Skip to main content
Erschienen in: Computational Mechanics 1/2016

01.07.2016 | Original Paper

Homogenization in micro-magneto-mechanics

verfasst von: A. Sridhar, M.-A. Keip, C. Miehe

Erschienen in: Computational Mechanics | Ausgabe 1/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Ferromagnetic materials are characterized by a heterogeneous micro-structure that can be altered by external magnetic and mechanical stimuli. The understanding and the description of the micro-structure evolution is of particular importance for the design and the analysis of smart materials with magneto-mechanical coupling. The macroscopic response of the material results from complex magneto-mechanical interactions occurring on smaller length scales, which are driven by magnetization reorientation and associated magnetic domain wall motions. The aim of this work is to directly base the description of the macroscopic magneto-mechanical material behavior on the micro-magnetic domain evolution. This will be realized by the incorporation of a ferromagnetic phase-field formulation into a macroscopic Boltzmann continuum by the use of computational homogenization. The transition conditions between the two scales are obtained via rigorous exploitation of rate-type and incremental variational principles, which incorporate an extended version of the classical Hill–Mandel macro-homogeneity condition covering the phase field on the micro-scale. An efficient two-scale computational scenario is developed based on an operator splitting scheme that includes a predictor for the magnetization on the micro-scale. Two- and three-dimensional numerical simulations demonstrate the performance of the method. They investigate micro-magnetic domain evolution driven by macroscopic fields as well as the associated overall hysteretic response of ferromagnetic solids.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
There exist materials that show even higher deformations under applied magnetic field, given by ferromagnetic shape memory alloys (these show strains in the order of a few percent). The governing effects taking place in shape memory alloys are however different from those in pure ferromagnets and will not be considered in the present contribution. For more information see, for example, Kiefer et al. [30].
 
2
The magnetostrictive strain for a cubic response in (57) can be explicitly written as,
$$\begin{aligned} {\varvec{\varepsilon }}_0=\frac{3}{2} \begin{pmatrix} E_{100}(m_1^2-1/3) &{} E_{111}m_1m_2 &{} E_{111}m_1m_3 \\ E_{111}m_2m_1 &{} E_{100}(m_2^2-1/3) &{} E_{111}m_2m_3 \\ E_{111}m_3m_1 &{} E_{111}m_3m_2 &{} E_{100}(m_3^2-1/3) \end{pmatrix} _{CF} \end{aligned}$$
The material modulus \({\varvec{\mathcal {K}}}\) can be filled with the entries \({\mathcal {K}}_{1111}{=} E_{100}, {\mathcal {K}}_{2222}{=} E_{100}, {\mathcal {K}}_{3333}{=} E_{100}, {\mathcal {K}}_{1212}{=} {\mathcal {K}}_{1221}{=}E_{111}/2, {\mathcal {K}}_{2112}{=} {\mathcal {K}}_{2121}{=}E_{111}/2, {\mathcal {K}}_{1313}= {\mathcal {K}}_{1331}=E_{111}/2, {\mathcal {K}}_{3113}= {\mathcal {K}}_{3131}=E_{111}/2, {\mathcal {K}}_{2323}= {\mathcal {K}}_{2332}=E_{111}/2, {\mathcal {K}}_{3223}= {\mathcal {K}}_{3232}=E_{111}/2\). The fourth order cubic mechanical modulus \({\mathbb {C}}^{cub}\) in (58) is given as
$$\begin{aligned} {\mathbb {C}}^{cub}= \begin{pmatrix} {\mathbb {C}}_{11} &{} {\mathbb {C}}_{12} &{} {\mathbb {C}}_{12} &{} &{} &{} \\ {\mathbb {C}}_{12} &{} {\mathbb {C}}_{11} &{} {\mathbb {C}}_{12} &{} &{} &{} \\ {\mathbb {C}}_{12} &{} {\mathbb {C}}_{12} &{} {\mathbb {C}}_{11} &{} &{} &{}\\ &{} &{} &{}{\mathbb {C}}_{44} &{} &{}\\ &{} &{} &{} &{}{\mathbb {C}}_{44} &{} \\ &{} &{} &{} &{} &{}{\mathbb {C}}_{44} \end{pmatrix}. \end{aligned}$$
 
Literatur
2.
