Skip to main content
Erschienen in: Autonomous Robots 8/2019

08.07.2019

Learning attentional regulations for structured tasks execution in robotic cognitive control

verfasst von: Riccardo Caccavale, Alberto Finzi

Erschienen in: Autonomous Robots | Ausgabe 8/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We present a framework for robotic cognitive control endowed with adaptive mechanisms for attentional regulation and task execution. In cognitive psychology, cognitive control is the process that orchestrates executive and cognitive processes supporting adaptive responses and complex goal-directed behaviors. Similar mechanisms can be deployed in robotic systems in order to flexibly execute complex structured tasks. In this work, following a supervisory attentional system paradigm, we propose an approach that permits to learn how to exploit top-down and bottom-up attentional regulations to guide the execution of hierarchically structured tasks. We present the overall framework discussing its functioning in a mobile robot case study considering pick-carry-place tasks. In this setting, we show that the proposed system can be on-line trained by a user in order to execute incrementally complex activities.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Anderson, J. R., Matessa, M., & Lebiere, C. (1997). Act-r: A theory of higher level cognition and its relation to visual attention. Human-Computer Interaction, 12(4), 439–462.CrossRef Anderson, J. R., Matessa, M., & Lebiere, C. (1997). Act-r: A theory of higher level cognition and its relation to visual attention. Human-Computer Interaction, 12(4), 439–462.CrossRef
Zurück zum Zitat Belardinelli, A., Pirri, F., & Carbone, A. (2007). Bottom-up gaze shifts and fixations learning by imitation. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 37(2), 256–271.CrossRef Belardinelli, A., Pirri, F., & Carbone, A. (2007). Bottom-up gaze shifts and fixations learning by imitation. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 37(2), 256–271.CrossRef
Zurück zum Zitat Borji, A., Ahmadabadi, M. N., Araabi, B. N., & Hamidi, M. (2010). Online learning of task-driven object-based visual attention control. Image and Vision Computing, 28(7), 1130–1145.CrossRef Borji, A., Ahmadabadi, M. N., Araabi, B. N., & Hamidi, M. (2010). Online learning of task-driven object-based visual attention control. Image and Vision Computing, 28(7), 1130–1145.CrossRef
Zurück zum Zitat Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108(3), 624–652.CrossRef Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108(3), 624–652.CrossRef
Zurück zum Zitat Breazeal, C., Edsinger, A., Fitzpatrick, P., & Scassellati, B. (2001). Active vision for sociable robots. IEEE Transactions on Systems, Man and Cybernetics, Part A, 31(5), 443–453.CrossRef Breazeal, C., Edsinger, A., Fitzpatrick, P., & Scassellati, B. (2001). Active vision for sociable robots. IEEE Transactions on Systems, Man and Cybernetics, Part A, 31(5), 443–453.CrossRef
Zurück zum Zitat Byrne, M. D. (2001). Act-r/pm and menu selection: Applying a cognitive architecture to hci. International Journal of Human-Computer Studies, 55(1), 41–84.CrossRef Byrne, M. D. (2001). Act-r/pm and menu selection: Applying a cognitive architecture to hci. International Journal of Human-Computer Studies, 55(1), 41–84.CrossRef
Zurück zum Zitat Caccavale, R., & Finzi, A. (2015). Plan execution and attentional regulations for flexible human-robot interaction. In Proceedings of the IEEE international conference on systems, man, and cybernetics, pp 2453–2458. Caccavale, R., & Finzi, A. (2015). Plan execution and attentional regulations for flexible human-robot interaction. In Proceedings of the IEEE international conference on systems, man, and cybernetics, pp 2453–2458.
Zurück zum Zitat Caccavale, R., & Finzi, A. (2016). Flexible task execution and attentional regulations in human–robot interaction. IEEE Transactions on Cognitive and Developmental Systems, 6(1), 68–79.CrossRef Caccavale, R., & Finzi, A. (2016). Flexible task execution and attentional regulations in human–robot interaction. IEEE Transactions on Cognitive and Developmental Systems, 6(1), 68–79.CrossRef
Zurück zum Zitat Caccavale, R., Cacace, J., Fiore, M., Alami, R., & Finzi, A. (2016). Attentional supervision of human–robot collaborative plans. In: Proceedings of the IEEE international conference on robot and human interactive communication (RO-MAN) (pp 867–873). IEEE. Caccavale, R., Cacace, J., Fiore, M., Alami, R., & Finzi, A. (2016). Attentional supervision of human–robot collaborative plans. In: Proceedings of the IEEE international conference on robot and human interactive communication (RO-MAN) (pp 867–873). IEEE.
