Skip to main content
Erschienen in: Engineering with Computers 1/2018

06.05.2017 | Original Article

Rayleigh–Stokes problem for a heated generalized second grade fluid with fractional derivatives: a stable scheme based on spectral meshless radial point interpolation

verfasst von: Elyas Shivanian, Ahmad Jafarabadi

Erschienen in: Engineering with Computers | Ausgabe 1/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the present paper, a spectral meshless radial point interpolation (SMRPI) technique is applied to solve the Rayleigh–Stokes problem for a heated generalized second grade fluid with fractional derivative in two dimensional case. The time fractional derivative is described in the Riemann–Liouville sense. The applied approach is based on combination of meshless methods and spectral collocation techniques. The point interpolation method with the help of radial basis functions is used to construct shape functions which act as basis functions in the frame of SMRPI. It is proved the scheme is unconditionally stable with respect to the time variable in \(H^1\) and convergent with the order of convergence \(\mathcal {O}(\delta t^{1+\beta })\), \(0<\beta <1\). In the current work, the thin plate splines (TPS) are used as the basis functions. The results of numerical experiments are compared with analytical solutions to confirm the accuracy and efficiency of the presented scheme. Two numerical examples show that the SMRPI has reliable accuracy in general shape domains.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Oldham KB, Spanier J (1974) The fractional calculus, vol. 111 of mathematics in science and engineering, Academic Press, New York, London Oldham KB, Spanier J (1974) The fractional calculus, vol. 111 of mathematics in science and engineering, Academic Press, New York, London
2.
Zurück zum Zitat Podlubny I (1998) Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, vol 198. Academic Press, CambridgeMATH Podlubny I (1998) Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, vol 198. Academic Press, CambridgeMATH
3.
Zurück zum Zitat Dehghan M, Abbaszadeh M (2017) Two meshless procedures: moving kriging interpolation and element-free Galerkin for fractional PDEs. Appl Anal 96(6):936–969MathSciNetCrossRefMATH Dehghan M, Abbaszadeh M (2017) Two meshless procedures: moving kriging interpolation and element-free Galerkin for fractional PDEs. Appl Anal 96(6):936–969MathSciNetCrossRefMATH
4.
Zurück zum Zitat Uchaikin VV (2013) Fractional derivatives for physicists and engineers. Springer, BerlinCrossRefMATH Uchaikin VV (2013) Fractional derivatives for physicists and engineers. Springer, BerlinCrossRefMATH
5.
Zurück zum Zitat Metzler Ralf, Klafter Joseph (2004) The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J Phys A Math Gen 37(31):R161MathSciNetCrossRefMATH Metzler Ralf, Klafter Joseph (2004) The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J Phys A Math Gen 37(31):R161MathSciNetCrossRefMATH
6.
Zurück zum Zitat Bagley RL, Torvik PJ (1983) A theoretical basis for the application of fractional calculus to viscoelasticity. J Rheol (1978–present) 27(3):201–210 Bagley RL, Torvik PJ (1983) A theoretical basis for the application of fractional calculus to viscoelasticity. J Rheol (1978–present) 27(3):201–210
7.
Zurück zum Zitat Tenreiro Machado J, Kiryakova V, Mainardi F (2011) Recent history of fractional calculus. Commun Nonlinear Sci Numer Simul 16(3):1140–1153MathSciNetCrossRefMATH Tenreiro Machado J, Kiryakova V, Mainardi F (2011) Recent history of fractional calculus. Commun Nonlinear Sci Numer Simul 16(3):1140–1153MathSciNetCrossRefMATH
8.
Zurück zum Zitat Atangana A, Baleanu D (2016) New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model. arXiv preprint arXiv:1602.03408 Atangana A, Baleanu D (2016) New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model. arXiv preprint arXiv:​1602.​03408
9.
Zurück zum Zitat Alkahtani BST (2016) Chua’s circuit model with Atangana–Baleanu derivative with fractional order. Chaos Solitons Fractals 89:547–551MathSciNetCrossRefMATH Alkahtani BST (2016) Chua’s circuit model with Atangana–Baleanu derivative with fractional order. Chaos Solitons Fractals 89:547–551MathSciNetCrossRefMATH
10.
11.
Zurück zum Zitat Wei S, Chen W, Hon Y-C (2015) Implicit local radial basis function method for solving two-dimensional time fractional diffusion equations. Therm Sci 19(suppl. 1):59–67CrossRef Wei S, Chen W, Hon Y-C (2015) Implicit local radial basis function method for solving two-dimensional time fractional diffusion equations. Therm Sci 19(suppl. 1):59–67CrossRef
12.