Zurück zum Zitat Berger H, Kari S, Gabbert U, Rodriguez-Ramos R, Guinovart R, Otero J, Bravo-Castillero J (2005) An analytical and numerical approach for calculating effective material coefficients of piezoelectric fiber composites. Int J Solids Struct 42(21–22):5692–5714. doi:10.1016/j.ijsolstr.2005.03.016 CrossRefMATH Berger H, Kari S, Gabbert U, Rodriguez-Ramos R, Guinovart R, Otero J, Bravo-Castillero J (2005) An analytical and numerical approach for calculating effective material coefficients of piezoelectric fiber composites. Int J Solids Struct 42(21–22):5692–5714. doi:10.​1016/​j.​ijsolstr.​2005.​03.​016 CrossRefMATH
3.
Zurück zum Zitat Bertram HN (1994) Theory of magnetic recording. Cambridge University Press, CambridgeCrossRef Bertram HN (1994) Theory of magnetic recording. Cambridge University Press, CambridgeCrossRef
5.
Zurück zum Zitat Brown WF Jr (1966) Magnetoelastic interactions, tracts in natural philosophy, vol 9. Springer-Verlag, New YorkCrossRef Brown WF Jr (1966) Magnetoelastic interactions, tracts in natural philosophy, vol 9. Springer-Verlag, New YorkCrossRef
6.
Zurück zum Zitat Brun M, Lopez-Pamies O, Ponte Castañeda P (2007) Homogenization estimates for fiber-reinforced elastomers with periodic microstructures. Int J Solids Struct 44:5953–5979MathSciNetCrossRefMATH Brun M, Lopez-Pamies O, Ponte Castañeda P (2007) Homogenization estimates for fiber-reinforced elastomers with periodic microstructures. Int J Solids Struct 44:5953–5979MathSciNetCrossRefMATH
8.
Zurück zum Zitat Clark AE, Restorff JB, Wun-Fogle M, Hathaway KB, Lograsso TA, Huang M, Summers E (2007) Magnetostriction of ternary fe-ga-x(x=c, v, cr, mn, co, rh) alloys. J Appl Phys 101(9):09C507. doi:10.1063/1.2670376 CrossRef Clark AE, Restorff JB, Wun-Fogle M, Hathaway KB, Lograsso TA, Huang M, Summers E (2007) Magnetostriction of ternary fe-ga-x(x=c, v, cr, mn, co, rh) alloys. J Appl Phys 101(9):09C507. doi:10.​1063/​1.​2670376 CrossRef
9.
Zurück zum Zitat Cullity BD (1972) Introduction to magnetic materials. Addison-Wesley, Reading Cullity BD (1972) Introduction to magnetic materials. Addison-Wesley, Reading
10.
Zurück zum Zitat Daniel L, Hubert O, Billardon R (2004) Homogenisation of magneto-elastic behaviour: from the grain to the macro scale. Comput Appl Math 23:285–308MathSciNetCrossRefMATH Daniel L, Hubert O, Billardon R (2004) Homogenisation of magneto-elastic behaviour: from the grain to the macro scale. Comput Appl Math 23:285–308MathSciNetCrossRefMATH
11.
Zurück zum Zitat Daniel L, Hubert O, Buiron N, Billardon R (2008) Reversible magneto-elastic behavior: a multiscale approach. J Mech Phys Solids 56(3):1018–1042MathSciNetCrossRefMATH Daniel L, Hubert O, Buiron N, Billardon R (2008) Reversible magneto-elastic behavior: a multiscale approach. J Mech Phys Solids 56(3):1018–1042MathSciNetCrossRefMATH
12.
14.
Zurück zum Zitat DeSimone A, Kohn RV, Müller S, Otto F (2004) Recent analytical developments in micromagnetics. Technical report, Max-Planck-Institut für Mathematik in den Naturwissenschaften, Leipzig DeSimone A, Kohn RV, Müller S, Otto F (2004) Recent analytical developments in micromagnetics. Technical report, Max-Planck-Institut für Mathematik in den Naturwissenschaften, Leipzig
15.
Zurück zum Zitat Engdahl G (2000) Handbook of giant magnetostrictive materials. Academic Press, San Diego Engdahl G (2000) Handbook of giant magnetostrictive materials. Academic Press, San Diego
17.
Zurück zum Zitat Gilbert TL (1956) Formulation, foundations, and applications of the phenomenological theory of ferromagnetism. Ph.D. thesis, Illinois Institute of Technology Gilbert TL (1956) Formulation, foundations, and applications of the phenomenological theory of ferromagnetism. Ph.D. thesis, Illinois Institute of Technology
18.
