Skip to main content
Erschienen in: Computational Mechanics 2/2021

06.01.2021 | Original Paper

Machine learning for metal additive manufacturing: predicting temperature and melt pool fluid dynamics using physics-informed neural networks

verfasst von: Qiming Zhu, Zeliang Liu, Jinhui Yan

Erschienen in: Computational Mechanics | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The recent explosion of machine learning (ML) and artificial intelligence (AI) shows great potential in the breakthrough of metal additive manufacturing (AM) process modeling, which is an indispensable step to derive the process-structure-property relationship. However, the success of conventional machine learning tools in data science is primarily attributed to the unprecedented large amount of labeled data-sets (big data), which can be either obtained by experiments or first-principle simulations. Unfortunately, these labeled data-sets are expensive to obtain in AM due to the high expense of the AM experiments and prohibitive computational cost of high-fidelity simulations, hindering the direct applications of big-data based ML tools to metal AM problems. To fully exploit the power of machine learning for metal AM while alleviating the dependence on “big data”, we put forth a physics-informed neural network (PINN) framework that fuses both data and first physical principles, including conservation laws of momentum, mass, and energy, into the neural network to inform the learning processes. To the best knowledge of the authors, this is the first application of physics-informed deep learning to three dimensional AM processes modeling. Besides, we propose a hard-type approach for Dirichlet boundary conditions (BCs) based on a Heaviside function, which can not only exactly enforce the BCs but also accelerate the learning process. The PINN framework is applied to two representative metal manufacturing problems, including the 2018 NIST AM-Benchmark test series. We carefully assess the performance of the PINN model by comparing the predictions with available experimental data and high-fidelity simulation results, using finite element based variational multi-scale formulation method. The investigations show that the PINN, owed to the additional physical knowledge, can accurately predict the temperature and melt pool dynamics during metal AM processes with only a moderate amount of labeled data-sets. The foray of PINN to metal AM shows the great potential of physics-informed deep learning for broader applications to advanced manufacturing. All the data-sets and the PINN code will be made open-sourced in https://​yan.​cee.​illinois.​edu/​ once the paper is published.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zhao C, Fezzaa K, Cunningham R, Wen H, De Carlo F, Chen L, Rollett A, Sun T (2017) Real-time monitoring of laser powder bed fusion process using high-speed x-ray imaging and diffraction. Sci Rep 7(1):1–11 Zhao C, Fezzaa K, Cunningham R, Wen H, De Carlo F, Chen L, Rollett A, Sun T (2017) Real-time monitoring of laser powder bed fusion process using high-speed x-ray imaging and diffraction. Sci Rep 7(1):1–11
2.
Zurück zum Zitat Cunningham R, Zhao C, Parab N, Kantzos C, Pauza J, Fezzaa K, Sun T, Rollett A (2019) Keyhole threshold and morphology in laser melting revealed by ultrahigh-speed x-ray imaging. Science 363(6429):849–852CrossRef Cunningham R, Zhao C, Parab N, Kantzos C, Pauza J, Fezzaa K, Sun T, Rollett A (2019) Keyhole threshold and morphology in laser melting revealed by ultrahigh-speed x-ray imaging. Science 363(6429):849–852CrossRef
3.
Zurück zum Zitat Guo Q, Zhao C, Qu M, Xiong L, Hojjatzadeh S, Escano L, Parab N, Fezzaa K, Sun T, Chen L (2020) In-situ full-field mapping of melt flow dynamics in laser metal additive manufacturing. Addit Manuf 31:100939 Guo Q, Zhao C, Qu M, Xiong L, Hojjatzadeh S, Escano L, Parab N, Fezzaa K, Sun T, Chen L (2020) In-situ full-field mapping of melt flow dynamics in laser metal additive manufacturing. Addit Manuf 31:100939
6.
Zurück zum Zitat Noble C, Anderson A, Barton N, Bramwell J, Capps A, Chang M, Chou J, Dawson D, Diana E, Dunn T (2017) Ale3d: an arbitrary Lagrangian–Eulerian multi-physics code. Techical report, Lawrence Livermore National Lab.(LLNL), Livermore, CA (United States) Noble C, Anderson A, Barton N, Bramwell J, Capps A, Chang M, Chou J, Dawson D, Diana E, Dunn T (2017) Ale3d: an arbitrary Lagrangian–Eulerian multi-physics code. Techical report, Lawrence Livermore National Lab.(LLNL), Livermore, CA (United States)
7.
Zurück zum Zitat Khairallah S, Anderson A, Rubenchik A, King W (2016) Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater 108:36–45CrossRef Khairallah S, Anderson A, Rubenchik A, King W (2016) Laser powder-bed fusion additive manufacturing: physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater 108:36–45CrossRef
8.
Zurück zum Zitat Roehling TT, Wu SS, Khairallah SA, Roehling JD, Soezeri SS, Crumb MF, Matthews MJ (2017) Modulating laser intensity profile ellipticity for microstructural control during metal additive manufacturing. Acta Mater 128:197–206CrossRef Roehling TT, Wu SS, Khairallah SA, Roehling JD, Soezeri SS, Crumb MF, Matthews MJ (2017) Modulating laser intensity profile ellipticity for microstructural control during metal additive manufacturing. Acta Mater 128:197–206CrossRef
9.
