Skip to main content
Erschienen in: Autonomous Robots 1/2021

15.09.2020

Synchronous intercept strategies for a robotic defense-intrusion game with two defenders

verfasst von: Shuai Zhang, Mingyong Liu, Xiaokang Lei, Panpan Yang, Yunke Huang, Ruaridh Clark

Erschienen in: Autonomous Robots | Ausgabe 1/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We study the defense-intrusion game, in which a single attacker robot tries to reach a stationary target that is protected by two defender robots. We focus on the “synchronous intercept problem”, where both robots have to reach the attacker robot synchronously to intercept it. Assume that the attacker robot has the control policy which is based on attraction to the target and repulsion from the defenders, two kinds of synchronous intercept strategies are proposed for the defense-intrusion game, introduced here as Attacker-oriented and Neutral-position-oriented. Theoretical analysis and simulation results show that: (1) the two strategies are able to generate different synchronous intercept patterns: contact intercept pattern and stable non-contact intercept pattern, respectively. (2) The contact intercept pattern allows the defender robots to intercept the attacker robot in finite time, while the stable non-contact intercept pattern generates a periodic attractor that prevents the attack robot from reaching the target for infinite time. There is potential to apply the insights obtained into defense-intrusion in real systems, including aircraft escort and the defense of military targets or territorial boundaries.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Alexander, S., Bishop, R., & Ghrist, R. (2009). Capture pursuit games on unbounded domains. Enseign Mathematics, 55(1–2), 103–125.MathSciNetMATH Alexander, S., Bishop, R., & Ghrist, R. (2009). Capture pursuit games on unbounded domains. Enseign Mathematics, 55(1–2), 103–125.MathSciNetMATH
Zurück zum Zitat Antonelli, G., Arrichiello, F., & Chiaverini, S. (2007). The entrapment/escorting mission for a multi-robot system: Theory and experiments. In IEEE/ASME international conference on advanced intelligent mechatronics (pp. 1–6). IEEE. Antonelli, G., Arrichiello, F., & Chiaverini, S. (2007). The entrapment/escorting mission for a multi-robot system: Theory and experiments. In IEEE/ASME international conference on advanced intelligent mechatronics (pp. 1–6). IEEE.
Zurück zum Zitat Basar, T., & Olsder, G. J. (1999). Dynamic noncooperative game theory (Vol. 23). SIAM. Basar, T., & Olsder, G. J. (1999). Dynamic noncooperative game theory (Vol. 23). SIAM.
Zurück zum Zitat Bertram, B. C. R. (1978). Living in groups: Predators and prey. In The 2005 IEEE congress on evolutionary computation (Vol. 1, pp. 41–48). Bertram, B. C. R. (1978). Living in groups: Predators and prey. In The 2005 IEEE congress on evolutionary computation (Vol. 1, pp. 41–48).
Zurück zum Zitat Bhattacharya, S., & Hutchinson, S. (2008). Approximation schemes for two-player pursuit evasion games with visibility constraints. In Robotics: Science and systems. Bhattacharya, S., & Hutchinson, S. (2008). Approximation schemes for two-player pursuit evasion games with visibility constraints. In Robotics: Science and systems.
Zurück zum Zitat Bhattacharya S., Başar, T., & Hovakimyan, N. (2011). Singular surfaces in multi-agent connectivity maintenance games. In 50th IEEE conference on decision and control and European control conference (CDC-ECC) (pp. 261–266). IEEE. Bhattacharya S., Başar, T., & Hovakimyan, N. (2011). Singular surfaces in multi-agent connectivity maintenance games. In 50th IEEE conference on decision and control and European control conference (CDC-ECC) (pp. 261–266). IEEE.
Zurück zum Zitat Bhattacharya, S., Basar, T., & Hovakimyan, N. (2014). On the construction of barrier in a visibility based pursuit evasion game. In 2014 European control conference (ECC) (pp. 1894–1901). IEEE. Bhattacharya, S., Basar, T., & Hovakimyan, N. (2014). On the construction of barrier in a visibility based pursuit evasion game. In 2014 European control conference (ECC) (pp. 1894–1901). IEEE.
