Skip to main content
Erschienen in: Acta Mechanica Sinica 3/2016

25.09.2015 | Research paper

Concurrent multi-scale design optimization of composite frame structures using the Heaviside penalization of discrete material model

verfasst von: Jun Yan, Zunyi Duan, Erik Lund, Guozhong Zhao

Erschienen in: Acta Mechanica Sinica | Ausgabe 3/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper deals with the concurrent multi-scale optimization design of frame structure composed of glass or carbon fiber reinforced polymer laminates. In the composite frame structure, the fiber winding angle at the micro-material scale and the geometrical parameter of components of the frame in the macro-structural scale are introduced as the independent variables on the two geometrical scales. Considering manufacturing requirements, discrete fiber winding angles are specified for the micro design variable. The improved Heaviside penalization discrete material optimization interpolation scheme has been applied to achieve the discrete optimization design of the fiber winding angle. An optimization model based on the minimum structural compliance and the specified fiber material volume constraint has been established. The sensitivity information about the two geometrical scales design variables are also deduced considering the characteristics of discrete fiber winding angles. The optimization results of the fiber winding angle or the macro structural topology on the two single geometrical scales, together with the concurrent two-scale optimization, is separately studied and compared in the paper. Numerical examples in the paper show that the concurrent multi-scale optimization can further explore the coupling effect between the macro-structure and micro-material of the composite to achieve an ultra-light design of the composite frame structure. The novel two geometrical scales optimization model provides a new opportunity for the design of composite structure in aerospace and other industries.