Zurück zum Zitat Khairallah S, Martin A, Lee J, Guss G, Calta N, Hammons J, Nielsen M, Chaput K, Schwalbach E, Shah M, Chapman G, Willey T, Rubenchik A, Anderson A, Wang Y, Matthews M, King W (2020) Controlling interdependent meso-nanosecond dynamics and defect generation in metal 3d printing. Science 368(6491):660–665CrossRef Khairallah S, Martin A, Lee J, Guss G, Calta N, Hammons J, Nielsen M, Chaput K, Schwalbach E, Shah M, Chapman G, Willey T, Rubenchik A, Anderson A, Wang Y, Matthews M, King W (2020) Controlling interdependent meso-nanosecond dynamics and defect generation in metal 3d printing. Science 368(6491):660–665CrossRef
10.
Zurück zum Zitat Knapp G, Mukherjee T, Zuback J, Wei H, Palmer T, De A, DebRoy T (2017) Building blocks for a digital twin of additive manufacturing. Acta Mater 135:390–399CrossRef Knapp G, Mukherjee T, Zuback J, Wei H, Palmer T, De A, DebRoy T (2017) Building blocks for a digital twin of additive manufacturing. Acta Mater 135:390–399CrossRef
11.
Zurück zum Zitat Mukherjee T, Wei H, De A, DebRoy T (2018) Heat and fluid flow in additive manufacturing-part i: modeling of powder bed fusion. Comput Mater Sci 150:304–313CrossRef Mukherjee T, Wei H, De A, DebRoy T (2018) Heat and fluid flow in additive manufacturing-part i: modeling of powder bed fusion. Comput Mater Sci 150:304–313CrossRef
12.
Zurück zum Zitat Mukherjee T, Wei H, De A, DebRoy T (2018) Heat and fluid flow in additive manufacturing-part ii: Powder bed fusion of stainless steel, and titanium, nickel and aluminum base alloys. Comput Mater Sci 150:369–380CrossRef Mukherjee T, Wei H, De A, DebRoy T (2018) Heat and fluid flow in additive manufacturing-part ii: Powder bed fusion of stainless steel, and titanium, nickel and aluminum base alloys. Comput Mater Sci 150:369–380CrossRef
13.
Zurück zum Zitat Lin S (2019) Numerical methods and high performance computing for modeling metallic additive manufacturing processes at multiple scales. Ph.D. thesis, Northwestern University Lin S (2019) Numerical methods and high performance computing for modeling metallic additive manufacturing processes at multiple scales. Ph.D. thesis, Northwestern University
14.
Zurück zum Zitat Lin S, Gan Z, Yan J, Wagner G (2020) A conservative level set method on unstructured meshes for modeling multiphase thermo-fluid flow in additive manufacturing processes. Comput Methods Appl Mech Eng 372:113348MathSciNetCrossRef Lin S, Gan Z, Yan J, Wagner G (2020) A conservative level set method on unstructured meshes for modeling multiphase thermo-fluid flow in additive manufacturing processes. Comput Methods Appl Mech Eng 372:113348MathSciNetCrossRef
15.
Zurück zum Zitat Attar E, Körner C (2011) Lattice Boltzmann model for thermal free surface flows with liquid–solid phase transition. Int J Heat Fluid Flow 32(1):156–163CrossRef Attar E, Körner C (2011) Lattice Boltzmann model for thermal free surface flows with liquid–solid phase transition. Int J Heat Fluid Flow 32(1):156–163CrossRef
16.
Zurück zum Zitat Körner C, Attar E, Heinl P (2011) Mesoscopic simulation of selective beam melting processes. J Mater Process Technol 211(6):978–987CrossRef Körner C, Attar E, Heinl P (2011) Mesoscopic simulation of selective beam melting processes. J Mater Process Technol 211(6):978–987CrossRef
17.
Zurück zum Zitat Körner C, Bauereiß A, Attar E (2013) Fundamental consolidation mechanisms during selective beam melting of powders. Model Simul Mater Sci Eng 21(8):085011CrossRef Körner C, Bauereiß A, Attar E (2013) Fundamental consolidation mechanisms during selective beam melting of powders. Model Simul Mater Sci Eng 21(8):085011CrossRef
18.
Zurück zum Zitat Zohdi TI (2014) Additive particle deposition and selective laser processing-a computational manufacturing framework. Comput Mech 54(1):171–191CrossRef Zohdi TI (2014) Additive particle deposition and selective laser processing-a computational manufacturing framework. Comput Mech 54(1):171–191CrossRef
19.
Zurück zum Zitat Zohdi T (2014) A direct particle-based computational framework for electrically enhanced thermo-mechanical sintering of powdered materials. Math Mech Solids 19(1):93–113MATHCrossRef Zohdi T (2014) A direct particle-based computational framework for electrically enhanced thermo-mechanical sintering of powdered materials. Math Mech Solids 19(1):93–113MATHCrossRef
20.
Zurück zum Zitat Ganeriwala R, Zohdi TI (2014) Multiphysics modeling and simulation of selective laser sintering manufacturing processes. Procedia Cirp 14:299–304CrossRef Ganeriwala R, Zohdi TI (2014) Multiphysics modeling and simulation of selective laser sintering manufacturing processes. Procedia Cirp 14:299–304CrossRef
21.
Zurück zum Zitat Yan W, Ge W, Qian Y, Lin S, Zhou B, Liu WK, Lin F, Wagner GJ (2017) Multi-physics modeling of single/multiple-track defect mechanisms in electron beam selective melting. Acta Mater 134:324–333CrossRef Yan W, Ge W, Qian Y, Lin S, Zhou B, Liu WK, Lin F, Wagner GJ (2017) Multi-physics modeling of single/multiple-track defect mechanisms in electron beam selective melting. Acta Mater 134:324–333CrossRef
22.
