J Numer Methods Eng 58:1061–1089MathSciNetCrossRefMATH
3.
Zurück zum Zitat Du Q, Wang D (2004) Constrained boundary recovery for three dimensional Delaunay triangulations. Int J Numer Methods Eng 61:1471–1500MathSciNetCrossRefMATH Du Q, Wang D (2004) Constrained boundary recovery for three dimensional Delaunay triangulations. Int J Numer Methods Eng 61:1471–1500MathSciNetCrossRefMATH
4.
Zurück zum Zitat Chen J, Zhao D, Huang Z, Zheng Y, Gao S (2011) Three-dimensional constrained boundary recovery with an enhanced Steiner point suppression procedure. Comput Struct 89:455–466CrossRef Chen J, Zhao D, Huang Z, Zheng Y, Gao S (2011) Three-dimensional constrained boundary recovery with an enhanced Steiner point suppression procedure. Comput Struct 89:455–466CrossRef
6.
Zurück zum Zitat Joe B (1995) Construction of three-dimensional improved-quality triangulations using local transformations. SIAM J Sci Comput 16:1292–1307MathSciNetCrossRefMATH Joe B (1995) Construction of three-dimensional improved-quality triangulations using local transformations. SIAM J Sci Comput 16:1292–1307MathSciNetCrossRefMATH
8.
Zurück zum Zitat de Cougny HL, Shephard MS (1995) Refinement, derefinement, and optimization of tetrahedral geometric triangulations in three dimensions (unpublished manuscript) de Cougny HL, Shephard MS (1995) Refinement, derefinement, and optimization of tetrahedral geometric triangulations in three dimensions (unpublished manuscript)
9.
Zurück zum Zitat Misztal M, Bærentzen J, Anton F, Erleben K (2009) Tetrahedral mesh improvement using multi-face retriangulation. In: Proceedings of the 18th International Meshing Roundtable, Salt Lake City, UT, USA, 539–555 Misztal M, Bærentzen J, Anton F, Erleben K (2009) Tetrahedral mesh improvement using multi-face retriangulation. In: Proceedings of the 18th International Meshing Roundtable, Salt Lake City, UT, USA, 539–555
11.
Zurück zum Zitat Klingner BM, Shewchuk JR (2007) Aggressive tetrahedral mesh improvement. In: Proceedings of the 16th International Meshing Roundtable, Seattle, WA, USA, 3–23 Klingner BM, Shewchuk JR (2007) Aggressive tetrahedral mesh improvement. In: Proceedings of the 16th International Meshing Roundtable, Seattle, WA, USA, 3–23
14.
Zurück zum Zitat Lo SH (2015) 3D Delaunay triangulation of 1 billion points on a PC. Finite Elem Anal Des 102–103:65–73CrossRef Lo SH (2015) 3D Delaunay triangulation of 1 billion points on a PC. Finite Elem Anal Des 102–103:65–73CrossRef
15.
Zurück zum Zitat Chen J, Zhao D, Huang Z, Zheng Y, Wang D (2012) Improvements in the reliability and element quality of parallel tetrahedral mesh generation. Int J Numer Methods Eng 92:671–693MathSciNetCrossRefMATH Chen J, Zhao D, Huang Z, Zheng Y, Wang D (2012) Improvements in the reliability and element quality of parallel tetrahedral mesh generation. Int J Numer Methods Eng 92:671–693MathSciNetCrossRefMATH
16.
Zurück zum Zitat Zhao D, Chen J, Zheng Y, Huang Z, Zheng J (2015) Fine-grained parallel algorithm for unstructured surface mesh generation. Comput Struct 154:177–191CrossRef Zhao D, Chen J, Zheng Y, Huang Z, Zheng J (2015) Fine-grained parallel algorithm for unstructured surface mesh generation. Comput Struct 154:177–191CrossRef
17.
18.
Zurück zum Zitat Joe B (1991) Construction of three-dimensional Delaunay triangulations using local transformations. Comput Aided Geom Des 8:123–142MathSciNetCrossRefMATH Joe B (1991) Construction of three-dimensional Delaunay triangulations using local transformations. Comput Aided Geom Des 8:123–142MathSciNetCrossRefMATH
19.
Zurück zum Zitat Compère G, Remacle JF, Jansson J, Hoffman J (2010) A mesh adaptation framework for dealing with large deforming meshes. Int J Numer Methods Eng 82:843–867MATH Compère G, Remacle JF, Jansson J, Hoffman J (2010) A mesh adaptation framework for dealing with large deforming meshes. Int J Numer Methods Eng 82:843–867MATH
20.
Zurück zum Zitat Freitag LA, Ollivier-Gooch C (1997) Tetrahedral mesh improvement using swapping and smoothing. Int J Numer Methods Eng 40:3979–4002MathSciNetCrossRefMATH Freitag LA, Ollivier-Gooch C (1997) Tetrahedral mesh improvement using swapping and smoothing. Int J Numer Methods Eng 40:3979–4002MathSciNetCrossRefMATH
21.