Zurück zum Zitat Gilbert TL (2004) A phenomenological theory of damping in ferromagnetic materials. IEEE Trans Magn 40:3443–3449CrossRef Gilbert TL (2004) A phenomenological theory of damping in ferromagnetic materials. IEEE Trans Magn 40:3443–3449CrossRef
19.
Zurück zum Zitat Goll D, Kronmüller H (2000) High-performance permanent magnets. Naturwissenschaften 87(10):423–438CrossRef Goll D, Kronmüller H (2000) High-performance permanent magnets. Naturwissenschaften 87(10):423–438CrossRef
20.
Zurück zum Zitat Greaves S (2008) Micromagnetic simulations of magnetic recording media. In: High performance computing on vector systems 2007. Springer, Berlin Greaves S (2008) Micromagnetic simulations of magnetic recording media. In: High performance computing on vector systems 2007. Springer, Berlin
21.
Zurück zum Zitat Hill R (1972) On constitutive macro-variables for heterogeneous solids at finite strain. Proc R Soc Lond (Ser A) 326:131–147CrossRefMATH Hill R (1972) On constitutive macro-variables for heterogeneous solids at finite strain. Proc R Soc Lond (Ser A) 326:131–147CrossRefMATH
22.
Zurück zum Zitat Hirsinger L, Barbier G, Billardon R (2000) Application of the internal variable formalism to the modelling of magneto-elasticity. Mech Electromagn Mater Struct 19:54–67 Hirsinger L, Barbier G, Billardon R (2000) Application of the internal variable formalism to the modelling of magneto-elasticity. Mech Electromagn Mater Struct 19:54–67
24.
Zurück zum Zitat Hubert A, Schäfer R (2001) Magnetic domains. Springer-Verlag, New York Hubert A, Schäfer R (2001) Magnetic domains. Springer-Verlag, New York
25.
26.
Zurück zum Zitat Javili A, Chatzigeorgiou G, Steinmann P (2013) Computational homogenization in magnetomechanics. Int J Solids Struct 50:4197–4216CrossRef Javili A, Chatzigeorgiou G, Steinmann P (2013) Computational homogenization in magnetomechanics. Int J Solids Struct 50:4197–4216CrossRef
27.
28.
Zurück zum Zitat Keip MA, Steinmann P, Schröder J (2014) Two-scale computational homogenization of electro-elasticity at finite strains. Comput Methods Appl Mech Eng 278:62–79MathSciNetCrossRef Keip MA, Steinmann P, Schröder J (2014) Two-scale computational homogenization of electro-elasticity at finite strains. Comput Methods Appl Mech Eng 278:62–79MathSciNetCrossRef
29.
Zurück zum Zitat Keip MA, Schrade D, Thai H, Schröder J, Svendsen B, Müller R, Gross D (2015) Coordinate-invariant phase field modeling of ferroelectrics, part II: application to composites and polycrystals. GAMM-Mitt 38(1):115–131. doi:10.1002/gamm.201510006 MathSciNetCrossRef Keip MA, Schrade D, Thai H, Schröder J, Svendsen B, Müller R, Gross D (2015) Coordinate-invariant phase field modeling of ferroelectrics, part II: application to composites and polycrystals. GAMM-Mitt 38(1):115–131. doi:10.​1002/​gamm.​201510006 MathSciNetCrossRef
30.
31.
Zurück zum Zitat Kittel C (1949) Physical theory of ferromagnetic domains. Rev Mod Phys 21(4):541–583CrossRef Kittel C (1949) Physical theory of ferromagnetic domains. Rev Mod Phys 21(4):541–583CrossRef
32.
Zurück zum Zitat Kittel C (1956) Introduction to solid state physics, 2nd edn. Wiley, New YorkMATH Kittel C (1956) Introduction to solid state physics, 2nd edn. Wiley, New YorkMATH
33.
Zurück zum Zitat Kouznetsova V (2002) Computational homogenization for the multi-scale analysis of multi-phase materials. Ph.D. thesis, Institute of Mechanics of Materials, TU Eindhoven Kouznetsova V (2002) Computational homogenization for the multi-scale analysis of multi-phase materials. Ph.D. thesis, Institute of Mechanics of Materials, TU Eindhoven
34.
Zurück zum Zitat Kouznetsova V, Geers MGD, Brekelmans WAM (2002) Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. Int J Numer Methods Eng 54:1235–1260CrossRefMATH Kouznetsova V, Geers MGD, Brekelmans WAM (2002) Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme. Int J Numer Methods Eng 54:1235–1260CrossRefMATH
35.