Zurück zum Zitat Yan W, Qian Y, Ge W, Lin S, Liu WK, Lin F, Wagner GJ (2018) Meso-scale modeling of multiple-layer fabrication process in selective electron beam melting: inter-layer/track voids formation. Mater Des 141:210–219CrossRef Yan W, Qian Y, Ge W, Lin S, Liu WK, Lin F, Wagner GJ (2018) Meso-scale modeling of multiple-layer fabrication process in selective electron beam melting: inter-layer/track voids formation. Mater Des 141:210–219CrossRef
23.
Zurück zum Zitat Yan W, Lin S, Kafka O, Lian Y, Yu C, Liu Z, Yan J, Wolff S, Wu H, Ndip-Agbor E, Mozaffar M, Ehmann K, Cao J, Wagner G, Liu W (2018) Data-driven multi-scale multi-physics models to derive process-structure-property relationships for additive manufacturing. Comput Mech 61(5):521–541MATHCrossRef Yan W, Lin S, Kafka O, Lian Y, Yu C, Liu Z, Yan J, Wolff S, Wu H, Ndip-Agbor E, Mozaffar M, Ehmann K, Cao J, Wagner G, Liu W (2018) Data-driven multi-scale multi-physics models to derive process-structure-property relationships for additive manufacturing. Comput Mech 61(5):521–541MATHCrossRef
24.
Zurück zum Zitat Yan W, Ge W, Smith J, Lin S, Kafka O, Lin F, Liu W (2016) Multi-scale modeling of electron beam melting of functionally graded materials. Acta Mater 115:403–412CrossRef Yan W, Ge W, Smith J, Lin S, Kafka O, Lin F, Liu W (2016) Multi-scale modeling of electron beam melting of functionally graded materials. Acta Mater 115:403–412CrossRef
25.
Zurück zum Zitat Chen H, Yan W (2020) Spattering and denudation in laser powder bed fusion process: multiphase flow modelling. Acta Mater 196:154–167CrossRef Chen H, Yan W (2020) Spattering and denudation in laser powder bed fusion process: multiphase flow modelling. Acta Mater 196:154–167CrossRef
26.
Zurück zum Zitat Panwisawas C, Qiu C, Anderson MJ, Sovani Y, Turner RP, Attallah MM, Brooks JW, Basoalto HC (2017) Mesoscale modelling of selective laser melting: thermal fluid dynamics and microstructural evolution. Comput Mater Sci 126:479–490CrossRef Panwisawas C, Qiu C, Anderson MJ, Sovani Y, Turner RP, Attallah MM, Brooks JW, Basoalto HC (2017) Mesoscale modelling of selective laser melting: thermal fluid dynamics and microstructural evolution. Comput Mater Sci 126:479–490CrossRef
27.
Zurück zum Zitat Li X, Zhao C, Sun T, Tan W (2020) Revealing transient powder-gas interaction in laser powder bed fusion process through multi-physics modeling and high-speed synchrotron x-ray imaging. Addit Manuf 35:101362 Li X, Zhao C, Sun T, Tan W (2020) Revealing transient powder-gas interaction in laser powder bed fusion process through multi-physics modeling and high-speed synchrotron x-ray imaging. Addit Manuf 35:101362
28.
Zurück zum Zitat Megahed M, Mindt H-W, Shula B, Peralta A, Neumann J (2016) Powder bed models-numerical assessment of as-built quality. In: 57th AIAA/ASCE/AHS/ASC structures, structural dynamics, and materials conference, p 1657 Megahed M, Mindt H-W, Shula B, Peralta A, Neumann J (2016) Powder bed models-numerical assessment of as-built quality. In: 57th AIAA/ASCE/AHS/ASC structures, structural dynamics, and materials conference, p 1657
29.
Zurück zum Zitat Mindt H-W, Desmaison O, Megahed M, Peralta A, Neumann J (2018) Modeling of powder bed manufacturing defects. J Mater Eng Perform 27(1):32–43CrossRef Mindt H-W, Desmaison O, Megahed M, Peralta A, Neumann J (2018) Modeling of powder bed manufacturing defects. J Mater Eng Perform 27(1):32–43CrossRef
30.
Zurück zum Zitat Yan J, Yan W, Lin S, Wagner G (2018) A fully coupled finite element formulation for liquid–solid–gas thermo-fluid flow with melting and solidification. Comput Methods Appl Mech Eng 336:444–470MathSciNetMATHCrossRef Yan J, Yan W, Lin S, Wagner G (2018) A fully coupled finite element formulation for liquid–solid–gas thermo-fluid flow with melting and solidification. Comput Methods Appl Mech Eng 336:444–470MathSciNetMATHCrossRef
31.
Zurück zum Zitat Fan Z, Li B (2019) Meshfree simulations for additive manufacturing process of metals. Integrat Mater Manuf Innov 8(2):144–153CrossRef Fan Z, Li B (2019) Meshfree simulations for additive manufacturing process of metals. Integrat Mater Manuf Innov 8(2):144–153CrossRef
32.
Zurück zum Zitat Gan Z, Lian Y, Lin SE, Jones KK, Liu WK, Wagner GJ (2019) Benchmark study of thermal behavior, surface topography, and dendritic microstructure in selective laser melting of inconel 625. Integrat Mater Manuf Innov 8(2):178–193CrossRef Gan Z, Lian Y, Lin SE, Jones KK, Liu WK, Wagner GJ (2019) Benchmark study of thermal behavior, surface topography, and dendritic microstructure in selective laser melting of inconel 625. Integrat Mater Manuf Innov 8(2):178–193CrossRef
33.