Zurück zum Zitat Caccavale, R., Saveriano, M., Finzi, A., & Lee, D. (2018). Kinesthetic teaching and attentional supervision of structured tasks in human–robot interaction. Autonomous Robots, pp 1–17. Caccavale, R., Saveriano, M., Finzi, A., & Lee, D. (2018). Kinesthetic teaching and attentional supervision of structured tasks in human–robot interaction. Autonomous Robots, pp 1–17.
Zurück zum Zitat Chernova, S., & Arkin, R. C. (2007). From deliberative to routine behaviors: A cognitively inspired action-selection mechanism for routine behavior capture. Adaptive Behavior, 15, 199–216.CrossRef Chernova, S., & Arkin, R. C. (2007). From deliberative to routine behaviors: A cognitively inspired action-selection mechanism for routine behavior capture. Adaptive Behavior, 15, 199–216.CrossRef
Zurück zum Zitat Colombini, E. L., da Silva, S. A., & Costa Ribeiro, C. H. (2017). An attentional model for autonomous mobile robots. IEEE Systems Journal, 11(3), 1308–1319.CrossRef Colombini, E. L., da Silva, S. A., & Costa Ribeiro, C. H. (2017). An attentional model for autonomous mobile robots. IEEE Systems Journal, 11(3), 1308–1319.CrossRef
Zurück zum Zitat Cooper, R. P., & Shallice, T. (2000). Contention scheduling and the control of routine activities. Cognitive Neuropsychology, 17, 297–338.CrossRef Cooper, R. P., & Shallice, T. (2000). Contention scheduling and the control of routine activities. Cognitive Neuropsychology, 17, 297–338.CrossRef
Zurück zum Zitat Cooper, R. P., & Shallice, T. (2006). Hierarchical schemas and goals in the control of sequential behavior. Psychological Review, 113(4), 887–916.CrossRef Cooper, R. P., & Shallice, T. (2006). Hierarchical schemas and goals in the control of sequential behavior. Psychological Review, 113(4), 887–916.CrossRef
Zurück zum Zitat Cox, B., & Krichmar, J. (2009). Neuromodulation as a robot controller. Robotics & Automation Magazine, 16(3), 72–80.CrossRef Cox, B., & Krichmar, J. (2009). Neuromodulation as a robot controller. Robotics & Automation Magazine, 16(3), 72–80.CrossRef
Zurück zum Zitat Demiris, Y., & Khadhouri, B. (2006). Hierarchical attentive multiple models for execution and recognition of actions. Robotics and Autonomous Systems, 54(5), 361–369.CrossRef Demiris, Y., & Khadhouri, B. (2006). Hierarchical attentive multiple models for execution and recognition of actions. Robotics and Autonomous Systems, 54(5), 361–369.CrossRef
Zurück zum Zitat Di Nocera, D., Finzi, A., Rossi, S., & Staffa, M. (2012). Attentional action selection using reinforcement learning. In Proceedings of the international conference on simulation of adaptive behavior (pp. 371–380). Springer. Di Nocera, D., Finzi, A., Rossi, S., & Staffa, M. (2012). Attentional action selection using reinforcement learning. In Proceedings of the international conference on simulation of adaptive behavior (pp. 371–380). Springer.
Zurück zum Zitat Di Nocera, D., Finzi, A., Rossi, S., & Staffa, M. (2014). The role of intrinsic motivations in attention allocation and shifting. Frontiers in Psychology, 5, 273.CrossRef Di Nocera, D., Finzi, A., Rossi, S., & Staffa, M. (2014). The role of intrinsic motivations in attention allocation and shifting. Frontiers in Psychology, 5, 273.CrossRef
Zurück zum Zitat Dong, D., & Franklin, S. (2015). Modeling sensorimotor learning in lida using a dynamic learning rate. Biologically Inspired Cognitive Architectures, 14, 1–9.CrossRef Dong, D., & Franklin, S. (2015). Modeling sensorimotor learning in lida using a dynamic learning rate. Biologically Inspired Cognitive Architectures, 14, 1–9.CrossRef
Zurück zum Zitat Donnarumma, F., Prevete, R., Chersi, F., & Pezzulo, G. (2015a). A programmer-interpreter neural network architecture for prefrontal cognitive control. International Journal of Neural Systems, 25(6), 1550017. CrossRef Donnarumma, F., Prevete, R., Chersi, F., & Pezzulo, G. (2015a). A programmer-interpreter neural network architecture for prefrontal cognitive control. International Journal of Neural Systems, 25(6), 1550017. CrossRef
