Skip to main content
Erschienen in: Finance and Stochastics 3/2013

01.07.2013

Model-independent bounds for option prices—a mass transport approach

verfasst von: Mathias Beiglböck, Pierre Henry-Labordère, Friedrich Penkner

Erschienen in: Finance and Stochastics | Ausgabe 3/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper we investigate model-independent bounds for exotic options written on a risky asset using infinite-dimensional linear programming methods. Based on arguments from the theory of Monge–Kantorovich mass transport, we establish a dual version of the problem that has a natural financial interpretation in terms of semi-static hedging. In particular we prove that there is no duality gap.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
For the sake of simplicity, we assume zero interest rate and no cash/yield dividends. This assumption can be relaxed by considering the process (f t ) introduced in [17] (see Eq. (14)) which has the property to be a local martingale.
 
2
The cumulative distribution function of μ i can be read off from the call prices through \(F_{i}(K)= 1 - \lim_{\varepsilon\downarrow0} 1/\varepsilon[ \mathcal{C}(t_{i},K)-\mathcal{C}(t_{i},K+\varepsilon) ]\) for i=1,…,n. Concerning the mathematical finance application it would be sufficient to consider strikes K≥0 and marginals which are concentrated on the positive half-line. We prefer to go with the more general case since the proofs are not more complicated. A technical difference is that call prices satisfy only \(\lim_{K\to-\infty}\mathcal{C}(t_{i},K) - K = s_{0}\) rather than the simpler \(\mathcal{C}(t_{i},0) = s_{0}\) in the case where S is assumed to be nonnegative.
 
3
Similar strategies are considered in [10, 14] where they are used to subreplicate a European option based on finitely many given call options.
 
4
It might be expected that the delta strategy in (1.2) should also include a constant Δ 0 multiplier of (s 1s 0) corresponding to an initial forward position. However, this term is not necessary as it can be subsumed into the term u 1.
 
5
In more financial terms, this means that \(\mathcal{C}(t,K)\) is increasing in t for each fixed \(K\in\mathbb{R}\).
 
6
See [36, 37] for an extensive account on the theory of optimal transportation.
 
7
Most of the basic results are equally true for Polish probability spaces (X 1,μ 1),…,(X n ,μ n ), but we do not need this generality here.
 
8
We should like to emphasize that the lower/upper bounds corresponding to different strikes K are attained by different martingale measures. This is not the case if we do not include the martingality constraint, as in this case the upper/lower bounds are attained by the co-monotone resp. anti-monotone coupling for each strike K (see for instance [36, Sect. 2.2.2]).
 
9
In probabilistic terms, the measure \(\mathbb{Q}_{s_{1}}\) is the conditional distribution of S 2 under \(\mathbb{Q}\) given that S 1=s 1.
 
10
We emphasize that while this simple guess works in the present setting, the situation is more subtle for general distributions.
 
11
Formally Hobson and Neuberger are interested to maximize the price of the payoff |S 2S 1| while we want to minimize the price of−|S 2S 1|. Mathematically, the two problems are of course the same. We haven chosen the latter formulation to be consistent with the notation in our main result in Theorem 1.1.
 
