Skip to main content
Erschienen in: Microsystem Technologies 8/2015

01.08.2015 | Technical Paper

Piezoelectric energy harvester using mechanical frequency up conversion for operation at low-level accelerations and low-frequency vibration

verfasst von: Dongjae Han, Kwang-Seok Yun

Erschienen in: Microsystem Technologies | Ausgabe 8/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we propose a modified frequency up-conversion mechanism to lower the operational acceleration level for energy harvesting devices using a snap-through buckling phenomenon. The proposed device consists of a buckled bridge beam clamped on flexible sidewalls with a proof mass and cantilever beams attached to the bridge. When subject to a vibration, the buckled bridge beam snaps through between two stable states, inducing impulsive acceleration on the attached piezoelectric cantilevers. During the snap-through transition, the flexible sidewalls deflect outward, thus lowering the threshold acceleration value for the state transition. Various sidewall materials with different flexibilities were tested to determine the maximum output power, bandwidth, and output characteristics for various input acceleration values. The minimum acceleration value for snap-through transition was 0.5g (g = 9.8 m/s2) when using latex sidewalls. A maximum output power of 0.4 mW Hz/cm2—that is 10 μW for test sample at an excitation frequency of 15 Hz—was generated by using the proposed device with latex sidewalls.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Ashraf K, Md Khir MH, Dennis JO, Baharudin Z (2013) A wideband, frequency up-converting bounded vibration energyvharvester for a low frequencyvenvironment. Smart Mater Struct 22:025018CrossRef Ashraf K, Md Khir MH, Dennis JO, Baharudin Z (2013) A wideband, frequency up-converting bounded vibration energyvharvester for a low frequencyvenvironment. Smart Mater Struct 22:025018CrossRef
Zurück zum Zitat Basset P, Galayko D, Paracha AM, Marty F, Dudka A, Bourouina T (2009) A batch-fabricated and electret-free silicon electrostatic vibration energy harvester. J Micromech Microeng 19:115025CrossRef Basset P, Galayko D, Paracha AM, Marty F, Dudka A, Bourouina T (2009) A batch-fabricated and electret-free silicon electrostatic vibration energy harvester. J Micromech Microeng 19:115025CrossRef
Zurück zum Zitat Beeby SP, O’Donnell T (2009) Electromagnetic energy harvesting. Springer, USACrossRef Beeby SP, O’Donnell T (2009) Electromagnetic energy harvesting. Springer, USACrossRef
Zurück zum Zitat Betts DN, Kim HA, Bowen CR, Inman DJ (2012) Optimal configurations of bistable piezo-composites for energy harvesting. Appl Phys Lett 100:114104CrossRef Betts DN, Kim HA, Bowen CR, Inman DJ (2012) Optimal configurations of bistable piezo-composites for energy harvesting. Appl Phys Lett 100:114104CrossRef
Zurück zum Zitat Blarigan LV, Danzl P, Moehlisa J (2012) A broadband vibrational energy harvester. Appl Phys Lett 100:253904CrossRef Blarigan LV, Danzl P, Moehlisa J (2012) A broadband vibrational energy harvester. Appl Phys Lett 100:253904CrossRef
Zurück zum Zitat Bokaian A (1998) Natural frequencies of beams under compressive axial loads. J Sound Vib 126:49–65CrossRef Bokaian A (1998) Natural frequencies of beams under compressive axial loads. J Sound Vib 126:49–65CrossRef
Zurück zum Zitat Cottone F, Gammaitoni L, Vocca H, Ferrari M, Ferrari V (2012) Piezoelectric buckled beams for random vibration energy harvesting. Smart Mater Struct 21:035021CrossRef Cottone F, Gammaitoni L, Vocca H, Ferrari M, Ferrari V (2012) Piezoelectric buckled beams for random vibration energy harvesting. Smart Mater Struct 21:035021CrossRef
Zurück zum Zitat Elfrink R, Kamel T, Goedbloed M, Matova S, Hohlfeld D, Van Andel Y, Van Schaijk R (2009) Vibration energy harvesting with aluminum nitride-based piezoelectric devices. J Micromech Microeng 19:094005CrossRef Elfrink R, Kamel T, Goedbloed M, Matova S, Hohlfeld D, Van Andel Y, Van Schaijk R (2009) Vibration energy harvesting with aluminum nitride-based piezoelectric devices. J Micromech Microeng 19:094005CrossRef
Zurück zum Zitat Erturk A, Inman DJ (2009) An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations. Smart Mater Struct 18:025009CrossRef Erturk A, Inman DJ (2009) An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations. Smart Mater Struct 18:025009CrossRef