Zurück zum Zitat Liu Z, Wu C, Koishi M (2019) Transfer learning of deep material network for seamless structure-property predictions. Comput Mech 64(2):451–465MathSciNetMATHCrossRef Liu Z, Wu C, Koishi M (2019) Transfer learning of deep material network for seamless structure-property predictions. Comput Mech 64(2):451–465MathSciNetMATHCrossRef
34.
Zurück zum Zitat Liu Z, Wu C, Koishi M (2019) A deep material network for multiscale topology learning and accelerated nonlinear modeling of heterogeneous materials. Comput Methods Appl Mech Eng 345:1138–1168MathSciNetMATHCrossRef Liu Z, Wu C, Koishi M (2019) A deep material network for multiscale topology learning and accelerated nonlinear modeling of heterogeneous materials. Comput Methods Appl Mech Eng 345:1138–1168MathSciNetMATHCrossRef
35.
Zurück zum Zitat Liu Z, Wu C (2019) Exploring the 3d architectures of deep material network in data-driven multiscale mechanics. J Mech Phys Solids 127:20–46MathSciNetCrossRef Liu Z, Wu C (2019) Exploring the 3d architectures of deep material network in data-driven multiscale mechanics. J Mech Phys Solids 127:20–46MathSciNetCrossRef
36.
Zurück zum Zitat Liu Z, Kafka O, Yu C, Liu W (2018) Data-driven self-consistent clustering analysis of heterogeneous materials with crystal plasticity. In: Oñate E, Peric D, de Souza Neto E, Chiumenti M (eds) Advances in computational plasticity. Springer, pp 221–242 Liu Z, Kafka O, Yu C, Liu W (2018) Data-driven self-consistent clustering analysis of heterogeneous materials with crystal plasticity. In: Oñate E, Peric D, de Souza Neto E, Chiumenti M (eds) Advances in computational plasticity. Springer, pp 221–242
37.
Zurück zum Zitat Liu Z, Fleming M, Liu W (2018) Microstructural material database for self-consistent clustering analysis of elastoplastic strain softening materials. Comput Methods Appl Mech Eng 330:547–577MathSciNetMATHCrossRef Liu Z, Fleming M, Liu W (2018) Microstructural material database for self-consistent clustering analysis of elastoplastic strain softening materials. Comput Methods Appl Mech Eng 330:547–577MathSciNetMATHCrossRef
38.
Zurück zum Zitat Liu Z, Bessa M, Liu W (2016) Self-consistent clustering analysis: an efficient multi-scale scheme for inelastic heterogeneous materials. Comput Methods Appl Mech Eng 306:319–341MathSciNetMATHCrossRef Liu Z, Bessa M, Liu W (2016) Self-consistent clustering analysis: an efficient multi-scale scheme for inelastic heterogeneous materials. Comput Methods Appl Mech Eng 306:319–341MathSciNetMATHCrossRef
39.
Zurück zum Zitat Abadi M, Barham P, Chen J., Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M, et al (2016) Tensorflow: a system for large-scale machine learning. In: 12th \(\{\)USENIX\(\}\) symposium on operating systems design and implementation (\(\{\)OSDI\(\}\) 16), pp 265–283 Abadi M, Barham P, Chen J., Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M, et al (2016) Tensorflow: a system for large-scale machine learning. In: 12th \(\{\)USENIX\(\}\) symposium on operating systems design and implementation (\(\{\)OSDI\(\}\) 16), pp 265–283
40.
Zurück zum Zitat Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, et al (2019) Pytorch: an imperative style, high-performance deep learning library. In: Wallach H, Larochelle H, Beygelzimer A, d’Alché-Buc F, Fox E, Garnett R (eds) Advances in neural information processing systems, pp 8024–8035 Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, et al (2019) Pytorch: an imperative style, high-performance deep learning library. In: Wallach H, Larochelle H, Beygelzimer A, d’Alché-Buc F, Fox E, Garnett R (eds) Advances in neural information processing systems, pp 8024–8035
41.
Zurück zum Zitat Bastien F, Lamblin P, Pascanu R, Bergstra J, Goodfellow I, Bergeron A, Bouchard N, Warde-Farley D, Bengio Y Theano: new features and speed improvements. arXiv:1211.5590 Bastien F, Lamblin P, Pascanu R, Bergstra J, Goodfellow I, Bergeron A, Bouchard N, Warde-Farley D, Bengio Y Theano: new features and speed improvements. arXiv:​1211.​5590
42.
Zurück zum Zitat Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama S, Darrell T (2014)Caffe: convolutional architecture for fast feature embedding. In: Proceedings of the 22nd ACM international conference on multimedia, pp 675–678 Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama S, Darrell T (2014)Caffe: convolutional architecture for fast feature embedding. In: Proceedings of the 22nd ACM international conference on multimedia, pp 675–678
43.
Zurück zum Zitat Yang X, Barajas-Solano D, Tartakovsky G, Tartakovsky A (2019) Physics-informed Cokriging: a Gaussian-process-regression-based multifidelity method for data-model convergence. J Comput Phys 395:410–431MathSciNetCrossRef Yang X, Barajas-Solano D, Tartakovsky G, Tartakovsky A (2019) Physics-informed Cokriging: a Gaussian-process-regression-based multifidelity method for data-model convergence. J Comput Phys 395:410–431MathSciNetCrossRef
44.
Zurück zum Zitat Raissi M, Perdikaris P, Karniadakis GE (2017) Machine learning of linear differential equations using Gaussian processes. J Comput Phys 348:683–693MathSciNetMATHCrossRef Raissi M, Perdikaris P, Karniadakis GE (2017) Machine learning of linear differential equations using Gaussian processes. J Comput Phys 348:683–693MathSciNetMATHCrossRef
45.
