Skip to main content
Erschienen in: Cellulose 2/2013

01.04.2013 | Original Paper

Effect of pyrolysis conditions on the properties of carbonaceous nanofibers obtained from freeze-dried cellulose nanofibers

verfasst von: Ehsan Jazaeri, Takuya Tsuzuki

Erschienen in: Cellulose | Ausgabe 2/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Carbonaceous nanofibers (CsNFs) were produced by pyrolysis of cellulose nanofibers synthesised from wood pulp using a top-down approach. The effects of heat treatment conditions on the thermal, morphological, crystal and chemical properties of the CsNFs were investigated using TGA, SEM, XRD and FT-IR, respectively. The results showed that heat treatment conditions around the thermal decomposition temperature of cellulose greatly influence the morphology of resulting materials. Slow heating rates (1 °C/min) between 240 and 400 °C as well as prolonged isothermal heat treatment (17 h) at 240 °C were necessary to avoid destruction of the original fibrous morphology in carbonized nanofibers. On the other hand, such heat treatment had little effect on micron sized fibers. The optimized heat treatment conditions led to the release of oxygen and hydrogen from cellulose before thermal breakdown of glycosidic rings, which in turn prevented depolymerization and tar formation, resulting in the preservation of the fibrous morphology.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Agoda TG, Durand S, Berot S, Blassel C, Gaillard C, Garnier C et al (2010) Rheological characterization of microfibrillated cellulose suspensions after freezing. Carbohydr Polym 80:677–686CrossRef Agoda TG, Durand S, Berot S, Blassel C, Gaillard C, Garnier C et al (2010) Rheological characterization of microfibrillated cellulose suspensions after freezing. Carbohydr Polym 80:677–686CrossRef
Zurück zum Zitat Antal MJ, Friedman HL, Rogers FE (1980) Kinetics of cellulose pyrolysis in nitrogen and steam. Combust Sci Tech 21:141–152CrossRef Antal MJ, Friedman HL, Rogers FE (1980) Kinetics of cellulose pyrolysis in nitrogen and steam. Combust Sci Tech 21:141–152CrossRef
Zurück zum Zitat Broido A, Yow H (1977) Resolution of molecular weight distributions in slightly pyrolysed cellulose using weibull function. J Appl Polym Sci 21:1677–1685CrossRef Broido A, Yow H (1977) Resolution of molecular weight distributions in slightly pyrolysed cellulose using weibull function. J Appl Polym Sci 21:1677–1685CrossRef
Zurück zum Zitat Brunner PH, Roberts PV (1980) The significance of heating rate on char yield and char properties in the pyrolysis of cellulose. Carbon 18:217–224CrossRef Brunner PH, Roberts PV (1980) The significance of heating rate on char yield and char properties in the pyrolysis of cellulose. Carbon 18:217–224CrossRef
Zurück zum Zitat Cagnon BT, Xavier PY, Guillot A, Stoeckli F, Chambat GA (2009) Contributions of hemicellulose, cellulose and lignin to the mass and the porous properties of chars and steam activated carbons from various lignocellulosic precursors. Biores Tech 100:292–298CrossRef Cagnon BT, Xavier PY, Guillot A, Stoeckli F, Chambat GA (2009) Contributions of hemicellulose, cellulose and lignin to the mass and the porous properties of chars and steam activated carbons from various lignocellulosic precursors. Biores Tech 100:292–298CrossRef
Zurück zum Zitat Cao Y, Tan HM (2002) Effects of cellulase on the modification of cellulose. Carbohydr Res 337:1291–1296CrossRef Cao Y, Tan HM (2002) Effects of cellulase on the modification of cellulose. Carbohydr Res 337:1291–1296CrossRef
Zurück zum Zitat Chen W, Yu H, Liu Y, Chen P, Zhang M, Hai Y (2011) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr Polym 83:1804–1811CrossRef Chen W, Yu H, Liu Y, Chen P, Zhang M, Hai Y (2011) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr Polym 83:1804–1811CrossRef
Zurück zum Zitat Chung DDL (1994) Carbon fiber composites. Butterworth-Heinemann, Boston Chung DDL (1994) Carbon fiber composites. Butterworth-Heinemann, Boston
Zurück zum Zitat Ci LJ, Zhu HW, Wei BQ, Xu CL, Liang J, Wu DH (2000) Graphitization behavior of carbon nanofibers prepared by the floating catalyst method. Mater Lett 4:291–294CrossRef Ci LJ, Zhu HW, Wei BQ, Xu CL, Liang J, Wu DH (2000) Graphitization behavior of carbon nanofibers prepared by the floating catalyst method. Mater Lett 4:291–294CrossRef
Zurück zum Zitat Davidson HW, Losty HHW (1963) The initial pyrolyses of celluloses. GEC J 30:22–28 Davidson HW, Losty HHW (1963) The initial pyrolyses of celluloses. GEC J 30:22–28