Zurück zum Zitat Liu J, Chen B, Sun S (2009) Small polyhedron reconnection for mesh improvement and its implementation based on advancing front technique. Int J Numer Methods Eng 79:1004–1018MathSciNetCrossRefMATH Liu J, Chen B, Sun S (2009) Small polyhedron reconnection for mesh improvement and its implementation based on advancing front technique. Int J Numer Methods Eng 79:1004–1018MathSciNetCrossRefMATH
22.
Zurück zum Zitat Field DA (1988) Laplacian smoothing and Delaunay triangulations. Commun Appl Numer Methods 4:709–712CrossRefMATH Field DA (1988) Laplacian smoothing and Delaunay triangulations. Commun Appl Numer Methods 4:709–712CrossRefMATH
23.
Zurück zum Zitat Freitag LA, Knupp PM (2002) Tetrahedral mesh improvement via optimization of the element condition number. Int J Numer Methods Eng 53:1377–1391MathSciNetCrossRefMATH Freitag LA, Knupp PM (2002) Tetrahedral mesh improvement via optimization of the element condition number. Int J Numer Methods Eng 53:1377–1391MathSciNetCrossRefMATH
24.
Zurück zum Zitat Jiao X, Wang D, Zha H (2011) Simple and effective variational optimization of surface and volume triangulations. Eng Comput 27:81–94CrossRef Jiao X, Wang D, Zha H (2011) Simple and effective variational optimization of surface and volume triangulations. Eng Comput 27:81–94CrossRef
25.
Zurück zum Zitat Leng J, Zhang Y, Xu G (2013) A novel geometric flow approach for quality improvement of multi-component tetrahedral meshes. Comput Aided Des 45:1182–1197MathSciNetCrossRef Leng J, Zhang Y, Xu G (2013) A novel geometric flow approach for quality improvement of multi-component tetrahedral meshes. Comput Aided Des 45:1182–1197MathSciNetCrossRef
26.
Zurück zum Zitat Vartziotis D, Wipper J (2012) Fast smoothing of mixed volume meshes based on the effective geometric element transformation method. Comput Methods Appl Mech Eng 201–204:65–81MathSciNetCrossRefMATH Vartziotis D, Wipper J (2012) Fast smoothing of mixed volume meshes based on the effective geometric element transformation method. Comput Methods Appl Mech Eng 201–204:65–81MathSciNetCrossRefMATH
27.
Zurück zum Zitat Vartziotis D, Wipper J, Papadrakakis M (2013) Improving mesh quality and finite element solution accuracy by GETMe smoothing in solving the Poisson equation. Finite Elem Anal Des 66:36–52MathSciNetCrossRefMATH Vartziotis D, Wipper J, Papadrakakis M (2013) Improving mesh quality and finite element solution accuracy by GETMe smoothing in solving the Poisson equation. Finite Elem Anal Des 66:36–52MathSciNetCrossRefMATH
28.
Zurück zum Zitat Freitag DL, Knupp P, Munson T, Shontz S (2006) A comparison of two optimization methods for mesh quality improvement. Eng Comput 22:61–74CrossRef Freitag DL, Knupp P, Munson T, Shontz S (2006) A comparison of two optimization methods for mesh quality improvement. Eng Comput 22:61–74CrossRef
29.
Zurück zum Zitat Cheng S-W, Dey TK, Shewchuk JR (2012) Delaunay Mesh Generation. CRC Press, Boca RatonMATH Cheng S-W, Dey TK, Shewchuk JR (2012) Delaunay Mesh Generation. CRC Press, Boca RatonMATH
30.
Zurück zum Zitat Bedregal C, Rivara MC (2014) Longest-edge algorithms for size-optimal refinement of triangulations. Comput Aided Des 46:246–251CrossRef Bedregal C, Rivara MC (2014) Longest-edge algorithms for size-optimal refinement of triangulations. Comput Aided Des 46:246–251CrossRef
31.
Zurück zum Zitat Ruppert J, Seidel R (1992) On the difficulty of triangulating three-dimensional non-convex polyhedra. Discret Comput Geom 7:227–254CrossRefMATH Ruppert J, Seidel R (1992) On the difficulty of triangulating three-dimensional non-convex polyhedra. Discret Comput Geom 7:227–254CrossRefMATH
35.
Zurück zum Zitat Zheng J, Chen J, Zheng Y, Yao Y, Li S, Xiao Z (2016) An improved local remeshing algorithm for moving boundary simulations. Eng Appl Comp Fluid 10:405–428 Zheng J, Chen J, Zheng Y, Yao Y, Li S, Xiao Z (2016) An improved local remeshing algorithm for moving boundary simulations. Eng Appl Comp Fluid 10:405–428
Metadaten
Titel
Tetrahedral mesh improvement by shell transformation
verfasst von
Jianjun Chen
Jianjing Zheng
Yao Zheng
Zhoufang Xiao
Hang Si
Yufeng Yao
Publikationsdatum
03.09.2016
Verlag
Springer London
Erschienen in
Engineering with Computers / Ausgabe 3/2017
Print ISSN: 0177-0667
Elektronische ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-016-0480-z

Weitere Artikel der Ausgabe 3/2017

Engineering with Computers 3/2017 Zur Ausgabe

Neuer Inhalt