Zurück zum Zitat Lagaris I, Likas A, Fotiadis D (1998) Artificial neural networks for solving ordinary and partial differential equations. IEEE Trans Neural Netw 9(5):987–1000CrossRef Lagaris I, Likas A, Fotiadis D (1998) Artificial neural networks for solving ordinary and partial differential equations. IEEE Trans Neural Netw 9(5):987–1000CrossRef
46.
Zurück zum Zitat Raissi M, Yazdani A, Karniadakis G (2020) Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations. Science 367(6481):1026–1030CrossRef Raissi M, Yazdani A, Karniadakis G (2020) Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations. Science 367(6481):1026–1030CrossRef
47.
Zurück zum Zitat Sun L, Gao H, Pan S, Wang J-X (2020) Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data. Comput Methods Appl Mech Eng 361:112732MathSciNetMATHCrossRef Sun L, Gao H, Pan S, Wang J-X (2020) Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data. Comput Methods Appl Mech Eng 361:112732MathSciNetMATHCrossRef
48.
Zurück zum Zitat Zissis D, Xidias EK, Lekkas D (2015) A cloud based architecture capable of perceiving and predicting multiple vessel behaviour. Appl Soft Comput 35:652–661CrossRef Zissis D, Xidias EK, Lekkas D (2015) A cloud based architecture capable of perceiving and predicting multiple vessel behaviour. Appl Soft Comput 35:652–661CrossRef
49.
Zurück zum Zitat Raissi M, Perdikaris P, Karniadakis GE Physics informed deep learning (part i): data-driven solutions of nonlinear partial differential equations. arXiv:1711.10561 Raissi M, Perdikaris P, Karniadakis GE Physics informed deep learning (part i): data-driven solutions of nonlinear partial differential equations. arXiv:​1711.​10561
50.
Zurück zum Zitat He Q, Tartakovsky G, Barajas-Solano D, Tartakovsky A (2019) Physics-informed deep neural networks for multiphysics data assimilation in subsurface transport problems. AGUFM 2019:H34B–02 He Q, Tartakovsky G, Barajas-Solano D, Tartakovsky A (2019) Physics-informed deep neural networks for multiphysics data assimilation in subsurface transport problems. AGUFM 2019:H34B–02
51.
Zurück zum Zitat Tartakovsky A, Marrero C, Perdikaris P, Tartakovsky G, Barajas-Solano D (2020) Physics-informed deep neural networks for learning parameters and constitutive relationships in subsurface flow problems. Water Resour Res 56(5):e2019WR026731CrossRef Tartakovsky A, Marrero C, Perdikaris P, Tartakovsky G, Barajas-Solano D (2020) Physics-informed deep neural networks for learning parameters and constitutive relationships in subsurface flow problems. Water Resour Res 56(5):e2019WR026731CrossRef
52.
Zurück zum Zitat Lu L, Dao M, Kumar P, Ramamurty U, Karniadakis GE, Suresh S (2020) Extraction of mechanical properties of materials through deep learning from instrumented indentation. Proc Nat Acad Sci 117(13):7052–7062CrossRef Lu L, Dao M, Kumar P, Ramamurty U, Karniadakis GE, Suresh S (2020) Extraction of mechanical properties of materials through deep learning from instrumented indentation. Proc Nat Acad Sci 117(13):7052–7062CrossRef
53.
Zurück zum Zitat He Q, Chen J (2020) A physics-constrained data-driven approach based on locally convex reconstruction for noisy database. Comput Methods Appl Mech Eng 363:112791MathSciNetMATHCrossRef He Q, Chen J (2020) A physics-constrained data-driven approach based on locally convex reconstruction for noisy database. Comput Methods Appl Mech Eng 363:112791MathSciNetMATHCrossRef
54.
Zurück zum Zitat Raissi M, Perdikaris P, Karniadakis G (2019) Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J Comput Phys 378:686–707MathSciNetMATHCrossRef Raissi M, Perdikaris P, Karniadakis G (2019) Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J Comput Phys 378:686–707MathSciNetMATHCrossRef
55.
Zurück zum Zitat Kissas G, Yang Y, Hwuang E, Witschey W, Detre J, Perdikaris P (2020) Machine learning in cardiovascular flows modeling: predicting arterial blood pressure from non-invasive 4d flow mri data using physics-informed neural networks. Comput Methods Appl Mech Eng 358:112623MathSciNetMATHCrossRef Kissas G, Yang Y, Hwuang E, Witschey W, Detre J, Perdikaris P (2020) Machine learning in cardiovascular flows modeling: predicting arterial blood pressure from non-invasive 4d flow mri data using physics-informed neural networks. Comput Methods Appl Mech Eng 358:112623MathSciNetMATHCrossRef
56.
Zurück zum Zitat Dantzig JA, Rappaz M (2016) Solidification: revised & expanded. EPFL Press, Lausanne Dantzig JA, Rappaz M (2016) Solidification: revised & expanded. EPFL Press, Lausanne
57.
Zurück zum Zitat Khan P, Debroy T (1984) Alloying element vaporization and weld pool temperature during laser welding of alsl 202 stainless steel. Metall Trans B 15(4):641–644CrossRef Khan P, Debroy T (1984) Alloying element vaporization and weld pool temperature during laser welding of alsl 202 stainless steel. Metall Trans B 15(4):641–644CrossRef
58.
Zurück zum Zitat Collur M, Paul A, Debroy T (1987) Mechanism of alloying element vaporization during laser welding. Metall Trans B 18(4):733–740CrossRef Collur M, Paul A, Debroy T (1987) Mechanism of alloying element vaporization during laser welding. Metall Trans B 18(4):733–740CrossRef
59.