Graphical abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Du, S.Y.: Advanced composite materials and aerospace engineering. Acta Mater. Compos. Sin. 24, 1–12 (2007) Du, S.Y.: Advanced composite materials and aerospace engineering. Acta Mater. Compos. Sin. 24, 1–12 (2007)
2.
Zurück zum Zitat Chen, C.Y., Li, Z., Shi, Q., et al.: Static test method for the satellite frame structure subjected to multi-point load. J. Shanghai Jiaotong Univ. 34, 140–142 (2000) Chen, C.Y., Li, Z., Shi, Q., et al.: Static test method for the satellite frame structure subjected to multi-point load. J. Shanghai Jiaotong Univ. 34, 140–142 (2000)
3.
Zurück zum Zitat Ibrahim, S., Polyzois, D., Hassan, S.: Development of glass fiber reinforced plastic poles for transmission and distribution lines. Can. J. Civ. Eng. 27, 850–858 (2000)CrossRef Ibrahim, S., Polyzois, D., Hassan, S.: Development of glass fiber reinforced plastic poles for transmission and distribution lines. Can. J. Civ. Eng. 27, 850–858 (2000)CrossRef
4.
Zurück zum Zitat Hu, B., Xue, J.X., Yan, D.Q.: Structural materials and design study for space station. Fiber Compos. 21, 60–64 (2004) Hu, B., Xue, J.X., Yan, D.Q.: Structural materials and design study for space station. Fiber Compos. 21, 60–64 (2004)
5.
Zurück zum Zitat Liu, Q., Ren, Z.D., Mo, Z.L.: The research of FRP applied in the transmission tower. FRP/CM 1, 53–56 (2012) Liu, Q., Ren, Z.D., Mo, Z.L.: The research of FRP applied in the transmission tower. FRP/CM 1, 53–56 (2012)
6.
Zurück zum Zitat Jensen, F.M., Falzon, B.G., Ankersen, J., et al.: Structural testing and numerical simulation of a 34m composite wind turbine blade. Compos. Struct. 76, 52–61 (2006)CrossRef Jensen, F.M., Falzon, B.G., Ankersen, J., et al.: Structural testing and numerical simulation of a 34m composite wind turbine blade. Compos. Struct. 76, 52–61 (2006)CrossRef
7.
Zurück zum Zitat Bendsøe, M., Sigmund, O.: Topology Optimization—Theory, Methods, and Applications. Springer, Berlin (2003)MATH Bendsøe, M., Sigmund, O.: Topology Optimization—Theory, Methods, and Applications. Springer, Berlin (2003)MATH
8.
Zurück zum Zitat Dong, Y.F., Huang, H.: Truss topology optimization by using multi-point approximation and GA. Chin. J. Comput. Mech. 21, 746–751 (2004) Dong, Y.F., Huang, H.: Truss topology optimization by using multi-point approximation and GA. Chin. J. Comput. Mech. 21, 746–751 (2004)
9.
Zurück zum Zitat Sui, Y.K., Yang, D.Q., Sun, H.C.: Truss geometry optimization based on two-step method linked with sensitivity of optimal objective. Acta Mech. Sin. 29, 87–92 (1997) Sui, Y.K., Yang, D.Q., Sun, H.C.: Truss geometry optimization based on two-step method linked with sensitivity of optimal objective. Acta Mech. Sin. 29, 87–92 (1997)
10.
Zurück zum Zitat Zhou, K.M., Li, J.F., Li, X.: A review on topology optimization of structures. Adv. Mech. 35, 69–76 (2005) Zhou, K.M., Li, J.F., Li, X.: A review on topology optimization of structures. Adv. Mech. 35, 69–76 (2005)
11.
Zurück zum Zitat An, H.C., Chen, S.Y., Huang, H.: Simultaneous optimization of stacking sequences and sizing with two-level approximations and a genetic algorithm. Compos. Struct. 123, 180–189 (2015)CrossRef An, H.C., Chen, S.Y., Huang, H.: Simultaneous optimization of stacking sequences and sizing with two-level approximations and a genetic algorithm. Compos. Struct. 123, 180–189 (2015)CrossRef
12.
Zurück zum Zitat Todoroki, A., Terada, Y.: Improved fractal branch and bound method for stacking-sequence optimizations of laminates. AIAA J. 42, 141–148 (2004)CrossRef Todoroki, A., Terada, Y.: Improved fractal branch and bound method for stacking-sequence optimizations of laminates. AIAA J. 42, 141–148 (2004)CrossRef
13.
Zurück zum Zitat Deng, S., Pai, P.F., Lai, C.C., et al.: A solution to the stacking sequence of a composite laminate plate with constant thickness using simulated annealing algorithms. Int. J. Adv. Manuf. Technol. 26, 499–504 (2005)CrossRef Deng, S., Pai, P.F., Lai, C.C., et al.: A solution to the stacking sequence of a composite laminate plate with constant thickness using simulated annealing algorithms. Int. J. Adv. Manuf. Technol. 26, 499–504 (2005)CrossRef
14.
Zurück zum Zitat Aymerich, F., Serra, M.: Optimization of laminate stacking sequence for maximum buckling load using the ant colony optimization (ACO) meta heuristic. Compos. Part A 39, 262–272 (2008)CrossRef Aymerich, F., Serra, M.: Optimization of laminate stacking sequence for maximum buckling load using the ant colony optimization (ACO) meta heuristic. Compos. Part A 39, 262–272 (2008)CrossRef
15.
Zurück zum Zitat Chang, N., Wang, W., Yang, W., et al.: Ply stacking sequence optimization of composite laminate by permutation discrete particle swarm optimization. Struct. Multidiscip. Optim. 41, 179–187 (2010)MathSciNetCrossRef Chang, N., Wang, W., Yang, W., et al.: Ply stacking sequence optimization of composite laminate by permutation discrete particle swarm optimization. Struct. Multidiscip. Optim. 41, 179–187 (2010)MathSciNetCrossRef
16.