12
Some progress in this direction is made in [4, Appendix A]. (Note added in revision.)
 
13
I.e., \(g^{**}:\mathbb{R}\to\mathbb{R}\) is the largest convex function smaller than or equal to g.
 
Literatur
1.
Zurück zum Zitat Adams, D.R., Hedberg, L.I.: Function Spaces and Potential Theory. Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 314. Springer, Berlin (1996) CrossRef Adams, D.R., Hedberg, L.I.: Function Spaces and Potential Theory. Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 314. Springer, Berlin (1996) CrossRef
2.
Zurück zum Zitat Albrecher, H., Mayer, P.A., Schoutens, W.: General lower bounds for arithmetic Asian option prices. Appl. Math. Finance 15, 123–149 (2008) MathSciNetMATHCrossRef Albrecher, H., Mayer, P.A., Schoutens, W.: General lower bounds for arithmetic Asian option prices. Appl. Math. Finance 15, 123–149 (2008) MathSciNetMATHCrossRef
3.
Zurück zum Zitat Ambrosio, L., Pratelli, A.: Existence and stability results in the L 1 theory of optimal transportation. In: Caffarelli, L.A., Salsa, S. (eds.) Optimal Transportation and Applications, Martina Franca, 2001. Lecture Notes in Mathematics, vol. 1813, pp. 123–160. Springer, Berlin (2003) CrossRef Ambrosio, L., Pratelli, A.: Existence and stability results in the L 1 theory of optimal transportation. In: Caffarelli, L.A., Salsa, S. (eds.) Optimal Transportation and Applications, Martina Franca, 2001. Lecture Notes in Mathematics, vol. 1813, pp. 123–160. Springer, Berlin (2003) CrossRef
4.
Zurück zum Zitat Beiglböck, M., Juillet, N.: On a problem of optimal transport under marginal martingale constraints. arXiv:1208.1509 (2012) Beiglböck, M., Juillet, N.: On a problem of optimal transport under marginal martingale constraints. arXiv:​1208.​1509 (2012)
5.
Zurück zum Zitat Bergomi, L.: Smile dynamics II. Risk 18, 67–73 (2005) Bergomi, L.: Smile dynamics II. Risk 18, 67–73 (2005)
6.
Zurück zum Zitat Bertsimas, D., Popescu, I.: On the relation between option and stock prices: a convex optimization approach. Oper. Res. 50, 358–374 (2002) MathSciNetMATHCrossRef Bertsimas, D., Popescu, I.: On the relation between option and stock prices: a convex optimization approach. Oper. Res. 50, 358–374 (2002) MathSciNetMATHCrossRef
7.
Zurück zum Zitat Brown, H., Hobson, D., Rogers, L.C.G.: The maximum of a martingale constrained by an intermediate law. Probab. Theory Relat. Fields 119, 558–578 (2001) MathSciNetMATHCrossRef Brown, H., Hobson, D., Rogers, L.C.G.: The maximum of a martingale constrained by an intermediate law. Probab. Theory Relat. Fields 119, 558–578 (2001) MathSciNetMATHCrossRef
9.
Zurück zum Zitat Chen, X., Deelstra, G., Dhaene, J., Vanmaele, M.: Static super-replicating strategies for a class of exotic options. Insur. Math. Econ. 42, 1067–1085 (2008) MathSciNetMATHCrossRef Chen, X., Deelstra, G., Dhaene, J., Vanmaele, M.: Static super-replicating strategies for a class of exotic options. Insur. Math. Econ. 42, 1067–1085 (2008) MathSciNetMATHCrossRef
10.
Zurück zum Zitat Cousot, L.: Conditions on option prices for absence of arbitrage and exact calibration. J. Bank. Finance 31, 3377–3397 (2007) CrossRef Cousot, L.: Conditions on option prices for absence of arbitrage and exact calibration. J. Bank. Finance 31, 3377–3397 (2007) CrossRef
11.
Zurück zum Zitat Cox, A.M.G., Obłój, J.: Robust hedging of double touch barrier options. SIAM J. Financ. Math. 2, 141–182 (2011) MATHCrossRef Cox, A.M.G., Obłój, J.: Robust hedging of double touch barrier options. SIAM J. Financ. Math. 2, 141–182 (2011) MATHCrossRef
12.
Zurück zum Zitat Cox, A.M.G., Obłój, J.: Robust pricing and hedging of double no-touch options. Finance Stoch. 15, 573–605 (2011) MathSciNetCrossRef Cox, A.M.G., Obłój, J.: Robust pricing and hedging of double no-touch options. Finance Stoch. 15, 573–605 (2011) MathSciNetCrossRef
13.
Zurück zum Zitat Cox, A.M.G., Wang, J.: Root’s barrier: construction, optimality and applications to variance options. Ann. Appl. Probab. (2011, to appear). arXiv:1104.3583 Cox, A.M.G., Wang, J.: Root’s barrier: construction, optimality and applications to variance options. Ann. Appl. Probab. (2011, to appear). arXiv:​1104.​3583
15.
Zurück zum Zitat Dupire, B.: Pricing with a smile. Risk 7, 18–20 (1994) Dupire, B.: Pricing with a smile. Risk 7, 18–20 (1994)
16.
17.
Zurück zum Zitat Henry-Labordère, P.: Calibration of local stochastic volatility models to market smiles. Risk September, 112–117 (2009) Henry-Labordère, P.: Calibration of local stochastic volatility models to market smiles. Risk September, 112–117 (2009)