Zurück zum Zitat Bopardikar, S. D., & Suri, S. (2014). k-capture in multiagent pursuit evasion, or the lion and the hyenas. Theoretical Computer Science, 522, 13–23.MathSciNetMATH Bopardikar, S. D., & Suri, S. (2014). k-capture in multiagent pursuit evasion, or the lion and the hyenas. Theoretical Computer Science, 522, 13–23.MathSciNetMATH
Zurück zum Zitat Boyell, R. L. (1976). Defending a moving target against missile or torpedo attack. IEEE Transactions on Aerospace and Electronic Systems, 4, 522–526. Boyell, R. L. (1976). Defending a moving target against missile or torpedo attack. IEEE Transactions on Aerospace and Electronic Systems, 4, 522–526.
Zurück zum Zitat Breakwell, J. V. (1975). Pursuit of a faster evader. In The theory and application of differential games (pp. 243–256). Springer. Breakwell, J. V. (1975). Pursuit of a faster evader. In The theory and application of differential games (pp. 243–256). Springer.
Zurück zum Zitat Chen, J., Zha, W., Peng, Z., & Gu, D. (2016a). Multi-player pursuit-evasion games with one superior evader. Automatica, 71, 24–32.MathSciNetMATH Chen, J., Zha, W., Peng, Z., & Gu, D. (2016a). Multi-player pursuit-evasion games with one superior evader. Automatica, 71, 24–32.MathSciNetMATH
Zurück zum Zitat Chen, M., Zhou, Z., & Tomlin, C. J. (2014a). Multiplayer reach-avoid games via low dimensional solutions and maximum matching. In 2014 American control conference (pp. 1444–1449). IEEE. Chen, M., Zhou, Z., & Tomlin, C. J. (2014a). Multiplayer reach-avoid games via low dimensional solutions and maximum matching. In 2014 American control conference (pp. 1444–1449). IEEE.
Zurück zum Zitat Chen, M., Zhou, Z., & Tomlin, C. J. (2014b). A path defense approach to the multiplayer reach-avoid game. In 53rd IEEE conference on decision and control (pp. 2420–2426). IEEE. Chen, M., Zhou, Z., & Tomlin, C. J. (2014b). A path defense approach to the multiplayer reach-avoid game. In 53rd IEEE conference on decision and control (pp. 2420–2426). IEEE.
Zurück zum Zitat Chen, M., Zhou, Z., & Tomlin, C. J. (2016b). Multiplayer reach-avoid games via pairwise outcomes. IEEE Transactions on Automatic Control, 62(3), 1451–1457.MathSciNetMATH Chen, M., Zhou, Z., & Tomlin, C. J. (2016b). Multiplayer reach-avoid games via pairwise outcomes. IEEE Transactions on Automatic Control, 62(3), 1451–1457.MathSciNetMATH
Zurück zum Zitat Garcia, E., Casbeer, D. W., & Pachter, M. (2019). Design and analysis of state-feedback optimal strategies for the differential game of active defense. IEEE Transactions on Automatic Control, 64(2), 553–568.MathSciNetMATH Garcia, E., Casbeer, D. W., & Pachter, M. (2019). Design and analysis of state-feedback optimal strategies for the differential game of active defense. IEEE Transactions on Automatic Control, 64(2), 553–568.MathSciNetMATH
Zurück zum Zitat Gese, E. M. (2001). Territorial defense by coyotes (canis latrans) in yellowstone national park, wyoming: Who, how, where, when, and why. Canadian Journal of Zoology, 79(6), 980–987. Gese, E. M. (2001). Territorial defense by coyotes (canis latrans) in yellowstone national park, wyoming: Who, how, where, when, and why. Canadian Journal of Zoology, 79(6), 980–987.
Zurück zum Zitat Hagedorn, P., & Breakwell, J. (1976). A differential game with two pursuers and one evader. Journal of Optimization Theory and Applications, 18(1), 15–29.MathSciNetMATH Hagedorn, P., & Breakwell, J. (1976). A differential game with two pursuers and one evader. Journal of Optimization Theory and Applications, 18(1), 15–29.MathSciNetMATH
Zurück zum Zitat Huang, T. Y., Xue-Bo, C., Wang-Bao, X., Zi-Wei, Z., & Zhi-Yong, R. (2013). A self-organizing cooperative hunting by swarm robotic systems based on loose-preference rule. Acta Automatica Sinica, 39(1), 57–68.MathSciNet Huang, T. Y., Xue-Bo, C., Wang-Bao, X., Zi-Wei, Z., & Zhi-Yong, R. (2013). A self-organizing cooperative hunting by swarm robotic systems based on loose-preference rule. Acta Automatica Sinica, 39(1), 57–68.MathSciNet
Zurück zum Zitat Iwama, T., & Sato, M. (2012). Group chase and escape with some fast chasers. Physical Review E, 86(6), 067102. Iwama, T., & Sato, M. (2012). Group chase and escape with some fast chasers. Physical Review E, 86(6), 067102.