Zurück zum Zitat Galchev T, Kim H, Najafi K (2011) Micro power generator for harvesting low-frequency and nonperiodic vibrations. J Microelectromech Syst 20:852–866 Galchev T, Kim H, Najafi K (2011) Micro power generator for harvesting low-frequency and nonperiodic vibrations. J Microelectromech Syst 20:852–866
Zurück zum Zitat Gu L, Livermore C (2011) Impact-driven, frequency up-converting coupled vibration energy harvesting device for low-frequency operation. Smart Mater Struct 20:045004CrossRef Gu L, Livermore C (2011) Impact-driven, frequency up-converting coupled vibration energy harvesting device for low-frequency operation. Smart Mater Struct 20:045004CrossRef
Zurück zum Zitat Jung SM, Yun KS (2010) Energy-harvesting device with mechanical frequency up-conversion mechanism for increased power efficiency and wideband operation. Appl Phys Lett 96:111906CrossRef Jung SM, Yun KS (2010) Energy-harvesting device with mechanical frequency up-conversion mechanism for increased power efficiency and wideband operation. Appl Phys Lett 96:111906CrossRef
Zurück zum Zitat Krupenkin T, Taylor JA (2011) Reverse electrowetting as a new approach to high-power energy harvesting. Nat Commun 2:448CrossRef Krupenkin T, Taylor JA (2011) Reverse electrowetting as a new approach to high-power energy harvesting. Nat Commun 2:448CrossRef
Zurück zum Zitat Kulkarni S, Koukharenko E, Torah R, Tudor J, Beeby S, O’Donnell T, Roy S (2008) Design, fabrication and test of integrated micro-scale vibration-based electromagnetic generator. Sens Actuators A Phys 145:336–342CrossRef Kulkarni S, Koukharenko E, Torah R, Tudor J, Beeby S, O’Donnell T, Roy S (2008) Design, fabrication and test of integrated micro-scale vibration-based electromagnetic generator. Sens Actuators A Phys 145:336–342CrossRef
Zurück zum Zitat Liu JQ, Fang HB, Xu ZY, Mao XH, Shen XC, Chen D, Liao H, Cai BC (2008) A MEMS-based piezoelectric power generator array for vibration energy harvesting. Microelectron J 39:802–806CrossRef Liu JQ, Fang HB, Xu ZY, Mao XH, Shen XC, Chen D, Liao H, Cai BC (2008) A MEMS-based piezoelectric power generator array for vibration energy harvesting. Microelectron J 39:802–806CrossRef
Zurück zum Zitat Liu H, Lee C, Kobayashi T, Tay CJ, Quan C (2012) Piezoelectric MEMS-based wideband energy harvesting systems using a frequency-up-conversion cantilever stopper. Sens Actuators A Phys 186:242–248CrossRef Liu H, Lee C, Kobayashi T, Tay CJ, Quan C (2012) Piezoelectric MEMS-based wideband energy harvesting systems using a frequency-up-conversion cantilever stopper. Sens Actuators A Phys 186:242–248CrossRef
Zurück zum Zitat Priya S, Inman DJ (2009) Energy harvesting technologies. Springer, New YorkCrossRef Priya S, Inman DJ (2009) Energy harvesting technologies. Springer, New YorkCrossRef
Zurück zum Zitat Qiu J, Lang JH, Slocum AH (2004) A curved-beam bistable mechanism. J Microelectromech Syst 13:137–146CrossRef Qiu J, Lang JH, Slocum AH (2004) A curved-beam bistable mechanism. J Microelectromech Syst 13:137–146CrossRef
Zurück zum Zitat Renaud M, Karakaya K, Sterken T, Fiorini P, Van Hoof C, Puers R (2008) Fabrication, modelling and characterization of MEMS piezoelectric vibration harvesters. Sens Actuators A Phys 145:380–386CrossRef Renaud M, Karakaya K, Sterken T, Fiorini P, Van Hoof C, Puers R (2008) Fabrication, modelling and characterization of MEMS piezoelectric vibration harvesters. Sens Actuators A Phys 145:380–386CrossRef
Zurück zum Zitat Roundy S, Leland ES, Baker J, Carleton E, Reilly E, Lai E, Otis B, Rabaey JM, Wright PK, Sundararajan V (2005) Improving power output for vibration-based energy scavengers. Pervasive Comput IEEE 4:28–36CrossRef Roundy S, Leland ES, Baker J, Carleton E, Reilly E, Lai E, Otis B, Rabaey JM, Wright PK, Sundararajan V (2005) Improving power output for vibration-based energy scavengers. Pervasive Comput IEEE 4:28–36CrossRef
Zurück zum Zitat Saif MTA (2000) On a tunable bistable MEMS-theory and experiment. J Microelectromech Syst 9:157–170CrossRef Saif MTA (2000) On a tunable bistable MEMS-theory and experiment. J Microelectromech Syst 9:157–170CrossRef
Zurück zum Zitat Sari I, Balkan T, Kulah H (2008) An electromagnetic micro power generator for wideband environmental vibrations. Sens Actuators A Phys 145:405–413CrossRef Sari I, Balkan T, Kulah H (2008) An electromagnetic micro power generator for wideband environmental vibrations. Sens Actuators A Phys 145:405–413CrossRef
