Skip to main content
Erschienen in: Acta Mechanica Sinica 3/2016

25.03.2016 | Research Paper

Microfluidic-based single cell trapping using a combination of stagnation point flow and physical barrier

verfasst von: Miao Yu, Zongzheng Chen, Cheng Xiang, Bo Liu, Handi Xie, Kairong Qin

Erschienen in: Acta Mechanica Sinica | Ausgabe 3/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Single cell trapping in vitro by microfluidic device is an emerging approach for the study of the relationship between single cells and their dynamic biochemical microenvironments. In this paper, a hydrodynamic-based microfluidic device for single cell trapping is designed using a combination of stagnation point flow and physical barrier. The microfluidic device overcomes the weakness of the traditional ones, which have been only based upon either stagnation point flows or physical barriers, and can conveniently load dynamic biochemical signals to the trapped cell. In addition, it can connect with a programmable syringe pump and a microscope to constitute an integrated experimental system. It is experimentally verified that the microfluidic system can trap single cells in vitro even under flow disturbance and conveniently load biochemical signals to the trapped cell. The designed micro-device would provide a simple yet effective experimental platform for further study of the interactions between single cells and their microenvironments.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Zell, T., Khoruts, A., Ingulli, E., et al.: Single-cell analysis of signal transduction in CD4 T cells stimulated by antigen in vivo. Proc. Natl. Acad. Sci. USA 98, 10805–10810 (2001)CrossRef Zell, T., Khoruts, A., Ingulli, E., et al.: Single-cell analysis of signal transduction in CD4 T cells stimulated by antigen in vivo. Proc. Natl. Acad. Sci. USA 98, 10805–10810 (2001)CrossRef
2.
Zurück zum Zitat Gavin, M.A., Torgerson, T.R., Houston, E., et al.: Single-cell analysis of normal and FOXP3-mutant human T cells: FOXP3 expression without regulatory T cell development. Proc. Natl. Acad. Sci. USA 103, 6659–6664 (2006) Gavin, M.A., Torgerson, T.R., Houston, E., et al.: Single-cell analysis of normal and FOXP3-mutant human T cells: FOXP3 expression without regulatory T cell development. Proc. Natl. Acad. Sci. USA 103, 6659–6664 (2006)
3.
Zurück zum Zitat Gao, J., Yin, X.F., Fang, Z.L.: Integration of single cell injection, cell lysis, separation and detection of intracellular constituents on a microfluidic chip. Lab Chip 4, 47–52 (2004) Gao, J., Yin, X.F., Fang, Z.L.: Integration of single cell injection, cell lysis, separation and detection of intracellular constituents on a microfluidic chip. Lab Chip 4, 47–52 (2004)
4.
Zurück zum Zitat Sims, C.E., Allbritton, N.L.: Analysis of single mammalian cells on-chip. Lab Chip 7, 423–440 (2007)CrossRef Sims, C.E., Allbritton, N.L.: Analysis of single mammalian cells on-chip. Lab Chip 7, 423–440 (2007)CrossRef
5.
Zurück zum Zitat Chen, Q.S., Wu, J., Zhang, Y.D., et al.: Targeted isolation and analysis of single tumor cells with aptamer-encoded microwell array on microfluidic device. Lab Chip 12, 5180–5185 (2012)CrossRef Chen, Q.S., Wu, J., Zhang, Y.D., et al.: Targeted isolation and analysis of single tumor cells with aptamer-encoded microwell array on microfluidic device. Lab Chip 12, 5180–5185 (2012)CrossRef
6.
Zurück zum Zitat Ashkin, A.: Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 24, 156–159 (1970)CrossRef Ashkin, A.: Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 24, 156–159 (1970)CrossRef