Zurück zum Zitat Tsai, S.W., Pagano, N.J.: Invariant properties of composite materials. In: Composite materials workshop, p. 233 (1968) Tsai, S.W., Pagano, N.J.: Invariant properties of composite materials. In: Composite materials workshop, p. 233 (1968)
17.
Zurück zum Zitat Miki, M., Sugiyamat, Y.: Optimum design of laminated composite plates using lamination parameters. AIAA J. 31, 921–922 (1993)CrossRef Miki, M., Sugiyamat, Y.: Optimum design of laminated composite plates using lamination parameters. AIAA J. 31, 921–922 (1993)CrossRef
18.
Zurück zum Zitat Lund, E., Stegmann, J.: On structural optimization of composite shell structures using a discrete constitutive parametrization. Wind Energy 8, 109–124 (2005)CrossRefMATH Lund, E., Stegmann, J.: On structural optimization of composite shell structures using a discrete constitutive parametrization. Wind Energy 8, 109–124 (2005)CrossRefMATH
19.
Zurück zum Zitat Stegmann, J., Lund, E.: Discrete material optimization of general composite shell structures. Int. J. Numer. Methods Eng. 62, 2009–2027 (2005)CrossRefMATH Stegmann, J., Lund, E.: Discrete material optimization of general composite shell structures. Int. J. Numer. Methods Eng. 62, 2009–2027 (2005)CrossRefMATH
20.
Zurück zum Zitat Bruyneel, M.: SFP-a new parameterization based on shape functions for optimal material selection: application to conventional composite plies. Struct. Multidiscip. Optim. 43, 17–27 (2011)CrossRef Bruyneel, M.: SFP-a new parameterization based on shape functions for optimal material selection: application to conventional composite plies. Struct. Multidiscip. Optim. 43, 17–27 (2011)CrossRef
21.
Zurück zum Zitat Gao, T., Zhang, W., Duysinx, P.: A bi-value coding parameterization scheme for the discrete optimal orientation design of the composite laminate. Int. J. Numer. Methods Eng. 91, 98–114 (2012)CrossRefMATH Gao, T., Zhang, W., Duysinx, P.: A bi-value coding parameterization scheme for the discrete optimal orientation design of the composite laminate. Int. J. Numer. Methods Eng. 91, 98–114 (2012)CrossRefMATH
22.
Zurück zum Zitat Rodrigues, H., Guedes, J.M., Bendsoe, M.: Hierarchical optimization of material and structure. Struct. Multidiscip. Optim. 24, 1–10 (2002)CrossRef Rodrigues, H., Guedes, J.M., Bendsoe, M.: Hierarchical optimization of material and structure. Struct. Multidiscip. Optim. 24, 1–10 (2002)CrossRef
23.
Zurück zum Zitat Ferreira, R.T.L., Rodrigues, H.C., Guedes, J.M., et al.: Hierarchical optimization of laminated fiber reinforced composites. Compos. Struct. 107, 246–259 (2014)CrossRef Ferreira, R.T.L., Rodrigues, H.C., Guedes, J.M., et al.: Hierarchical optimization of laminated fiber reinforced composites. Compos. Struct. 107, 246–259 (2014)CrossRef
24.
Zurück zum Zitat Liu, L., Yan, J., Cheng, G.D.: Optimum structure with homogeneous optimum truss-like material. Compos. Struct. 86, 1417–1425 (2008)CrossRef Liu, L., Yan, J., Cheng, G.D.: Optimum structure with homogeneous optimum truss-like material. Compos. Struct. 86, 1417–1425 (2008)CrossRef
25.
Zurück zum Zitat Deng, J.D., Yan, J., Cheng, G.D.: Multi-objective concurrent topology optimization of thermos elastic structures composed of homogeneous porous material. Struct. Multidiscip. Optim. 47, 583–597 (2013)MathSciNetCrossRefMATH Deng, J.D., Yan, J., Cheng, G.D.: Multi-objective concurrent topology optimization of thermos elastic structures composed of homogeneous porous material. Struct. Multidiscip. Optim. 47, 583–597 (2013)MathSciNetCrossRefMATH
26.
Zurück zum Zitat Huo, F., Yang, D.Q.: Laminate component method for materials selection optimum design of hybrid skeletal structures. China Sci. Pap. 8, 1179–1196 (2013) Huo, F., Yang, D.Q.: Laminate component method for materials selection optimum design of hybrid skeletal structures. China Sci. Pap. 8, 1179–1196 (2013)
27.
Zurück zum Zitat Ni, C.H., Yan, J., Cheng, G.D., et al.: ntegrated size and topology optimization of skeletal structures with exact frequency constraints. Struct. Multidiscip. Optim. 50, 113–128 (2014)CrossRef Ni, C.H., Yan, J., Cheng, G.D., et al.: ntegrated size and topology optimization of skeletal structures with exact frequency constraints. Struct. Multidiscip. Optim. 50, 113–128 (2014)CrossRef
28.
Zurück zum Zitat Gao, T., Zhang, W.H.: A mass constraint formulation for structural topology optimization with multiphase materials. Int. J. Numer. Methods Eng. 88, 774–796 (2011)CrossRefMATH Gao, T., Zhang, W.H.: A mass constraint formulation for structural topology optimization with multiphase materials. Int. J. Numer. Methods Eng. 88, 774–796 (2011)CrossRefMATH
29.
Zurück zum Zitat Niu, B., Yan, J., Cheng, G.D.: Optimum structure with homogeneous optimum cellular material for maximum fundamental frequency. Struct. Multidiscip. Optim. 39, 115–132 (2009)CrossRef Niu, B., Yan, J., Cheng, G.D.: Optimum structure with homogeneous optimum cellular material for maximum fundamental frequency. Struct. Multidiscip. Optim. 39, 115–132 (2009)CrossRef
30.