Zurück zum Zitat Sari I, Balkan T, Kulah H (2010) An electromagnetic micro power generator for low-frequency environmental vibrations based on the frequency upconversion technique. J Microelectromech Syst 19:14–27CrossRef Sari I, Balkan T, Kulah H (2010) An electromagnetic micro power generator for low-frequency environmental vibrations based on the frequency upconversion technique. J Microelectromech Syst 19:14–27CrossRef
Zurück zum Zitat Shen D, Park JH, Ajitsaria J, Choe SY, Wikle HC, Kim DJ (2008) The design, fabrication, and evaluation of a MEMS PZT cantilever with an integrated Si proof mass for vibration energy harvesting. J Micromech Microeng 18:055017CrossRef Shen D, Park JH, Ajitsaria J, Choe SY, Wikle HC, Kim DJ (2008) The design, fabrication, and evaluation of a MEMS PZT cantilever with an integrated Si proof mass for vibration energy harvesting. J Micromech Microeng 18:055017CrossRef
Zurück zum Zitat Suzuki Y, Miki D, Edamoto M, Honzumi M (2010) A MEMS electret generator with electrostatic levitation for vibration-driven energy-harvesting applications. J Micromech Microeng 20:104002CrossRef Suzuki Y, Miki D, Edamoto M, Honzumi M (2010) A MEMS electret generator with electrostatic levitation for vibration-driven energy-harvesting applications. J Micromech Microeng 20:104002CrossRef
Zurück zum Zitat Wang P, Tanaka K, Sugiyama S, Dai X, Zhao X, Liu J (2009) A micro electromagnetic low level vibration energy harvester based on MEMS technology. Microsyst Technol 15:941–951CrossRef Wang P, Tanaka K, Sugiyama S, Dai X, Zhao X, Liu J (2009) A micro electromagnetic low level vibration energy harvester based on MEMS technology. Microsyst Technol 15:941–951CrossRef
Zurück zum Zitat Wickenheiser A, Garcia E (2010) Broadband vibration-based energy harvesting improvement through frequency up-conversion by magnetic excitation. Smart Mater Struct 19:065020CrossRef Wickenheiser A, Garcia E (2010) Broadband vibration-based energy harvesting improvement through frequency up-conversion by magnetic excitation. Smart Mater Struct 19:065020CrossRef
Zurück zum Zitat Xu R, Lei A, Dahl-Petersen C, Hansen K, Guizzetti M, Birkelund K, Thomsen E, Hansen O (2011) Screen printed PZT/PZT thick film bimorph MEMS cantilever device for vibration energy harvesting. Sens Actuators A Phys 188:383–388CrossRef Xu R, Lei A, Dahl-Petersen C, Hansen K, Guizzetti M, Birkelund K, Thomsen E, Hansen O (2011) Screen printed PZT/PZT thick film bimorph MEMS cantilever device for vibration energy harvesting. Sens Actuators A Phys 188:383–388CrossRef
Zurück zum Zitat Yang B, Lee C, Xiang W, Xie J, Han He J, Kotlanka RK, Low SP, Feng H (2009) Electromagnetic energy harvesting from vibrations of multiple frequencies. J Micromech Microeng 19:035001CrossRef Yang B, Lee C, Xiang W, Xie J, Han He J, Kotlanka RK, Low SP, Feng H (2009) Electromagnetic energy harvesting from vibrations of multiple frequencies. J Micromech Microeng 19:035001CrossRef
Zurück zum Zitat Zhao S, Erturk A (2013) On the stochastic excitation of monostable and bistable electroelastic power generators: relative advantages and tradeoffs in a physical system. Appl Phys Lett 102:103902CrossRef Zhao S, Erturk A (2013) On the stochastic excitation of monostable and bistable electroelastic power generators: relative advantages and tradeoffs in a physical system. Appl Phys Lett 102:103902CrossRef
Zurück zum Zitat Zhu D, Beeby S, Tudor J, Harris N (2012) Vibration energy harvesting using the Halbach array. Smart Mater Struct 21:075020CrossRef Zhu D, Beeby S, Tudor J, Harris N (2012) Vibration energy harvesting using the Halbach array. Smart Mater Struct 21:075020CrossRef
Zurück zum Zitat Zorlu O, Topal ET, Kulah H (2011) A vibration-based electromagnetic energy harvester using mechanical frequency up-conversion method. IEEE Sens J 11:481–488CrossRef Zorlu O, Topal ET, Kulah H (2011) A vibration-based electromagnetic energy harvester using mechanical frequency up-conversion method. IEEE Sens J 11:481–488CrossRef
Metadaten
Titel
Piezoelectric energy harvester using mechanical frequency up conversion for operation at low-level accelerations and low-frequency vibration
verfasst von
Dongjae Han
Kwang-Seok Yun
Publikationsdatum
01.08.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 8/2015
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-014-2261-1

Weitere Artikel der Ausgabe 8/2015

Microsystem Technologies 8/2015 Zur Ausgabe

Neuer Inhalt