Zurück zum Zitat Janosov, M., Virágh, C., Vásárhelyi, G., & Vicsek, T. (2017). Group chasing tactics: How to catch a faster prey. New Journal of Physics, 19(5), 053003. Janosov, M., Virágh, C., Vásárhelyi, G., & Vicsek, T. (2017). Group chasing tactics: How to catch a faster prey. New Journal of Physics, 19(5), 053003.
Zurück zum Zitat Kamimura, A., & Ohira, T. (2010). Group chase and escape. New Journal of Physics, 12(5), 053013.MATH Kamimura, A., & Ohira, T. (2010). Group chase and escape. New Journal of Physics, 12(5), 053013.MATH
Zurück zum Zitat Kopparty, S., & Ravishankar, C. V. (2005). A framework for pursuit evasion games in rn. Information Processing Letters, 96(3), 114–122.MathSciNetMATH Kopparty, S., & Ravishankar, C. V. (2005). A framework for pursuit evasion games in rn. Information Processing Letters, 96(3), 114–122.MathSciNetMATH
Zurück zum Zitat Kothari, M., Manathara, J. G., & Postlethwaite, I. (2014). A cooperative pursuit-evasion game for non-holonomic systems. IFAC Proceedings Volumes, 47(3), 1977–1984. Kothari, M., Manathara, J. G., & Postlethwaite, I. (2014). A cooperative pursuit-evasion game for non-holonomic systems. IFAC Proceedings Volumes, 47(3), 1977–1984.
Zurück zum Zitat Li, W. (2016a). Escape analysis on the confinement-escape problem of a defender against an evader escaping from a circular region. IEEE transactions on cybernetics, 46(9), 2166–2172. Li, W. (2016a). Escape analysis on the confinement-escape problem of a defender against an evader escaping from a circular region. IEEE transactions on cybernetics, 46(9), 2166–2172.
Zurück zum Zitat Li, W. (2016b). Formulation of a cooperative-confinement-escape problem of multiple cooperative defenders against an evader escaping from a circular region. Communications in Nonlinear Science and Numerical Simulation, 39, 442–457.MathSciNetMATH Li, W. (2016b). Formulation of a cooperative-confinement-escape problem of multiple cooperative defenders against an evader escaping from a circular region. Communications in Nonlinear Science and Numerical Simulation, 39, 442–457.MathSciNetMATH
Zurück zum Zitat Liang, L., Deng, F., Peng, Z., Li, X., & Zha, W. (2019). A differential game for cooperative target defense. Automatica, 102, 58–71.MathSciNetMATH Liang, L., Deng, F., Peng, Z., Li, X., & Zha, W. (2019). A differential game for cooperative target defense. Automatica, 102, 58–71.MathSciNetMATH
Zurück zum Zitat Littlewood, J. E. (1986). Littlewood’s miscellany. Cambridge: Cambridge University Press. Littlewood, J. E. (1986). Littlewood’s miscellany. Cambridge: Cambridge University Press.
Zurück zum Zitat Liu, S. Y., Zhou, Z., Tomlin, C., & Hedrick, K. (2013a). Evasion as a team against a faster pursuer. In 2013 American control conference (pp. 5368–5373). IEEE. Liu, S. Y., Zhou, Z., Tomlin, C., & Hedrick, K. (2013a). Evasion as a team against a faster pursuer. In 2013 American control conference (pp. 5368–5373). IEEE.