Zurück zum Zitat Voller V, Swaminathan C (1991) Eral source-based method for solidification phase change. Numer Heat Transf Part B Fundam 19(2):175–189CrossRef Voller V, Swaminathan C (1991) Eral source-based method for solidification phase change. Numer Heat Transf Part B Fundam 19(2):175–189CrossRef
60.
Zurück zum Zitat Liu W, Wang Z, Liu X, Zeng N, Liu Y, Alsaadi F (2017) A survey of deep neural network architectures and their applications. Neurocomputing 234:11–26CrossRef Liu W, Wang Z, Liu X, Zeng N, Liu Y, Alsaadi F (2017) A survey of deep neural network architectures and their applications. Neurocomputing 234:11–26CrossRef
62.
Zurück zum Zitat Lawrence S, Giles CL, Tsoi AC, Back AD (1997) Face recognition: a convolutional neural-network approach. IEEE Trans Neural Netw 8(1):98–113CrossRef Lawrence S, Giles CL, Tsoi AC, Back AD (1997) Face recognition: a convolutional neural-network approach. IEEE Trans Neural Netw 8(1):98–113CrossRef
63.
Zurück zum Zitat Mikolov T, Karafiát M, Burget L, Černockỳ J, Khudanpur S (2010)Recurrent neural network based language model. In: Eleventh annual conference of the international speech communication association Mikolov T, Karafiát M, Burget L, Černockỳ J, Khudanpur S (2010)Recurrent neural network based language model. In: Eleventh annual conference of the international speech communication association
64.
Zurück zum Zitat Sengupta N, Sahidullah M, Saha G (2016) Lung sound classification using cepstral-based statistical features. Comput Biol Med 75:118–129CrossRef Sengupta N, Sahidullah M, Saha G (2016) Lung sound classification using cepstral-based statistical features. Comput Biol Med 75:118–129CrossRef
65.
Zurück zum Zitat Bishop CM (2006) Pattern recognition and machine learning. Springer, BerlinMATH Bishop CM (2006) Pattern recognition and machine learning. Springer, BerlinMATH
66.
Zurück zum Zitat Choy CB, Xu D, Gwak J, Chen K, Savarese S (2016) 3d-r2n2: a unified approach for single and multi-view 3d object reconstruction. In: European conference on computer vision. Springer, pp 628–644 Choy CB, Xu D, Gwak J, Chen K, Savarese S (2016) 3d-r2n2: a unified approach for single and multi-view 3d object reconstruction. In: European conference on computer vision. Springer, pp 628–644
67.
Zurück zum Zitat Han J, Pei J, Kamber M (2011) Data mining: concepts and techniques. Elsevier, AmsterdamMATH Han J, Pei J, Kamber M (2011) Data mining: concepts and techniques. Elsevier, AmsterdamMATH
69.
Zurück zum Zitat Sibi P, Jones SA, Siddarth P (2013) Analysis of different activation functions using back propagation neural networks. J Theor Appl Inf Technol 47(3):1264–1268 Sibi P, Jones SA, Siddarth P (2013) Analysis of different activation functions using back propagation neural networks. J Theor Appl Inf Technol 47(3):1264–1268
70.
Zurück zum Zitat Maas A, Hannun A, Ng A (2013) Rectifier nonlinearities improve neural network acoustic models. In: Proceedings ICML, vol 30, p 3 Maas A, Hannun A, Ng A (2013) Rectifier nonlinearities improve neural network acoustic models. In: Proceedings ICML, vol 30, p 3
71.
Zurück zum Zitat Eger S, Youssef P, Gurevych I Is it time to swish? comparing deep learning activation functions across nlp tasks. arXiv:1901.02671 Eger S, Youssef P, Gurevych I Is it time to swish? comparing deep learning activation functions across nlp tasks. arXiv:​1901.​02671
74.
Zurück zum Zitat Baydin A, Pearlmutter B, Radul A, Siskind J (2017) Automatic differentiation in machine learning: a survey. J Mach Learn Res 18(1):5595–5637MathSciNetMATH Baydin A, Pearlmutter B, Radul A, Siskind J (2017) Automatic differentiation in machine learning: a survey. J Mach Learn Res 18(1):5595–5637MathSciNetMATH
79.
Zurück zum Zitat Saad Y, Schultz MH (1986) Gmres: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci Stat Comput 7(3):856–869MathSciNetMATHCrossRef Saad Y, Schultz MH (1986) Gmres: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci Stat Comput 7(3):856–869MathSciNetMATHCrossRef
80.
Zurück zum Zitat Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid-structure interaction: theory, algorithms, and computations. Comput Mech 43:3–37MathSciNetMATHCrossRef Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid-structure interaction: theory, algorithms, and computations. Comput Mech 43:3–37MathSciNetMATHCrossRef
82.
Zurück zum Zitat Masud A, Calderer R (2009) A variational multiscale stabilized formulation for the incompressible Navier–Stokes equations. Comput Mech 44(2):145–160MathSciNetMATHCrossRef Masud A, Calderer R (2009) A variational multiscale stabilized formulation for the incompressible Navier–Stokes equations. Comput Mech 44(2):145–160MathSciNetMATHCrossRef
83.
Zurück zum Zitat Zhu L, Goraya S, Masud A (2019) Interface-capturing method for free-surface plunging and breaking waves. J Eng Mech 145(11):04019088 Zhu L, Goraya S, Masud A (2019) Interface-capturing method for free-surface plunging and breaking waves. J Eng Mech 145(11):04019088
84.