Zurück zum Zitat Chen W, Pang G (2016) A new definition of fractional Laplacian with application to modeling three-dimensional nonlocal heat conduction. J Comput Phys 309:350–367MathSciNetCrossRefMATH Chen W, Pang G (2016) A new definition of fractional Laplacian with application to modeling three-dimensional nonlocal heat conduction. J Comput Phys 309:350–367MathSciNetCrossRefMATH
13.
Zurück zum Zitat Zhuo-Jia F, Chen W, Yang H-T (2013) Boundary particle method for Laplace transformed time fractional diffusion equations. J Comput Phys 235:52–66MathSciNetCrossRefMATH Zhuo-Jia F, Chen W, Yang H-T (2013) Boundary particle method for Laplace transformed time fractional diffusion equations. J Comput Phys 235:52–66MathSciNetCrossRefMATH
14.
Zurück zum Zitat Tan W, Masuoka T (2005) Stokes first problem for a second grade fluid in a porous half-space with heated boundary. Int J Non-Linear Mech 40(4):515–522CrossRefMATH Tan W, Masuoka T (2005) Stokes first problem for a second grade fluid in a porous half-space with heated boundary. Int J Non-Linear Mech 40(4):515–522CrossRefMATH
15.
16.
Zurück zum Zitat Fetecu C, Fetecu C (2002) The Rayleigh–Stokes problem for heated second grade fluids. Int J Non-Linear Mech 37(6):1011–1015CrossRef Fetecu C, Fetecu C (2002) The Rayleigh–Stokes problem for heated second grade fluids. Int J Non-Linear Mech 37(6):1011–1015CrossRef
17.
Zurück zum Zitat Shen F, Tan W, Zhao Y, Masuoka T (2006) The Rayleigh–Stokes problem for a heated generalized second grade fluid with fractional derivative model. Nonlinear Anal Real World Appl 7(5):1072–1080MathSciNetCrossRefMATH Shen F, Tan W, Zhao Y, Masuoka T (2006) The Rayleigh–Stokes problem for a heated generalized second grade fluid with fractional derivative model. Nonlinear Anal Real World Appl 7(5):1072–1080MathSciNetCrossRefMATH
18.
Zurück zum Zitat Rajagopal KR (1982) A note on unsteady unidirectional flows of a non-Newtonian fluid. Int J Non-Linear Mech 17(5–6):369–373MathSciNetCrossRefMATH Rajagopal KR (1982) A note on unsteady unidirectional flows of a non-Newtonian fluid. Int J Non-Linear Mech 17(5–6):369–373MathSciNetCrossRefMATH
19.
Zurück zum Zitat Bandelli R, Rajagopal KR (1995) Start-up flows of second grade fluids in domains with one finite dimension. Int J Non-Linear Mech 30(6):817–839MathSciNetCrossRefMATH Bandelli R, Rajagopal KR (1995) Start-up flows of second grade fluids in domains with one finite dimension. Int J Non-Linear Mech 30(6):817–839MathSciNetCrossRefMATH
20.
Zurück zum Zitat Zhuang P, Liu Q (2009) Numerical method of rayleigh-stokes problem for heated generalized second grade fluid with fractional derivative. Appl Math Mech 30(12):1533MathSciNetCrossRefMATH Zhuang P, Liu Q (2009) Numerical method of rayleigh-stokes problem for heated generalized second grade fluid with fractional derivative. Appl Math Mech 30(12):1533MathSciNetCrossRefMATH
21.
Zurück zum Zitat Chen C-M, Liu F, Anh V (2008) Numerical analysis of the Rayleigh–Stokes problem for a heated generalized second grade fluid with fractional derivatives. Appl Math Comput 204(1):340–351MathSciNetMATH Chen C-M, Liu F, Anh V (2008) Numerical analysis of the Rayleigh–Stokes problem for a heated generalized second grade fluid with fractional derivatives. Appl Math Comput 204(1):340–351MathSciNetMATH
22.
Zurück zum Zitat Mohebbi A, Abbaszadeh M, Dehghan M (2013) Compact finite difference scheme and RBF meshless approach for solving 2D Rayleigh–Stokes problem for a heated generalized second grade fluid with fractional derivatives. Comput Methods Appl Mech Eng 264:163–177MathSciNetCrossRefMATH Mohebbi A, Abbaszadeh M, Dehghan M (2013) Compact finite difference scheme and RBF meshless approach for solving 2D Rayleigh–Stokes problem for a heated generalized second grade fluid with fractional derivatives. Comput Methods Appl Mech Eng 264:163–177MathSciNetCrossRefMATH
23.