7.
Zurück zum Zitat Arai, Y., Yasuda, R., Akashi, K.I., et al.: Tying amoleculark not with optical tweezers. Nature 399, 446–448 (1999)CrossRef Arai, Y., Yasuda, R., Akashi, K.I., et al.: Tying amoleculark not with optical tweezers. Nature 399, 446–448 (1999)CrossRef
8.
Zurück zum Zitat Fiedler, S., Shirley, S.G., Schnelle, T., et al.: Dielectrophoretic sorting of particles and cells in a microsystem. Anal. Chem. 70, 1909–1915 (1998)CrossRef Fiedler, S., Shirley, S.G., Schnelle, T., et al.: Dielectrophoretic sorting of particles and cells in a microsystem. Anal. Chem. 70, 1909–1915 (1998)CrossRef
9.
Zurück zum Zitat Wu, L.Q., Yung, L.Y.L., Lim, K.M.: Cell trapping and detection by dielectrophoresis with SU-8 grooves. World Congress on Medical Physics and Biomedical Engineering, IFMBE Proceedings 39, 305 (2013) Wu, L.Q., Yung, L.Y.L., Lim, K.M.: Cell trapping and detection by dielectrophoresis with SU-8 grooves. World Congress on Medical Physics and Biomedical Engineering, IFMBE Proceedings 39, 305 (2013)
10.
Zurück zum Zitat Gijs, M.A.M.: Magnetic bead handling on-chip: new opportunities for analytical applications. Microfluid. Nanofluid. 1, 22–40 (2004) Gijs, M.A.M.: Magnetic bead handling on-chip: new opportunities for analytical applications. Microfluid. Nanofluid. 1, 22–40 (2004)
11.
Zurück zum Zitat Evander, M., Johansson, L., Lilliehorn, T., et al.: Noninvasive acoustic cell trapping in a microfluidic perfusion system for online bioassays. Anal. Chem. 79, 2984–2991 (2007)CrossRef Evander, M., Johansson, L., Lilliehorn, T., et al.: Noninvasive acoustic cell trapping in a microfluidic perfusion system for online bioassays. Anal. Chem. 79, 2984–2991 (2007)CrossRef
12.
Zurück zum Zitat Petersson, F., Aberg, L., Swa1rd-Nilsson, A.M.: Free flow acoustophoresis: Microfluidic-based mode of particle and cell separation. Anal. Chem. 79, 5117–5123 (2007) Petersson, F., Aberg, L., Swa1rd-Nilsson, A.M.: Free flow acoustophoresis: Microfluidic-based mode of particle and cell separation. Anal. Chem. 79, 5117–5123 (2007)
13.
Zurück zum Zitat Taylor, G.I.: The formation of emulsions in definable fields of flow. Proc. R. Soc. Lond. A 146, 501–523 (1934)CrossRef Taylor, G.I.: The formation of emulsions in definable fields of flow. Proc. R. Soc. Lond. A 146, 501–523 (1934)CrossRef
14.
Zurück zum Zitat Johann, R.M.: Cell trapping in microfluidic chips. Anal. Bioanal. Chem. 85, 408–412 (2006)CrossRef Johann, R.M.: Cell trapping in microfluidic chips. Anal. Bioanal. Chem. 85, 408–412 (2006)CrossRef
15.
Zurück zum Zitat Tan, W.H., Takeuchi, S.: A trap-and-release integrated microfluidic system for dynamic microarray applications. Proc. Natl. Acad. Sci. USA 104, 1146–1151 (2007)CrossRef Tan, W.H., Takeuchi, S.: A trap-and-release integrated microfluidic system for dynamic microarray applications. Proc. Natl. Acad. Sci. USA 104, 1146–1151 (2007)CrossRef
16.
Zurück zum Zitat Kumano, I., Hosoda, K., Suzuki, H., et al.: Hydrodynamic trapping of tetrahymena thermophila for the long-term monitoring of cell behaviors. Lab Chip 12, 3451–3457 (2012)CrossRef Kumano, I., Hosoda, K., Suzuki, H., et al.: Hydrodynamic trapping of tetrahymena thermophila for the long-term monitoring of cell behaviors. Lab Chip 12, 3451–3457 (2012)CrossRef
17.