Zurück zum Zitat Calderer R, Zhu L, Gibson R, Masud A (2015) Residual-based turbulence models and arbitrary Lagrangian–Eulerian framework for free surface flows. Math Models Methods Appl Sci 25(12):2287–2317MathSciNetMATHCrossRef Calderer R, Zhu L, Gibson R, Masud A (2015) Residual-based turbulence models and arbitrary Lagrangian–Eulerian framework for free surface flows. Math Models Methods Appl Sci 25(12):2287–2317MathSciNetMATHCrossRef
85.
Zurück zum Zitat Masud A, Calderer R (2013) Residual-based turbulence models for moving boundary flows: hierarchical application of variational multiscale method and three-level scale separation. Int J Numer Meth Fluids 73(3):284–305MathSciNetCrossRef Masud A, Calderer R (2013) Residual-based turbulence models for moving boundary flows: hierarchical application of variational multiscale method and three-level scale separation. Int J Numer Meth Fluids 73(3):284–305MathSciNetCrossRef
91.
Zurück zum Zitat Takizawa K, Bazilevs Y, Tezduyar TE, Korobenko A (2020) Computational flow analysis in aerospace, energy and transportation technologies with the variational multiscale methods. J Adv Eng Comput 4(2):83–117MATHCrossRef Takizawa K, Bazilevs Y, Tezduyar TE, Korobenko A (2020) Computational flow analysis in aerospace, energy and transportation technologies with the variational multiscale methods. J Adv Eng Comput 4(2):83–117MATHCrossRef
92.
Zurück zum Zitat Ravensbergen M, Helgedagsrud T, Bazilevs YY, Korobenko A (2020) A variational multiscale framework for atmospheric turbulent flows over complex environmental terrains. Comput Methods Appl Mech Eng 368:113182MathSciNetCrossRef Ravensbergen M, Helgedagsrud T, Bazilevs YY, Korobenko A (2020) A variational multiscale framework for atmospheric turbulent flows over complex environmental terrains. Comput Methods Appl Mech Eng 368:113182MathSciNetCrossRef
101.
Zurück zum Zitat Korobenko A, Bazilevs Y, Takizawa K, Tezduyar TE (2018) Recent advances in ALE-VMS and ST-VMS computational aerodynamic and FSI analysis of wind turbines. In: Tezduyar TE (ed) Frontiers in computational fluid-structure interaction and flow simulation: research from lead investigators under forty–2018, modeling and simulation in science, engineering and technology. Springer, Berlin, pp 253–336. https://doi.org/10.1007/978-3-319-96469-0_7CrossRef Korobenko A, Bazilevs Y, Takizawa K, Tezduyar TE (2018) Recent advances in ALE-VMS and ST-VMS computational aerodynamic and FSI analysis of wind turbines. In: Tezduyar TE (ed) Frontiers in computational fluid-structure interaction and flow simulation: research from lead investigators under forty–2018, modeling and simulation in science, engineering and technology. Springer, Berlin, pp 253–336. https://​doi.​org/​10.​1007/​978-3-319-96469-0_​7CrossRef
102.
Zurück zum Zitat Otoguro Y, Mochizuki H, Takizawa K, Tezduyar T (2020) Space-time variational multiscale isogeometric analysis of a tsunami-shelter vertical-axis wind turbine. Comput Mech 66(6):1443–1460MathSciNetCrossRef Otoguro Y, Mochizuki H, Takizawa K, Tezduyar T (2020) Space-time variational multiscale isogeometric analysis of a tsunami-shelter vertical-axis wind turbine. Comput Mech 66(6):1443–1460MathSciNetCrossRef
103.
Zurück zum Zitat Ravensbergen M, Mohamed A, Korobenko A (2020) The actuator line method for wind turbine modelling applied in a variational multiscale framework. Comput Fluids 201:104465MathSciNetMATHCrossRef Ravensbergen M, Mohamed A, Korobenko A (2020) The actuator line method for wind turbine modelling applied in a variational multiscale framework. Comput Fluids 201:104465MathSciNetMATHCrossRef
104.
Zurück zum Zitat Mohamed A, Bear C, Bear M, Korobenko A (2020) Performance analysis of two vertical-axis hydrokinetic turbines using variational multiscale method. Comput Fluids 200:104432MathSciNetMATHCrossRef Mohamed A, Bear C, Bear M, Korobenko A (2020) Performance analysis of two vertical-axis hydrokinetic turbines using variational multiscale method. Comput Fluids 200:104432MathSciNetMATHCrossRef
106.
Zurück zum Zitat Takizawa K, Tezduyar TE, Buscher A, Asada S (2014) Space-time fluid mechanics computation of heart valve models. Comput Mech 54(4):973–986MATHCrossRef Takizawa K, Tezduyar TE, Buscher A, Asada S (2014) Space-time fluid mechanics computation of heart valve models. Comput Mech 54(4):973–986MATHCrossRef
107.
Zurück zum Zitat Terahara T, Takizawa K, Tezduyar T, Bazilevs Y, Hsu M (2020) Heart valve isogeometric sequentially-coupled fsi analysis with the space-time topology change method. Comput Mech 65:1167–1187MathSciNetMATHCrossRef Terahara T, Takizawa K, Tezduyar T, Bazilevs Y, Hsu M (2020) Heart valve isogeometric sequentially-coupled fsi analysis with the space-time topology change method. Comput Mech 65:1167–1187MathSciNetMATHCrossRef
108.