Zurück zum Zitat Liu, S. Y., Zhou, Z., Tomlin, C., & Hedrick, K. (2013b). A gradient-based method for team evasion. In ASME 2013 dynamic systems and control conference. American Society of Mechanical Engineers Digital Collection. Liu, S. Y., Zhou, Z., Tomlin, C., & Hedrick, K. (2013b). A gradient-based method for team evasion. In ASME 2013 dynamic systems and control conference. American Society of Mechanical Engineers Digital Collection.
Zurück zum Zitat Liu, S. Y., Zhou, Z., Tomlin, C., & Hedrick, J. K. (2014). Evasion of a team of dubins vehicles from a hidden pursuer. In 2014 IEEE International Conference on Robotics and Automation (ICRA) (pp. 6771–6776). IEEE. Liu, S. Y., Zhou, Z., Tomlin, C., & Hedrick, J. K. (2014). Evasion of a team of dubins vehicles from a hidden pursuer. In 2014 IEEE International Conference on Robotics and Automation (ICRA) (pp. 6771–6776). IEEE.
Zurück zum Zitat Makkapati, V. R., Sun, W., & Tsiotras, P. (2018). Optimal evading strategies for two-pursuer/one-evader problems. Journal of Guidance, Control and Dynamics, 41(4), 851–862. Makkapati, V. R., Sun, W., & Tsiotras, P. (2018). Optimal evading strategies for two-pursuer/one-evader problems. Journal of Guidance, Control and Dynamics, 41(4), 851–862.
Zurück zum Zitat Martin, H. J. A., de Lope, J., & Maravall, D. (2010). Analysis and solution of a predator-protector-prey multi-robot system by a high-level reinforcement learning architecture and the adaptive systems theory. Robotics and Autonomous Systems, 58(12), 1266–1272. Martin, H. J. A., de Lope, J., & Maravall, D. (2010). Analysis and solution of a predator-protector-prey multi-robot system by a high-level reinforcement learning architecture and the adaptive systems theory. Robotics and Autonomous Systems, 58(12), 1266–1272.
Zurück zum Zitat Masuko, M., Hiraoka, T., Ito, N., & Shimada, T. (2017). The effect of laziness in group chase and escape. Journal of the Physical Society of Japan, 86(8), 085002. Masuko, M., Hiraoka, T., Ito, N., & Shimada, T. (2017). The effect of laziness in group chase and escape. Journal of the Physical Society of Japan, 86(8), 085002.
Zurück zum Zitat Neill, S. S. R. J., & Cullen, J. M. (1974). Experiments on whether schooling by their prey affects the hunting behaviour of cephalopods and fish predators. Journal of Zoology, 172(4), 549–569. Neill, S. S. R. J., & Cullen, J. M. (1974). Experiments on whether schooling by their prey affects the hunting behaviour of cephalopods and fish predators. Journal of Zoology, 172(4), 549–569.
Zurück zum Zitat Oyler, D. W., Kabamba, P. T., & Girard, A. R. (2016). Pursuit-evasion games in the presence of obstacles. Automatica, 65, 1–11.MathSciNetMATH Oyler, D. W., Kabamba, P. T., & Girard, A. R. (2016). Pursuit-evasion games in the presence of obstacles. Automatica, 65, 1–11.MathSciNetMATH
Zurück zum Zitat Pachter, M., Garcia, E., & Casbeer, D. W. (2019). Toward a solution of the active target defense differential game. Dynamic Games and Applications, 9(1), 165–216.MathSciNetMATH Pachter, M., Garcia, E., & Casbeer, D. W. (2019). Toward a solution of the active target defense differential game. Dynamic Games and Applications, 9(1), 165–216.MathSciNetMATH
Zurück zum Zitat Pan, S., Huang, H., Ding, J., Zhang, W., Tomlin, C. J., et al. (2012) Pursuit, evasion and defense in the plane. In American control conference (ACC), 2012 (pp. 4167–4173). IEEE. Pan, S., Huang, H., Ding, J., Zhang, W., Tomlin, C. J., et al. (2012) Pursuit, evasion and defense in the plane. In American control conference (ACC), 2012 (pp. 4167–4173). IEEE.
Zurück zum Zitat Peng, X., Zhang, S., & Lei, X. (2016). Multi-target trapping in constrained environments using gene regulatory network-based pattern formation. International Journal of Advanced Robotic Systems, 13(5), 1–12. Peng, X., Zhang, S., & Lei, X. (2016). Multi-target trapping in constrained environments using gene regulatory network-based pattern formation. International Journal of Advanced Robotic Systems, 13(5), 1–12.