Zurück zum Zitat Dehghan M, Abbaszadeh M (2016) A finite element method for the numerical solution of Rayleigh–Stokes problem for a heated generalized second grade fluid with fractional derivatives. Eng Comput. doi:10.1007/s00366-016-0491-9 Dehghan M, Abbaszadeh M (2016) A finite element method for the numerical solution of Rayleigh–Stokes problem for a heated generalized second grade fluid with fractional derivatives. Eng Comput. doi:10.​1007/​s00366-016-0491-9
25.
Zurück zum Zitat Fornberg B, Flyer N (2015) A primer on radial basis functions with applications to the geosciences. Society for Industrial and Applied Mathematics. doi:10.1137/1.9781611974041 Fornberg B, Flyer N (2015) A primer on radial basis functions with applications to the geosciences. Society for Industrial and Applied Mathematics. doi:10.​1137/​1.​9781611974041
26.
27.
Zurück zum Zitat Fili A, Naji A, Duan Y (2010) Coupling three-field formulation and meshless mixed Galerkin methods using radial basis functions. J Comput Appl Math 234(8):2456–2468MathSciNetCrossRefMATH Fili A, Naji A, Duan Y (2010) Coupling three-field formulation and meshless mixed Galerkin methods using radial basis functions. J Comput Appl Math 234(8):2456–2468MathSciNetCrossRefMATH
28.
Zurück zum Zitat Peng M, Li D, Cheng Y (2011) The complex variable element-free Galerkin (CVEFG) method for elasto-plasticity problems. Eng Struct 33(1):127–135CrossRef Peng M, Li D, Cheng Y (2011) The complex variable element-free Galerkin (CVEFG) method for elasto-plasticity problems. Eng Struct 33(1):127–135CrossRef
29.
Zurück zum Zitat Fu-Nong B, Dong-Ming L, Jian-Fei W, Yu-Min C (2012) An improved complex variable element-free Galerkin method for two-dimensional elasticity problems. Chin Phys B 21(2):020204CrossRef Fu-Nong B, Dong-Ming L, Jian-Fei W, Yu-Min C (2012) An improved complex variable element-free Galerkin method for two-dimensional elasticity problems. Chin Phys B 21(2):020204CrossRef
30.
Zurück zum Zitat Nayroles B, Touzot G, Villon P (1992) Generalizing the finite element method: diffuse approximation and diffuse elements. Comput Mech 10(5):307–318CrossRefMATH Nayroles B, Touzot G, Villon P (1992) Generalizing the finite element method: diffuse approximation and diffuse elements. Comput Mech 10(5):307–318CrossRefMATH
31.
Zurück zum Zitat Shivanian E, Khodabandehlo HR (2015) Application of meshless local radial point interpolation (MLRPI) on a one-dimensional inverse heat conduction problem. Ain Shams Eng J Shivanian E, Khodabandehlo HR (2015) Application of meshless local radial point interpolation (MLRPI) on a one-dimensional inverse heat conduction problem. Ain Shams Eng J
32.
Zurück zum Zitat Shivanian E (2013) Analysis of meshless local radial point interpolation (MLRPI) on a nonlinear partial integro-differential equation arising in population dynamics. Eng Anal Bound Elements 37(12):1693–1702MathSciNetCrossRefMATH Shivanian E (2013) Analysis of meshless local radial point interpolation (MLRPI) on a nonlinear partial integro-differential equation arising in population dynamics. Eng Anal Bound Elements 37(12):1693–1702MathSciNetCrossRefMATH
33.
Zurück zum Zitat Dehghan M, Mirzaei D (2009) Meshless local Petrov–Galerkin (MLPG) method for the unsteady magnetohydrodynamic (MHD) flow through pipe with arbitrary wall conductivity. Appl Numer Math 59(5):1043–1058MathSciNetCrossRefMATH Dehghan M, Mirzaei D (2009) Meshless local Petrov–Galerkin (MLPG) method for the unsteady magnetohydrodynamic (MHD) flow through pipe with arbitrary wall conductivity. Appl Numer Math 59(5):1043–1058MathSciNetCrossRefMATH
34.
Zurück zum Zitat Shivanian E (2015) Meshless local Petrov–Galerkin (MLPG) method for three-dimensional nonlinear wave equations via moving least squares approximation. Eng Anal Bound Elements 50:249–257MathSciNetCrossRef Shivanian E (2015) Meshless local Petrov–Galerkin (MLPG) method for three-dimensional nonlinear wave equations via moving least squares approximation. Eng Anal Bound Elements 50:249–257MathSciNetCrossRef
35.