Zurück zum Zitat Terahara T, Takizawa K, Tezduyar T, Tsushima A, Shiozaki K (2020) Ventricle-valve-aorta flow analysis with the space-time isogeometric discretization and topology change. Comput Mech 65:1343–1363MathSciNetMATHCrossRef Terahara T, Takizawa K, Tezduyar T, Tsushima A, Shiozaki K (2020) Ventricle-valve-aorta flow analysis with the space-time isogeometric discretization and topology change. Comput Mech 65:1343–1363MathSciNetMATHCrossRef
110.
Zurück zum Zitat Bazilevs Y, Takizawa K, Tezduyar T, Hsu M, Otoguro Y, Mochizuki H, Wu M (2020) Wind turbine and turbomachinery computational analysis with the ale and space-time variational multiscale methods and isogeometric discretization. J Adv Eng Comput 4(1):1–32MATHCrossRef Bazilevs Y, Takizawa K, Tezduyar T, Hsu M, Otoguro Y, Mochizuki H, Wu M (2020) Wind turbine and turbomachinery computational analysis with the ale and space-time variational multiscale methods and isogeometric discretization. J Adv Eng Comput 4(1):1–32MATHCrossRef
111.
Zurück zum Zitat Kozak N, Rajanna M, Wu M, Murugan M, Bravo L, Ghoshal A, Hsu M, Bazilevs Y (2020) Optimizing gas turbine performance using the surrogate management framework and high-fidelity flow modeling. Energies 13(17):4283CrossRef Kozak N, Rajanna M, Wu M, Murugan M, Bravo L, Ghoshal A, Hsu M, Bazilevs Y (2020) Optimizing gas turbine performance using the surrogate management framework and high-fidelity flow modeling. Energies 13(17):4283CrossRef
112.
Zurück zum Zitat Otoguro Y, Takizawa K, Tezduyar TE, Nagaoka K, Avsar R, Zhang Y (2019) Space-time vms flow analysis of a turbocharger turbine with isogeometric discretization: computations with time-dependent and steady-inflow representations of the intake/exhaust cycle. Comput Mech 64(5):1403–1419MathSciNetMATHCrossRef Otoguro Y, Takizawa K, Tezduyar TE, Nagaoka K, Avsar R, Zhang Y (2019) Space-time vms flow analysis of a turbocharger turbine with isogeometric discretization: computations with time-dependent and steady-inflow representations of the intake/exhaust cycle. Comput Mech 64(5):1403–1419MathSciNetMATHCrossRef
114.
Zurück zum Zitat Kuraishi T, Takizawa K, Tezduyar T (2019) Space-time computational analysis of tire aerodynamics with actual geometry, road contact, tire deformation, road roughness and fluid film. Comput Mech 64(6):1699–1718MATHCrossRef Kuraishi T, Takizawa K, Tezduyar T (2019) Space-time computational analysis of tire aerodynamics with actual geometry, road contact, tire deformation, road roughness and fluid film. Comput Mech 64(6):1699–1718MATHCrossRef
116.
Zurück zum Zitat Levine L, Lane B, Heigel J, Migler K, Stoudt M, Phan T, Ricker R, Strantza M, Hill M, Zhang F, Seppala J, Garboczi E, Bain E, Cole D, Allen A, Fox J, Campbell C (2020) Outcomes and conclusions from the 2018 am-bench measurements, challenge problems, modeling submissions, and conference. Integr Mater Manuf Innov 9(1):1–15CrossRef Levine L, Lane B, Heigel J, Migler K, Stoudt M, Phan T, Ricker R, Strantza M, Hill M, Zhang F, Seppala J, Garboczi E, Bain E, Cole D, Allen A, Fox J, Campbell C (2020) Outcomes and conclusions from the 2018 am-bench measurements, challenge problems, modeling submissions, and conference. Integr Mater Manuf Innov 9(1):1–15CrossRef
117.
Zurück zum Zitat Heigel J, Lane B, Levine L (2020) In situ measurements of melt-pool length and cooling rate during 3d builds of the metal am-bench artifacts. Integr Mater Manuf Innov 9(1):31–53CrossRef Heigel J, Lane B, Levine L (2020) In situ measurements of melt-pool length and cooling rate during 3d builds of the metal am-bench artifacts. Integr Mater Manuf Innov 9(1):31–53CrossRef
118.
Zurück zum Zitat Brandon L, Jarred H, Richard R, Ivan Z, Vladimir K, Jordan W, Thien P, Mark S, Sergey M, Lyle L (2020) Measurements of melt pool geometry and cooling rates of individual laser traces on in625 bare plates. Integr Mater Manuf Innov 9:16–30CrossRef Brandon L, Jarred H, Richard R, Ivan Z, Vladimir K, Jordan W, Thien P, Mark S, Sergey M, Lyle L (2020) Measurements of melt pool geometry and cooling rates of individual laser traces on in625 bare plates. Integr Mater Manuf Innov 9:16–30CrossRef
119.
Zurück zum Zitat Heigel J, Lane B (2018) Measurement of the melt pool length during single scan tracks in a commercial laser powder bed fusion process. J Manuf Sci Eng 140(5):5–12CrossRef Heigel J, Lane B (2018) Measurement of the melt pool length during single scan tracks in a commercial laser powder bed fusion process. J Manuf Sci Eng 140(5):5–12CrossRef
Metadaten
Titel
Machine learning for metal additive manufacturing: predicting temperature and melt pool fluid dynamics using physics-informed neural networks
verfasst von
Qiming Zhu
Zeliang Liu
Jinhui Yan
Publikationsdatum
06.01.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 2/2021
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-020-01952-9

Weitere Artikel der Ausgabe 2/2021

Computational Mechanics 2/2021 Zur Ausgabe

Neuer Inhalt