Zurück zum Zitat Ramana, M. V., & Kothari, M. (2017). Pursuit-evasion games of high speed evader. Journal of Intelligent and Robotic Systems, 85(2), 293–306. Ramana, M. V., & Kothari, M. (2017). Pursuit-evasion games of high speed evader. Journal of Intelligent and Robotic Systems, 85(2), 293–306.
Zurück zum Zitat Ripple, W. J., & Larsen, E. J. (2000). Historic aspen recruitment, elk, and wolves in northern yellowstone national park, usa. Biological Conservation, 95(3), 361–370. Ripple, W. J., & Larsen, E. J. (2000). Historic aspen recruitment, elk, and wolves in northern yellowstone national park, usa. Biological Conservation, 95(3), 361–370.
Zurück zum Zitat Saito, T., Nakamura, T., & Ohira, T. (2016). Group chase and escape model with Chasers’ interaction. Physica A: Statistical Mechanics and its Applications, 447, 172–179. Saito, T., Nakamura, T., & Ohira, T. (2016). Group chase and escape model with Chasers’ interaction. Physica A: Statistical Mechanics and its Applications, 447, 172–179.
Zurück zum Zitat Shishika, D., & Kumar, V. (2018). Local-game decomposition for multiplayer perimeter-defense problem. In 2018 IEEE conference on decision and control (CDC) (pp. 2093–2100). IEEE. Shishika, D., & Kumar, V. (2018). Local-game decomposition for multiplayer perimeter-defense problem. In 2018 IEEE conference on decision and control (CDC) (pp. 2093–2100). IEEE.
Zurück zum Zitat Shishika, D., & Paley, D. A. (2019). Mosquito-inspired distributed swarming and pursuit for cooperative defense against fast intruders. Autonomous Robots, 43(7), 1781–1799. Shishika, D., & Paley, D. A. (2019). Mosquito-inspired distributed swarming and pursuit for cooperative defense against fast intruders. Autonomous Robots, 43(7), 1781–1799.
Zurück zum Zitat Siegfried, W. R., & Underhill, L. G. (1975). Flocking as an anti-predator strategy in doves. Animal Behaviour, 23(75), 504–508. Siegfried, W. R., & Underhill, L. G. (1975). Flocking as an anti-predator strategy in doves. Animal Behaviour, 23(75), 504–508.
Zurück zum Zitat Sun, Q., Shen, M., Gu, X., Hou, K., & Qi, N. (2019). Evasion-pursuit strategy against defended aircraft based on differential game theory. International Journal of Aerospace Engineering, 2019, 7980379. Sun, Q., Shen, M., Gu, X., Hou, K., & Qi, N. (2019). Evasion-pursuit strategy against defended aircraft based on differential game theory. International Journal of Aerospace Engineering, 2019, 7980379.
Zurück zum Zitat Takei, R., Tsai, R., Zhou, Z., & Landa, Y. (2014). An efficient algorithm for a visibility-based surveillance-evasion game. Communications in Mathematical Sciences, 12(7), 1303–1327.MathSciNetMATH Takei, R., Tsai, R., Zhou, Z., & Landa, Y. (2014). An efficient algorithm for a visibility-based surveillance-evasion game. Communications in Mathematical Sciences, 12(7), 1303–1327.MathSciNetMATH
Zurück zum Zitat Turetsky, V. (2008). Capture zones of linear feedback pursuer strategies. Automatica, 44(2), 560–566.MathSciNetMATH Turetsky, V. (2008). Capture zones of linear feedback pursuer strategies. Automatica, 44(2), 560–566.MathSciNetMATH
Zurück zum Zitat Vicsek, T. (2010). Statistical physics: Closing in on evaders. Nature, 466(7302), 43. Vicsek, T. (2010). Statistical physics: Closing in on evaders. Nature, 466(7302), 43.