Zurück zum Zitat Shirzadi A, Takhtabnoos F (2016) A local meshless method for Cauchy problem of elliptic pdes in annulus domains. Inverse Probl Sci Eng 24(5):729–743MathSciNetCrossRefMATH Shirzadi A, Takhtabnoos F (2016) A local meshless method for Cauchy problem of elliptic pdes in annulus domains. Inverse Probl Sci Eng 24(5):729–743MathSciNetCrossRefMATH
36.
Zurück zum Zitat Chen W, Fu Z-J, Chen C-S (2014) Recent advances in radial basis function collocation methods. Springer, BerlinCrossRefMATH Chen W, Fu Z-J, Chen C-S (2014) Recent advances in radial basis function collocation methods. Springer, BerlinCrossRefMATH
37.
Zurück zum Zitat Shivanian E, Abbasbandy S, Alhuthali MS, Alsulami HH (2015) Local integration of 2-D fractional telegraph equation via moving least squares approximation. Eng Anal Bound Elements 56:98–105MathSciNetCrossRef Shivanian E, Abbasbandy S, Alhuthali MS, Alsulami HH (2015) Local integration of 2-D fractional telegraph equation via moving least squares approximation. Eng Anal Bound Elements 56:98–105MathSciNetCrossRef
38.
Zurück zum Zitat Hosseini VR, Shivanian E, Chen W (2015) Local integration of 2-D fractional telegraph equation via local radial point interpolant approximation. Eur Phys J Plus 130(2):1–21CrossRef Hosseini VR, Shivanian E, Chen W (2015) Local integration of 2-D fractional telegraph equation via local radial point interpolant approximation. Eur Phys J Plus 130(2):1–21CrossRef
39.
Zurück zum Zitat Aslefallah M, Shivanian E (2015) Nonlinear fractional integro-differential reaction-diffusion equation via radial basis functions. Eur Phys J Plus 130(3):1–9CrossRef Aslefallah M, Shivanian E (2015) Nonlinear fractional integro-differential reaction-diffusion equation via radial basis functions. Eur Phys J Plus 130(3):1–9CrossRef
40.
Zurück zum Zitat Shivanian E (2016) On the convergence analysis, stability, and implementation of meshless local radial point interpolation on a class of three-dimensional wave equations. Int J Numer Methods Eng 105(2):83–110MathSciNetCrossRefMATH Shivanian E (2016) On the convergence analysis, stability, and implementation of meshless local radial point interpolation on a class of three-dimensional wave equations. Int J Numer Methods Eng 105(2):83–110MathSciNetCrossRefMATH
41.
Zurück zum Zitat Dehghan M, Ghesmati A (2010) Numerical simulation of two-dimensional sine-gordon solitons via a local weak meshless technique based on the radial point interpolation method (RPIM). Comput Phys Commun 181(4):772–786MathSciNetCrossRefMATH Dehghan M, Ghesmati A (2010) Numerical simulation of two-dimensional sine-gordon solitons via a local weak meshless technique based on the radial point interpolation method (RPIM). Comput Phys Commun 181(4):772–786MathSciNetCrossRefMATH
42.
Zurück zum Zitat Tadeu A, Chen CS, António J, Simoes N (2011) A boundary meshless method for solving heat transfer problems using the Fourier transform. Adv Appl Math Mech 3(05):572–585MathSciNetCrossRefMATH Tadeu A, Chen CS, António J, Simoes N (2011) A boundary meshless method for solving heat transfer problems using the Fourier transform. Adv Appl Math Mech 3(05):572–585MathSciNetCrossRefMATH
43.
Zurück zum Zitat Abbasbandy S, Roohani Ghehsareh H, Hashim I, Alsaedi A (2014) A comparison study of meshfree techniques for solving the two-dimensional linear hyperbolic telegraph equation. Eng Anal Bound Elements 47:10–20MathSciNetCrossRefMATH Abbasbandy S, Roohani Ghehsareh H, Hashim I, Alsaedi A (2014) A comparison study of meshfree techniques for solving the two-dimensional linear hyperbolic telegraph equation. Eng Anal Bound Elements 47:10–20MathSciNetCrossRefMATH
44.
Zurück zum Zitat Shivanian E (2015) A new spectral meshless radial point interpolation (SMRPI) method: a well-behaved alternative to the meshless weak forms. Eng Anal Bound Elements 54:1–12MathSciNetCrossRef Shivanian E (2015) A new spectral meshless radial point interpolation (SMRPI) method: a well-behaved alternative to the meshless weak forms. Eng Anal Bound Elements 54:1–12MathSciNetCrossRef
45.