Zurück zum Zitat An, H.C., Chen, S.Y., Huang, H.: Laminate stacking sequence optimization with strength constraints using two-level approximations and adaptive genetic algorithm. Struct. Multidiscip. Optim. 1, 1–16 (2014) An, H.C., Chen, S.Y., Huang, H.: Laminate stacking sequence optimization with strength constraints using two-level approximations and adaptive genetic algorithm. Struct. Multidiscip. Optim. 1, 1–16 (2014)
31.
Zurück zum Zitat An, H.C., Chen, S.Y., Huang, H.: Simultaneous optimization of stacking sequences and sizing with two-level approximations and a genetic algorithm. Compos. Struct. 123, 180–189 (2015)CrossRef An, H.C., Chen, S.Y., Huang, H.: Simultaneous optimization of stacking sequences and sizing with two-level approximations and a genetic algorithm. Compos. Struct. 123, 180–189 (2015)CrossRef
32.
Zurück zum Zitat Baker, A.A.B., Kelly, D.W.: Composite materials for aircraft structures. AIAA, Reston (2004) Baker, A.A.B., Kelly, D.W.: Composite materials for aircraft structures. AIAA, Reston (2004)
33.
Zurück zum Zitat Duan, Z.Y., Yan, J., Niu, B., Xin, X., et al.: Design optimization of composite materials based on improved discrete materials optimization model. Acta Mater. Compos. Sin. 33, 2221–2229 (2012) Duan, Z.Y., Yan, J., Niu, B., Xin, X., et al.: Design optimization of composite materials based on improved discrete materials optimization model. Acta Mater. Compos. Sin. 33, 2221–2229 (2012)
34.
Zurück zum Zitat Duan, Z.Y., Yan, J., Zhao, G.Z.: Integrated optimization of the material and structure of composites based on the Heaviside penalization of discrete material model. Struct. Multidiscip. Optim. 51, 721–732 (2015)CrossRef Duan, Z.Y., Yan, J., Zhao, G.Z.: Integrated optimization of the material and structure of composites based on the Heaviside penalization of discrete material model. Struct. Multidiscip. Optim. 51, 721–732 (2015)CrossRef
35.
Zurück zum Zitat Sigmund, O., Torquato, S.: Design of materials with extreme thermal expansion using a three-phase topology optimization method. J. Mech. Phys. Solids 45, 1037–1067 (1997)MathSciNetCrossRef Sigmund, O., Torquato, S.: Design of materials with extreme thermal expansion using a three-phase topology optimization method. J. Mech. Phys. Solids 45, 1037–1067 (1997)MathSciNetCrossRef
36.
Zurück zum Zitat Gao, T., Zhang, W., Duysinx, P.: Simultaneous design of structural layout and discrete fiber orientation using bi-value coding parameterization and volume constraint. Struct. Multidiscip. Optim. 48, 1075–1088 (2013)MathSciNetCrossRef Gao, T., Zhang, W., Duysinx, P.: Simultaneous design of structural layout and discrete fiber orientation using bi-value coding parameterization and volume constraint. Struct. Multidiscip. Optim. 48, 1075–1088 (2013)MathSciNetCrossRef
37.
Zurück zum Zitat Hvejsel, C.F., Lund, E., Stolpe, M.: Optimization strategies for discrete multi-material stiffness optimization. Struct. Multidiscip. Optim. 44, 149–163 (2011)CrossRef Hvejsel, C.F., Lund, E., Stolpe, M.: Optimization strategies for discrete multi-material stiffness optimization. Struct. Multidiscip. Optim. 44, 149–163 (2011)CrossRef
38.
Zurück zum Zitat Guest, J.K., Prevost, J.H., Belytschko, T.: Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int. J. Numer. Methods Eng. 61, 238–254 (2004)MathSciNetCrossRefMATH Guest, J.K., Prevost, J.H., Belytschko, T.: Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int. J. Numer. Methods Eng. 61, 238–254 (2004)MathSciNetCrossRefMATH
39.
Zurück zum Zitat Sigmund, O.: Morphology-based black and white filters for topology optimization. Struct. Multidiscip. Optim. 33, 401–424 (2007)CrossRef Sigmund, O.: Morphology-based black and white filters for topology optimization. Struct. Multidiscip. Optim. 33, 401–424 (2007)CrossRef
40.
Zurück zum Zitat Bendsoe, M.P., Kikuchi, N.: Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Eng. 71, 197–224 (1988)MathSciNetCrossRefMATH Bendsoe, M.P., Kikuchi, N.: Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Eng. 71, 197–224 (1988)MathSciNetCrossRefMATH
41.
Zurück zum Zitat Lund, E.: Finite Element based design sensitivity analysis and optimization: Videnbasen for Aalborg Universitety VBN. Aalborg University, Denmark (1994) Lund, E.: Finite Element based design sensitivity analysis and optimization: Videnbasen for Aalborg Universitety VBN. Aalborg University, Denmark (1994)
42.
Zurück zum Zitat Cheng, G.D., Olhoff, N.: Rigid body motion test against error in semianalytical sensitivity analysis. Comput. Struct. 6, 515–527 (1993)CrossRefMATH Cheng, G.D., Olhoff, N.: Rigid body motion test against error in semianalytical sensitivity analysis. Comput. Struct. 6, 515–527 (1993)CrossRefMATH
Metadaten
Titel
Concurrent multi-scale design optimization of composite frame structures using the Heaviside penalization of discrete material model
verfasst von
Jun Yan
Zunyi Duan
Erik Lund
Guozhong Zhao
Publikationsdatum
25.09.2015
Verlag
The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences
Erschienen in
Acta Mechanica Sinica / Ausgabe 3/2016
Print ISSN: 0567-7718
Elektronische ISSN: 1614-3116
DOI
https://doi.org/10.1007/s10409-015-0485-7

Weitere Artikel der Ausgabe 3/2016

Acta Mechanica Sinica 3/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.