Zurück zum Zitat Carlo, D.D., Aghdam, N., Lee, L.P.: Article previous article next article table of contents single-cell enzyme concentrations, kinetics, and inhibition analysis using high-density hydrodynamic cell isolation arrays. Anal. Chem. 78, 4925–4930 (2006)CrossRef Carlo, D.D., Aghdam, N., Lee, L.P.: Article previous article next article table of contents single-cell enzyme concentrations, kinetics, and inhibition analysis using high-density hydrodynamic cell isolation arrays. Anal. Chem. 78, 4925–4930 (2006)CrossRef
18.
Zurück zum Zitat Tanyeri, M., Johnson-Chavarria, E.M., Schroeder, C.M.: Hydrodynamic trap for single particles and cells. Appl. Phys. Lett. 96, 22410 (2010)CrossRef Tanyeri, M., Johnson-Chavarria, E.M., Schroeder, C.M.: Hydrodynamic trap for single particles and cells. Appl. Phys. Lett. 96, 22410 (2010)CrossRef
19.
Zurück zum Zitat Tanyeri, M., Ranka, M., Sittipolkul, N., et al.: A microfluidic-based hydrodynamic trap: design and implementation. Lab Chip 11, 1786–1794 (2011)CrossRef Tanyeri, M., Ranka, M., Sittipolkul, N., et al.: A microfluidic-based hydrodynamic trap: design and implementation. Lab Chip 11, 1786–1794 (2011)CrossRef
20.
Zurück zum Zitat Lutz, B.R., Chen, J., Schwartz, D.T.: Hydrodynamic tweezers: 1. noncontact trapping of single cells using steady streaming microeddies. Anal. Chem. 78, 5429–5435 (2006)CrossRef Lutz, B.R., Chen, J., Schwartz, D.T.: Hydrodynamic tweezers: 1. noncontact trapping of single cells using steady streaming microeddies. Anal. Chem. 78, 5429–5435 (2006)CrossRef
21.
Zurück zum Zitat Lin, C.M., Lai, Y.S., Liu, H.P., et al.: Trapping of bioparticles via microvortices in a microfluidic device for bioassay applications. Anal. Chem. 80, 8937–8945 (2008)CrossRef Lin, C.M., Lai, Y.S., Liu, H.P., et al.: Trapping of bioparticles via microvortices in a microfluidic device for bioassay applications. Anal. Chem. 80, 8937–8945 (2008)CrossRef
22.
Zurück zum Zitat Li, Y.J., Li, Y.Z., Cao, T., et al.: Transport of dynamic biochemical signals in steady flow in a shallow Y-shaped microfluidic channel: effect of transverse diffusion and longitudinal dispersion. J. Biomech. Eng. 135, 12011 (2013) Li, Y.J., Li, Y.Z., Cao, T., et al.: Transport of dynamic biochemical signals in steady flow in a shallow Y-shaped microfluidic channel: effect of transverse diffusion and longitudinal dispersion. J. Biomech. Eng. 135, 12011 (2013)
23.
Zurück zum Zitat Usami, S., Chen, H.H., Zhao, Y., et al.: Design and construction of a linear shear stress flow chamber. Ann. Biomed. Eng. 21, 77–83 (1993)CrossRef Usami, S., Chen, H.H., Zhao, Y., et al.: Design and construction of a linear shear stress flow chamber. Ann. Biomed. Eng. 21, 77–83 (1993)CrossRef
24.
Zurück zum Zitat Qin, K.R., Hu, X.Q., Liu, Z.R.: Analysis of pulsatile flow in the parallel-plate flow chamber with spatial shear stress gradient. J. Hydrodyn. Ser B 19, 113–120 (2007)CrossRef Qin, K.R., Hu, X.Q., Liu, Z.R.: Analysis of pulsatile flow in the parallel-plate flow chamber with spatial shear stress gradient. J. Hydrodyn. Ser B 19, 113–120 (2007)CrossRef
Metadaten
Titel
Microfluidic-based single cell trapping using a combination of stagnation point flow and physical barrier
verfasst von
Miao Yu
Zongzheng Chen
Cheng Xiang
Bo Liu
Handi Xie
Kairong Qin
Publikationsdatum
25.03.2016
Verlag
The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of Sciences
Erschienen in
Acta Mechanica Sinica / Ausgabe 3/2016
Print ISSN: 0567-7718
Elektronische ISSN: 1614-3116
DOI
https://doi.org/10.1007/s10409-016-0558-2

Weitere Artikel der Ausgabe 3/2016

Acta Mechanica Sinica 3/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.