Zurück zum Zitat Kouznetsova V, Geers M, Brekelmans W (2004) Multi-scale second-order computational homogenization of multi-phase materials: a nested finite element solution strategy. Comput Methods Appl Mech Eng 193:5525–5550CrossRefMATH Kouznetsova V, Geers M, Brekelmans W (2004) Multi-scale second-order computational homogenization of multi-phase materials: a nested finite element solution strategy. Comput Methods Appl Mech Eng 193:5525–5550CrossRefMATH
36.
Zurück zum Zitat Kružík M, Prohl A (2006) Recent developments in the modeling, analysis, and numerics of ferromagnetism. SIAM Rev 48:439–483MathSciNetCrossRefMATH Kružík M, Prohl A (2006) Recent developments in the modeling, analysis, and numerics of ferromagnetism. SIAM Rev 48:439–483MathSciNetCrossRefMATH
38.
39.
Zurück zum Zitat Landau LD, Lifshitz EM (1935) On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. Physikalische Zeitschrift der Sowjetunion 8:153–169MATH Landau LD, Lifshitz EM (1935) On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. Physikalische Zeitschrift der Sowjetunion 8:153–169MATH
40.
Zurück zum Zitat Landis CM (2008) A continuum thermodynamics formulation for micro-magnetomechanics with applications to ferromagnetic shape memory alloys. J Mech Phys Solids 56:3059–3076MathSciNetCrossRefMATH Landis CM (2008) A continuum thermodynamics formulation for micro-magnetomechanics with applications to ferromagnetic shape memory alloys. J Mech Phys Solids 56:3059–3076MathSciNetCrossRefMATH
41.
Zurück zum Zitat Liang CY, Keller SM, Sepulveda AE, Bur A, Sun WY, Wetzlar K, Carman GP (2014) Modeling of magnetoelastic nanostructures with a fully coupled mechanical-micromagnetic model. Nanotechnology 25(43):435,701CrossRef Liang CY, Keller SM, Sepulveda AE, Bur A, Sun WY, Wetzlar K, Carman GP (2014) Modeling of magnetoelastic nanostructures with a fully coupled mechanical-micromagnetic model. Nanotechnology 25(43):435,701CrossRef
42.
Zurück zum Zitat Linnemann K, Klinkel S, Wagner W (2009) A constitutive model for magnetostrictive and piezoelectric materials. Int J Solids Struct 46:1149–1166CrossRefMATH Linnemann K, Klinkel S, Wagner W (2009) A constitutive model for magnetostrictive and piezoelectric materials. Int J Solids Struct 46:1149–1166CrossRefMATH
43.
Zurück zum Zitat Miehe C (2002) Strain-driven homogenization of inelastic microstructures and composites based on an incremental variational formulation. Int J Numer Methods Eng 55:1285–1322MathSciNetCrossRefMATH Miehe C (2002) Strain-driven homogenization of inelastic microstructures and composites based on an incremental variational formulation. Int J Numer Methods Eng 55:1285–1322MathSciNetCrossRefMATH
44.
Zurück zum Zitat Miehe C (2003) Computational micro-to-macro transitions of discretized micro-structures of heterogeneous materials at finite strains based on the minimization of averaged incremental energy. Comput Methods Appl Mech Eng 192:559–591MathSciNetCrossRefMATH Miehe C (2003) Computational micro-to-macro transitions of discretized micro-structures of heterogeneous materials at finite strains based on the minimization of averaged incremental energy. Comput Methods Appl Mech Eng 192:559–591MathSciNetCrossRefMATH
45.
Zurück zum Zitat Miehe C (2011) A multi-field incremental variational framework for gradinet-type standard dissipative solids. J Mech Phys Solids 59(4):898–923MathSciNetCrossRefMATH Miehe C (2011) A multi-field incremental variational framework for gradinet-type standard dissipative solids. J Mech Phys Solids 59(4):898–923MathSciNetCrossRefMATH
46.
Zurück zum Zitat Miehe C, Dettmar J (2004) A framework for micro-macro transitions in periodic particle aggregates of granular materials. Comput Methods Appl Mech Eng 193:225–256MathSciNetCrossRefMATH Miehe C, Dettmar J (2004) A framework for micro-macro transitions in periodic particle aggregates of granular materials. Comput Methods Appl Mech Eng 193:225–256MathSciNetCrossRefMATH
47.