20.
Zurück zum Zitat Hobson, D.: Robust hedging of the lookback option. Finance Stoch. 2, 329–347 (1998) MATHCrossRef Hobson, D.: Robust hedging of the lookback option. Finance Stoch. 2, 329–347 (1998) MATHCrossRef
21.
Zurück zum Zitat Hobson, D.: The Skorokhod embedding problem and model-independent bounds for option prices. In: Carmona, R.A., Çinlar, E., Ekeland, I., Jouini, E., Scheinkman, J.A., Touzi, N. (eds.) Paris–Princeton Lectures on Mathematical Finance 2010. Lecture Notes in Mathematics, vol. 2003, pp. 267–318. Springer, Berlin (2011) CrossRef Hobson, D.: The Skorokhod embedding problem and model-independent bounds for option prices. In: Carmona, R.A., Çinlar, E., Ekeland, I., Jouini, E., Scheinkman, J.A., Touzi, N. (eds.) Paris–Princeton Lectures on Mathematical Finance 2010. Lecture Notes in Mathematics, vol. 2003, pp. 267–318. Springer, Berlin (2011) CrossRef
22.
Zurück zum Zitat Hobson, D.: Personal communication, February 2012 Hobson, D.: Personal communication, February 2012
23.
24.
Zurück zum Zitat Hobson, D., Laurence, P., Wang, T.H.: Static-arbitrage optimal subreplicating strategies for basket options. Insur. Math. Econ. 37, 553–572 (2005) MathSciNetMATHCrossRef Hobson, D., Laurence, P., Wang, T.H.: Static-arbitrage optimal subreplicating strategies for basket options. Insur. Math. Econ. 37, 553–572 (2005) MathSciNetMATHCrossRef
25.
Zurück zum Zitat Hobson, D., Laurence, P., Wang, T.H.: Static-arbitrage upper bounds for the prices of basket options. Quant. Finance 5, 329–342 (2005) MathSciNetMATHCrossRef Hobson, D., Laurence, P., Wang, T.H.: Static-arbitrage upper bounds for the prices of basket options. Quant. Finance 5, 329–342 (2005) MathSciNetMATHCrossRef
27.
Zurück zum Zitat Hobson, D., Pedersen, J.L.: The minimum maximum of a continuous martingale with given initial and terminal laws. Ann. Probab. 30, 978–999 (2002) MathSciNetMATHCrossRef Hobson, D., Pedersen, J.L.: The minimum maximum of a continuous martingale with given initial and terminal laws. Ann. Probab. 30, 978–999 (2002) MathSciNetMATHCrossRef
28.
29.
Zurück zum Zitat Laurence, P., Wang, T.H.: What’s a basket worth? Risk February, 73–77 (2004) Laurence, P., Wang, T.H.: What’s a basket worth? Risk February, 73–77 (2004)
30.
Zurück zum Zitat Laurence, P., Wang, T.H.: Sharp upper and lower bounds for basket options. Appl. Math. Finance 12, 253–282 (2005) MATHCrossRef Laurence, P., Wang, T.H.: Sharp upper and lower bounds for basket options. Appl. Math. Finance 12, 253–282 (2005) MATHCrossRef
31.
Zurück zum Zitat Madan, D.B., Yor, M.: Making Markov martingales meet marginals: with explicit constructions. Bernoulli 8, 509–536 (2002) MathSciNetMATH Madan, D.B., Yor, M.: Making Markov martingales meet marginals: with explicit constructions. Bernoulli 8, 509–536 (2002) MathSciNetMATH
33.
Zurück zum Zitat Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes. The Art of Scientific Computing, 3rd edn. Cambridge University Press, Cambridge (2007). xxii+1235 MATH Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes. The Art of Scientific Computing, 3rd edn. Cambridge University Press, Cambridge (2007). xxii+1235 MATH
35.
Zurück zum Zitat Strasser, H.: Mathematical Theory of Statistics. Statistical Experiments and Asymptotic Decision Theory. de Gruyter Studies in Mathematics, vol. 7. de Gruyter, Berlin (1985) MATHCrossRef Strasser, H.: Mathematical Theory of Statistics. Statistical Experiments and Asymptotic Decision Theory. de Gruyter Studies in Mathematics, vol. 7. de Gruyter, Berlin (1985) MATHCrossRef
36.
Zurück zum Zitat Villani, C.: Topics in Optimal Transportation. Graduate Studies in Mathematics, vol. 58. Am. Math. Soc., Providence (2003) MATH Villani, C.: Topics in Optimal Transportation. Graduate Studies in Mathematics, vol. 58. Am. Math. Soc., Providence (2003) MATH
37.
Zurück zum Zitat Villani, C.: Optimal Transport. Old and New. Grundlehren der mathematischen Wissenschaften, vol. 338. Springer, Berlin (2009) MATHCrossRef Villani, C.: Optimal Transport. Old and New. Grundlehren der mathematischen Wissenschaften, vol. 338. Springer, Berlin (2009) MATHCrossRef
Metadaten
Titel
Model-independent bounds for option prices—a mass transport approach
verfasst von
Mathias Beiglböck
Pierre Henry-Labordère
Friedrich Penkner
Publikationsdatum
01.07.2013
Verlag
Springer-Verlag
Erschienen in
Finance and Stochastics / Ausgabe 3/2013
Print ISSN: 0949-2984
Elektronische ISSN: 1432-1122
DOI
https://doi.org/10.1007/s00780-013-0205-8

Weitere Artikel der Ausgabe 3/2013

Finance and Stochastics 3/2013 Zur Ausgabe