Zurück zum Zitat Wang, J., & Li, W. (2015). Motion patterns and phase-transition of a defender-intruder problem and optimal interception strategy of the defender. Communications in Nonlinear Science and Numerical Simulation, 27(1), 294–301.MathSciNetMATH Wang, J., & Li, W. (2015). Motion patterns and phase-transition of a defender-intruder problem and optimal interception strategy of the defender. Communications in Nonlinear Science and Numerical Simulation, 27(1), 294–301.MathSciNetMATH
Zurück zum Zitat Yang, S., Jiang, S., Jiang, L., Li, G., & Han, Z. (2014). Aggregation increases prey survival time in group chase and escape. New Journal of Physics, 16(8), 083006. Yang, S., Jiang, S., Jiang, L., Li, G., & Han, Z. (2014). Aggregation increases prey survival time in group chase and escape. New Journal of Physics, 16(8), 083006.
Zurück zum Zitat Zha, W., Chen, J., Peng, Z., & Gu, D. (2016). Construction of barrier in a fishing game with point capture. IEEE transactions on cybernetics, 47(6), 1409–1422. Zha, W., Chen, J., Peng, Z., & Gu, D. (2016). Construction of barrier in a fishing game with point capture. IEEE transactions on cybernetics, 47(6), 1409–1422.
Zurück zum Zitat Zhang, F., & Zha, W. (2018). Evasion strategies of a three-player lifeline game. Science China Information Sciences, 61(11), 112206.MathSciNet Zhang, F., & Zha, W. (2018). Evasion strategies of a three-player lifeline game. Science China Information Sciences, 61(11), 112206.MathSciNet
Zurück zum Zitat Zhang, S., Liu, M., Lei, X., Huang, Y., & Zhang, F. (2018). Multi-target trapping with swarm robots based on pattern formation. Robotics and Autonomous Systems, 106, 1–13. Zhang, S., Liu, M., Lei, X., Huang, Y., & Zhang, F. (2018). Multi-target trapping with swarm robots based on pattern formation. Robotics and Autonomous Systems, 106, 1–13.
Zurück zum Zitat Zhang, S., Liu, M., Lei, X., & Huang, Y. (2019). Stay-eat or run-away: Two alternative escape behaviors. Physics Letters A, 383(7), 593–599. Zhang, S., Liu, M., Lei, X., & Huang, Y. (2019). Stay-eat or run-away: Two alternative escape behaviors. Physics Letters A, 383(7), 593–599.
Zurück zum Zitat Zhou, Z., Takei, R., Huang, H., & Tomlin, C. J. (2012). A general, open-loop formulation for reach-avoid games. In 2012 IEEE 51st IEEE conference on decision and control (CDC) (pp. 6501–6506). IEEE. Zhou, Z., Takei, R., Huang, H., & Tomlin, C. J. (2012). A general, open-loop formulation for reach-avoid games. In 2012 IEEE 51st IEEE conference on decision and control (CDC) (pp. 6501–6506). IEEE.
Zurück zum Zitat Zhou, Z., Zhang, W., Ding, J., Huang, H., Stipanović, D. M., & Tomlin, C. J. (2016). Cooperative pursuit with voronoi partitions. Automatica, 72, 64–72.MathSciNetMATH Zhou, Z., Zhang, W., Ding, J., Huang, H., Stipanović, D. M., & Tomlin, C. J. (2016). Cooperative pursuit with voronoi partitions. Automatica, 72, 64–72.MathSciNetMATH
Zurück zum Zitat Zhou, Z., Ding, J., Huang, H., Takei, R., & Tomlin, C. (2018). Efficient path planning algorithms in reach-avoid problems. Automatica, 89, 28–36.MathSciNetMATH Zhou, Z., Ding, J., Huang, H., Takei, R., & Tomlin, C. (2018). Efficient path planning algorithms in reach-avoid problems. Automatica, 89, 28–36.MathSciNetMATH
Metadaten
Titel
Synchronous intercept strategies for a robotic defense-intrusion game with two defenders
verfasst von
Shuai Zhang
Mingyong Liu
Xiaokang Lei
Panpan Yang
Yunke Huang
Ruaridh Clark
Publikationsdatum
15.09.2020
Verlag
Springer US
Erschienen in
Autonomous Robots / Ausgabe 1/2021
Print ISSN: 0929-5593
Elektronische ISSN: 1573-7527
DOI
https://doi.org/10.1007/s10514-020-09945-6

Weitere Artikel der Ausgabe 1/2021

Autonomous Robots 1/2021 Zur Ausgabe