Zurück zum Zitat Miehe C, Ethiraj G (2012) A geometrically consistent incremental variational formulation for phase field models in micromagnetics. Comput Methods Appl Mech Eng 245–246:331–347MathSciNetCrossRef Miehe C, Ethiraj G (2012) A geometrically consistent incremental variational formulation for phase field models in micromagnetics. Comput Methods Appl Mech Eng 245–246:331–347MathSciNetCrossRef
48.
Zurück zum Zitat Miehe C, Dettmar J, Zäh D (2010) Homogenization and two-scale simulations of granular materials for different microstructural constraints. Int J Numer Methods Eng 83:1206–1236CrossRefMATH Miehe C, Dettmar J, Zäh D (2010) Homogenization and two-scale simulations of granular materials for different microstructural constraints. Int J Numer Methods Eng 83:1206–1236CrossRefMATH
49.
Zurück zum Zitat Miehe C, Kiefer B, Rosato D (2011) An incremental variational formulation of dissipative magnetostriction at the macroscopic continuum level. Int J Solids Struct 48:1846–1866CrossRef Miehe C, Kiefer B, Rosato D (2011) An incremental variational formulation of dissipative magnetostriction at the macroscopic continuum level. Int J Solids Struct 48:1846–1866CrossRef
50.
Zurück zum Zitat Miehe C, Rosato D, Kiefer B (2011) Variational principles in dissipative electro-magneto-mechanics: a framework for the macro-modeling of functional materials. Int J Numer Methods Eng 86:1225–1276MathSciNetCrossRefMATH Miehe C, Rosato D, Kiefer B (2011) Variational principles in dissipative electro-magneto-mechanics: a framework for the macro-modeling of functional materials. Int J Numer Methods Eng 86:1225–1276MathSciNetCrossRefMATH
51.
Zurück zum Zitat Miehe C, Zäh D, Rosato D (2012) Variational-based modeling of micro-electro-elasticity with electric field- and stress-driven domain evolution. Int J Numer Methods Eng 91(2):115–141CrossRefMATH Miehe C, Zäh D, Rosato D (2012) Variational-based modeling of micro-electro-elasticity with electric field- and stress-driven domain evolution. Int J Numer Methods Eng 91(2):115–141CrossRefMATH
52.
Zurück zum Zitat Nemat-Nasser S, Hori M (1999) Micromechanics: overall properties of heterogeneous materials. In: North-Holland series in applied mathematics and mechanics, vol. 36, 2nd edn. Elsevier Science Publisher B.V Nemat-Nasser S, Hori M (1999) Micromechanics: overall properties of heterogeneous materials. In: North-Holland series in applied mathematics and mechanics, vol. 36, 2nd edn. Elsevier Science Publisher B.V
54.
Zurück zum Zitat Özdemir I, Brekelmans WAM, Geers MGD (2008) Computational homogenization for heat conduction in heterogeneous solids. Int J Numer Methods Eng 73(2):185–204MathSciNetCrossRefMATH Özdemir I, Brekelmans WAM, Geers MGD (2008) Computational homogenization for heat conduction in heterogeneous solids. Int J Numer Methods Eng 73(2):185–204MathSciNetCrossRefMATH
55.
Zurück zum Zitat Pisante G (2004) Homogenization of micromagnetics large bodies. ESAIM: control, optimisation and calculus of variations Pisante G (2004) Homogenization of micromagnetics large bodies. ESAIM: control, optimisation and calculus of variations
56.
Zurück zum Zitat Ponte Castañeda P, Galipeau E (2011) Homogenization-based constitutive models for magnetorheological elastomers at finite strain. J Mech Phys Solids 59:194–215MathSciNetCrossRefMATH Ponte Castañeda P, Galipeau E (2011) Homogenization-based constitutive models for magnetorheological elastomers at finite strain. J Mech Phys Solids 59:194–215MathSciNetCrossRefMATH
58.
59.
Zurück zum Zitat Sablik MJ, Jiles DC (1993) Coupled magnetoelastic theory of magnetic and magnetostrictive hysteresis. IEEE Trans Magn 29(3):2113–2123CrossRef Sablik MJ, Jiles DC (1993) Coupled magnetoelastic theory of magnetic and magnetostrictive hysteresis. IEEE Trans Magn 29(3):2113–2123CrossRef
60.
Zurück zum Zitat Sandlund L, Fahlander M, Cedell T, Clark AE, Restorff JB, Wun-Fogle M (1994) Magnetostriction, elastic moduli, and coupling factors of composite terfenol-d. J Appl Phys 75(10):5656–5658. doi:10.1063/1.355627 CrossRef Sandlund L, Fahlander M, Cedell T, Clark AE, Restorff JB, Wun-Fogle M (1994) Magnetostriction, elastic moduli, and coupling factors of composite terfenol-d. J Appl Phys 75(10):5656–5658. doi:10.​1063/​1.​355627 CrossRef
61.