Zurück zum Zitat Donnarumma, F., Prevete, R., de Giorgio, A., Montone, G., & Pezzulo, G. (2015b). Learning programs is better than learning dynamics: A programmable neural network hierarchical architecture in a multi-task scenario. Adaptive Behavior, 24(1), 27–51.CrossRef Donnarumma, F., Prevete, R., de Giorgio, A., Montone, G., & Pezzulo, G. (2015b). Learning programs is better than learning dynamics: A programmable neural network hierarchical architecture in a multi-task scenario. Adaptive Behavior, 24(1), 27–51.CrossRef
Zurück zum Zitat Franklin, S., Madl, T., & D’Mello, S. (2014). Lida: A systems-level architecture for cognition, emotion, and learning. IEEE Transactions on Autonomous Mental Development, 6(1), 19–41.CrossRef Franklin, S., Madl, T., & D’Mello, S. (2014). Lida: A systems-level architecture for cognition, emotion, and learning. IEEE Transactions on Autonomous Mental Development, 6(1), 19–41.CrossRef
Zurück zum Zitat Garcez, A., Besold, T. R., De Raedt, L., Földiak, P., Hitzler, P., Icard, T., Kühnberger, K. U., Lamb, L. C., Miikkulainen, R., & Silver, D. L. (2015). Neural-symbolic learning and reasoning: Contributions and challenges. In Proceedings of the AAAI spring symposium on knowledge representation and reasoning: Integrating symbolic and neural approaches, Stanford. Garcez, A., Besold, T. R., De Raedt, L., Földiak, P., Hitzler, P., Icard, T., Kühnberger, K. U., Lamb, L. C., Miikkulainen, R., & Silver, D. L. (2015). Neural-symbolic learning and reasoning: Contributions and challenges. In Proceedings of the AAAI spring symposium on knowledge representation and reasoning: Integrating symbolic and neural approaches, Stanford.
Zurück zum Zitat Garcez, A. S., Lamb, L. C., & Gabbay, D. M. (2008). Neural-symbolic cognitive reasoning. Berlin: Springer. MATH Garcez, A. S., Lamb, L. C., & Gabbay, D. M. (2008). Neural-symbolic cognitive reasoning. Berlin: Springer. MATH
Zurück zum Zitat Garforth, J., McHale, S. L., & Meehan, A. (2006). Executive attention, task selection and attention-based learning in a neurally controlled simulated robot. Neurocomputing, 69(16–18), 1923–1945.CrossRef Garforth, J., McHale, S. L., & Meehan, A. (2006). Executive attention, task selection and attention-based learning in a neurally controlled simulated robot. Neurocomputing, 69(16–18), 1923–1945.CrossRef
Zurück zum Zitat Gianni, M., Kruijff, G. J. M., & Pirri, F. (2015). A stimulus-response framework for robot control. ACM Transactions on Interactive Intelligent Systems, 4(4), 21:1–21:41.CrossRef Gianni, M., Kruijff, G. J. M., & Pirri, F. (2015). A stimulus-response framework for robot control. ACM Transactions on Interactive Intelligent Systems, 4(4), 21:1–21:41.CrossRef
Zurück zum Zitat Kasderidis, S., & Taylor, J. (2004). Attentional agents and robot control. International Journal of Knowledge-Based and Intelligent Engineering Systems, 8(2), 69–89.CrossRef Kasderidis, S., & Taylor, J. (2004). Attentional agents and robot control. International Journal of Knowledge-Based and Intelligent Engineering Systems, 8(2), 69–89.CrossRef
Zurück zum Zitat Kawamura, K., Gordon, S. M., Ratanaswasd, P., Erdemir, E., & Hall, J. F. (2008). Implementation of cognitive control for a humanoid robot. International Journal of Humanoid Robotics, 5(04), 547–586.CrossRef Kawamura, K., Gordon, S. M., Ratanaswasd, P., Erdemir, E., & Hall, J. F. (2008). Implementation of cognitive control for a humanoid robot. International Journal of Humanoid Robotics, 5(04), 547–586.CrossRef
Zurück zum Zitat Khamassi, M., Lallée, S., Enel, P., Procyk, E., & Dominey, P. F. (2011). Robot cognitive control with a neurophysiologically inspired reinforcement learning model. Frontiers in NeuroRobotics, 5(1). Khamassi, M., Lallée, S., Enel, P., Procyk, E., & Dominey, P. F. (2011). Robot cognitive control with a neurophysiologically inspired reinforcement learning model. Frontiers in NeuroRobotics, 5(1).
Zurück zum Zitat Laird, J. E., Newell, A., & Rosenbloom, P. S. (1987). Soar: An architecture for general intelligence. Artificial Intelligence, 33(1), 1–64.CrossRef Laird, J. E., Newell, A., & Rosenbloom, P. S. (1987). Soar: An architecture for general intelligence. Artificial Intelligence, 33(1), 1–64.CrossRef
Zurück zum Zitat Lashley, K. S. (1951). The problem of serial order in behavior. In L. A. Jeffress (Ed.), Cerebral mechanisms in behavior. New York, NY: Wiley. Lashley, K. S. (1951). The problem of serial order in behavior. In L. A. Jeffress (Ed.), Cerebral mechanisms in behavior. New York, NY: Wiley.