Zurück zum Zitat Shivanian E, Jafarabadi A (2016) More accurate results for nonlinear generalized Benjamin–Bona–Mahony–Burgers (GBBMB) problem through spectral meshless radial point interpolation (SMRPI). Eng Anal Bound Elements 72:42–54MathSciNetCrossRef Shivanian E, Jafarabadi A (2016) More accurate results for nonlinear generalized Benjamin–Bona–Mahony–Burgers (GBBMB) problem through spectral meshless radial point interpolation (SMRPI). Eng Anal Bound Elements 72:42–54MathSciNetCrossRef
46.
Zurück zum Zitat Deng W, Li C (2011) Finite difference methods and their physical constraints for the fractional Klein–Kramers equation. Numer Methods Partial Differ Equ 27(6):1561–1583MathSciNetCrossRefMATH Deng W, Li C (2011) Finite difference methods and their physical constraints for the fractional Klein–Kramers equation. Numer Methods Partial Differ Equ 27(6):1561–1583MathSciNetCrossRefMATH
47.
Zurück zum Zitat Lin Y, Chuanju X (2007) Finite difference/spectral approximations for the time-fractional diffusion equation. J Comput Phys 225(2):1533–1552MathSciNetCrossRefMATH Lin Y, Chuanju X (2007) Finite difference/spectral approximations for the time-fractional diffusion equation. J Comput Phys 225(2):1533–1552MathSciNetCrossRefMATH
48.
Zurück zum Zitat Lin Y, Li X, Chuanju X (2011) Finite difference/spectral approximations for the fractional cable equation. Math Comput 80(275):1369–1396MathSciNetCrossRefMATH Lin Y, Li X, Chuanju X (2011) Finite difference/spectral approximations for the fractional cable equation. Math Comput 80(275):1369–1396MathSciNetCrossRefMATH
49.
Zurück zum Zitat Zhang N, Deng W, Yujiang W (2012) Finite difference/element method for a two-dimensional modified fractional diffusion equation. Adv Appl Math Mech 4(04):496–518MathSciNetCrossRefMATH Zhang N, Deng W, Yujiang W (2012) Finite difference/element method for a two-dimensional modified fractional diffusion equation. Adv Appl Math Mech 4(04):496–518MathSciNetCrossRefMATH
50.
Zurück zum Zitat Mohebbi A, Abbaszadeh M, Dehghan M (2014) Solution of two-dimensional modified anomalous fractional sub-diffusion equation via radial basis functions (RBF) meshless method. Eng Anal Bound Elements 38:72–82MathSciNetCrossRefMATH Mohebbi A, Abbaszadeh M, Dehghan M (2014) Solution of two-dimensional modified anomalous fractional sub-diffusion equation via radial basis functions (RBF) meshless method. Eng Anal Bound Elements 38:72–82MathSciNetCrossRefMATH
51.
Zurück zum Zitat Dehghan M, Abbaszadeh M, Mohebbi A (2016) Legendre spectral element method for solving time fractional modified anomalous sub-diffusion equation. Appl Math Model 40(5):3635–3654MathSciNetCrossRef Dehghan M, Abbaszadeh M, Mohebbi A (2016) Legendre spectral element method for solving time fractional modified anomalous sub-diffusion equation. Appl Math Model 40(5):3635–3654MathSciNetCrossRef
52.
Zurück zum Zitat Wendland H (2005) Scattered Data Approximation, cambridge monographs on applied and computational mathematics, Cambridge University Press, Cambridge, UK Wendland H (2005) Scattered Data Approximation, cambridge monographs on applied and computational mathematics, Cambridge University Press, Cambridge, UK
53.
Zurück zum Zitat Mohebbi A, Abbaszadeh M, Dehghan M (2013) A high-order and unconditionally stable scheme for the modified anomalous fractional sub-diffusion equation with a nonlinear source term. J Comput Phys 240:36–48MathSciNetCrossRefMATH Mohebbi A, Abbaszadeh M, Dehghan M (2013) A high-order and unconditionally stable scheme for the modified anomalous fractional sub-diffusion equation with a nonlinear source term. J Comput Phys 240:36–48MathSciNetCrossRefMATH
54.
Metadaten
Titel
Rayleigh–Stokes problem for a heated generalized second grade fluid with fractional derivatives: a stable scheme based on spectral meshless radial point interpolation
verfasst von
Elyas Shivanian
Ahmad Jafarabadi
Publikationsdatum
06.05.2017
Verlag
Springer London
Erschienen in
Engineering with Computers / Ausgabe 1/2018
Print ISSN: 0177-0667
Elektronische ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-017-0522-1

Weitere Artikel der Ausgabe 1/2018

Engineering with Computers 1/2018 Zur Ausgabe