Zurück zum Zitat Schrefl T, Fidler J, Kronmüller H (1994) Remenence and coercivity in isotropic nanocrystalline permanent magnets. Phys Rev B 49(9):6100–6110CrossRef Schrefl T, Fidler J, Kronmüller H (1994) Remenence and coercivity in isotropic nanocrystalline permanent magnets. Phys Rev B 49(9):6100–6110CrossRef
62.
Zurück zum Zitat Schröder J (2009) Derivation of the localization and homogenization conditions for electro-mechanically coupled problems. Comput Mater Sci 46:595–599CrossRef Schröder J (2009) Derivation of the localization and homogenization conditions for electro-mechanically coupled problems. Comput Mater Sci 46:595–599CrossRef
63.
Zurück zum Zitat Schröder J, Keip MA (2012) Two-scale homogenization of electromechanically coupled boundary value problems. Comput Mech 50(2):229–244MathSciNetCrossRefMATH Schröder J, Keip MA (2012) Two-scale homogenization of electromechanically coupled boundary value problems. Comput Mech 50(2):229–244MathSciNetCrossRefMATH
64.
Zurück zum Zitat Shu YC, Lin MP, Wu KC (2004) Micromagnetic modeling of magnetostrictive materials under intrinsic stress. Mech Mater 36(10):975–997 Active MaterialsCrossRef Shu YC, Lin MP, Wu KC (2004) Micromagnetic modeling of magnetostrictive materials under intrinsic stress. Mech Mater 36(10):975–997 Active MaterialsCrossRef
65.
Zurück zum Zitat Smith RC, Dapino MJ, Seelecke S (2003) Free energy model for hysteresis in magnetostrictive transducers. J Appl Phys 93(1):458–466CrossRef Smith RC, Dapino MJ, Seelecke S (2003) Free energy model for hysteresis in magnetostrictive transducers. J Appl Phys 93(1):458–466CrossRef
66.
Zurück zum Zitat Spaldin NA (2003) Magnetic materials: fundamentals and device applications. Cambridge University Press, Cambridge Spaldin NA (2003) Magnetic materials: fundamentals and device applications. Cambridge University Press, Cambridge
67.
Zurück zum Zitat Suquet P (1987) Elements of homogenization for inelastic solid mechanics. In: Sanchez-Palenzia E, Zaoui A (eds.) Lecture Notes in Physics: Homogenization Techniques for Composite Materials, vol. 272 edn. Springer-Verlag, pp 193–278 Suquet P (1987) Elements of homogenization for inelastic solid mechanics. In: Sanchez-Palenzia E, Zaoui A (eds.) Lecture Notes in Physics: Homogenization Techniques for Composite Materials, vol. 272 edn. Springer-Verlag, pp 193–278
70.
Zurück zum Zitat Zäh D, Miehe C (2013) Computational homogenization in dissipative electro-mechanics of functional materials. Comput Methods Appl Mech Eng 267:487–510MathSciNetCrossRefMATH Zäh D, Miehe C (2013) Computational homogenization in dissipative electro-mechanics of functional materials. Comput Methods Appl Mech Eng 267:487–510MathSciNetCrossRefMATH
71.
Zurück zum Zitat Zhang JX, Chen LQ (2005) Phase-field microelasticity theory and micromagnetic simulations of domain structures in giant magnetostrictive materials. Acta Mater 53:2845–2855CrossRef Zhang JX, Chen LQ (2005) Phase-field microelasticity theory and micromagnetic simulations of domain structures in giant magnetostrictive materials. Acta Mater 53:2845–2855CrossRef
72.
Zurück zum Zitat Zhang JX, Chen LQ (2005) Phase-field model for ferromagnetic shape-memory alloys. Philos Mag Lett 85:533–541CrossRef Zhang JX, Chen LQ (2005) Phase-field model for ferromagnetic shape-memory alloys. Philos Mag Lett 85:533–541CrossRef
Metadaten
Titel
Homogenization in micro-magneto-mechanics
verfasst von
A. Sridhar
M.-A. Keip
C. Miehe
Publikationsdatum
01.07.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 1/2016
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-016-1286-y

Weitere Artikel der Ausgabe 1/2016

Computational Mechanics 1/2016 Zur Ausgabe