Zurück zum Zitat Menna, M., Gianni, M., & Pirri, F. (2013). Learning the dynamic process of inhibition and task switching in robotics cognitive control. In Proceedings of ICMLA 2013, Vol. 1, pp. 392–397. Menna, M., Gianni, M., & Pirri, F. (2013). Learning the dynamic process of inhibition and task switching in robotics cognitive control. In Proceedings of ICMLA 2013, Vol. 1, pp. 392–397.
Zurück zum Zitat Mozer, M. C., & Sitton, M. (1998). Computational modeling of spatial attention. Attention, 9, 341–393. Mozer, M. C., & Sitton, M. (1998). Computational modeling of spatial attention. Attention, 9, 341–393.
Zurück zum Zitat Nagai, Y. (2009). From bottom-up visual attention to robot action learning. In Proceedings of international conference on development and learning, pp 1–6. Nagai, Y. (2009). From bottom-up visual attention to robot action learning. In Proceedings of international conference on development and learning, pp 1–6.
Zurück zum Zitat Nau, D., Cao, Y., Lotem, A., & Muñoz-Avila, H. (1999). Shop: Simple hierarchical ordered planner. In Proceedings of IJCAI (pp. 968–973). Morgan Kaufmann Publishers Inc. Nau, D., Cao, Y., Lotem, A., & Muñoz-Avila, H. (1999). Shop: Simple hierarchical ordered planner. In Proceedings of IJCAI (pp. 968–973). Morgan Kaufmann Publishers Inc.
Zurück zum Zitat Nicolescu, M. N., & Mataric, M. J. (2003). Natural methods for robot task learning: Instructive demonstrations, generalization and practice. In Proceedings of AAMAS (pp. 241–248). ACM. Nicolescu, M. N., & Mataric, M. J. (2003). Natural methods for robot task learning: Instructive demonstrations, generalization and practice. In Proceedings of AAMAS (pp. 241–248). ACM.
Zurück zum Zitat Norman, D. A., & Shallice, T. (1986). Attention to action: Willed and automatic control of behavior. In R. J. Davidson, G. E. Schwartz and D. Shapiro (Eds.), Consciousness and self-regulation: Advances in research (Vol. IV, Chap 1, pp. 1–18). New York, NY: Plenum Press. Norman, D. A., & Shallice, T. (1986). Attention to action: Willed and automatic control of behavior. In R. J. Davidson, G. E. Schwartz and D. Shapiro (Eds.), Consciousness and self-regulation: Advances in research (Vol. IV, Chap 1, pp. 1–18). New York, NY: Plenum Press.
Zurück zum Zitat Pardowitz, M., Knoop, S., Dillmann, R., & Zollner, R. D. (2007). Incremental learning of tasks from user demonstrations, past experiences, and vocal comments. IEEE Transactions on Systems Man and Cybernetics Part B (Cybernetics), 37(2), 322–332.CrossRef Pardowitz, M., Knoop, S., Dillmann, R., & Zollner, R. D. (2007). Incremental learning of tasks from user demonstrations, past experiences, and vocal comments. IEEE Transactions on Systems Man and Cybernetics Part B (Cybernetics), 37(2), 322–332.CrossRef
Zurück zum Zitat Posner, M. I., & Snyder, C. R. R. (1975). Attention and cognitive control. In: Information processing and cognition, pp. 55–85. Posner, M. I., & Snyder, C. R. R. (1975). Attention and cognitive control. In: Information processing and cognition, pp. 55–85.
Zurück zum Zitat Rubinstein, J., Meyer, E., & Evan, J. E. (2001). Executive control of cognitive processes in task switching. Journal of Experimental Psychology: Human Perception and Performance, 27(4), 763–797. Rubinstein, J., Meyer, E., & Evan, J. E. (2001). Executive control of cognitive processes in task switching. Journal of Experimental Psychology: Human Perception and Performance, 27(4), 763–797.
Metadaten
Titel
Learning attentional regulations for structured tasks execution in robotic cognitive control
verfasst von
Riccardo Caccavale
Alberto Finzi
Publikationsdatum
08.07.2019
Verlag
Springer US
Erschienen in
Autonomous Robots / Ausgabe 8/2019
Print ISSN: 0929-5593
Elektronische ISSN: 1573-7527
DOI
https://doi.org/10.1007/s10514-019-09876-x

Weitere Artikel der Ausgabe 8/2019

Autonomous Robots 8/2019 Zur Ausgabe