Zurück zum Zitat Fitzer E (1990) Fibres. In: Figueiredo JL, Bernardo CA, Baker RTK, Huttinger KJ (ed) Carbon Fibers Filaments and Composites. Kluwer Academic, Dordrecht, pp 3–41 Fitzer E (1990) Fibres. In: Figueiredo JL, Bernardo CA, Baker RTK, Huttinger KJ (ed) Carbon Fibers Filaments and Composites. Kluwer Academic, Dordrecht, pp 3–41
Zurück zum Zitat Gaur S, Reed TB (1994) Prediction of cellulose decomposition rates from thermogravimetric data. Biomass Bioenerg 7:61–67CrossRef Gaur S, Reed TB (1994) Prediction of cellulose decomposition rates from thermogravimetric data. Biomass Bioenerg 7:61–67CrossRef
Zurück zum Zitat Guilminot E, Fischer F, Chatenet M, Rigacci A, Berthon FS, Achard P et al (2007) Use of cellulose-based carbon aerogels as catalyst support for PEM fuel cell electrodes, electrochemical characterization. J Power Sources 166:104–111CrossRef Guilminot E, Fischer F, Chatenet M, Rigacci A, Berthon FS, Achard P et al (2007) Use of cellulose-based carbon aerogels as catalyst support for PEM fuel cell electrodes, electrochemical characterization. J Power Sources 166:104–111CrossRef
Zurück zum Zitat Ishida O, Kim DY, Kuga S, Nishiyama Y, Brown RM (2004) Microfibrillar carbon from native cellulose. Cellulose 11:475–480CrossRef Ishida O, Kim DY, Kuga S, Nishiyama Y, Brown RM (2004) Microfibrillar carbon from native cellulose. Cellulose 11:475–480CrossRef
Zurück zum Zitat Jazaeri E, Zhang L, Wang X, Tsuzuki T (2011) Fabrication of carbon nanofiber by pyrolysis of freeze-dried cellulose nanofiber. Cellulose 18:1481–1485CrossRef Jazaeri E, Zhang L, Wang X, Tsuzuki T (2011) Fabrication of carbon nanofiber by pyrolysis of freeze-dried cellulose nanofiber. Cellulose 18:1481–1485CrossRef
Zurück zum Zitat Khezami L, Chetouani A, Taouk B, Capart R (2005) Production and characterisation of activated carbon from wood components in powder: cellulose, lignin, xylan. Powder Tech 157:48–56CrossRef Khezami L, Chetouani A, Taouk B, Capart R (2005) Production and characterisation of activated carbon from wood components in powder: cellulose, lignin, xylan. Powder Tech 157:48–56CrossRef
Zurück zum Zitat Kim DY, Nishiyama Y, Wada M, Kuga S (2001) Graphitization of highly crystalline cellulose. Carbon 39:1051–1056CrossRef Kim DY, Nishiyama Y, Wada M, Kuga S (2001) Graphitization of highly crystalline cellulose. Carbon 39:1051–1056CrossRef
Zurück zum Zitat Morgan P (2005a) Structure of the carbon atom. In: Carbon fibers and their composites. CRC Press, Boca Raton, pp 1–13 Morgan P (2005a) Structure of the carbon atom. In: Carbon fibers and their composites. CRC Press, Boca Raton, pp 1–13
Zurück zum Zitat Morgan P (2005b) The forms of carbon. In: Carbon fibers and their composites. CRC Press, Boca Raton, pp 24–31 Morgan P (2005b) The forms of carbon. In: Carbon fibers and their composites. CRC Press, Boca Raton, pp 24–31
Zurück zum Zitat Morgan P (2005c) Carbon fiber production using a PAN precursor. In: Carbon fibers and their composites. CRC Press, Boca Raton, pp 185–267 Morgan P (2005c) Carbon fiber production using a PAN precursor. In: Carbon fibers and their composites. CRC Press, Boca Raton, pp 185–267
Zurück zum Zitat Morgan P (2005d) Carbon fiber production using a pitch based precursor. In: Carbon fibers and their composites. CRC Press, Boca Raton, pp 295–324 Morgan P (2005d) Carbon fiber production using a pitch based precursor. In: Carbon fibers and their composites. CRC Press, Boca Raton, pp 295–324
Zurück zum Zitat Morgan P (2005e) Carbon fiber production using a cellulosic based precursor. In: Carbon fibers and their composites. CRC Press, Boca Raton, pp 269–294 Morgan P (2005e) Carbon fiber production using a cellulosic based precursor. In: Carbon fibers and their composites. CRC Press, Boca Raton, pp 269–294
Zurück zum Zitat Nelson ML, O’connor RT (1964a) Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part I: spectra of lattice types I, II, III and of amorphous cellulose. J Appl Polym Sci 8:1311–1324CrossRef Nelson ML, O’connor RT (1964a) Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part I: spectra of lattice types I, II, III and of amorphous cellulose. J Appl Polym Sci 8:1311–1324CrossRef
Zurück zum Zitat Nelson ML, O’connor RT (1964b) Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part II: a new infrared ratio for estimation of crystallinity in celluloses I and II. J Appl Polym Sci 8:1325–1341CrossRef Nelson ML, O’connor RT (1964b) Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part II: a new infrared ratio for estimation of crystallinity in celluloses I and II. J Appl Polym Sci 8:1325–1341CrossRef
Zurück zum Zitat Nogi M, Kurosaki F, Yano H, Takano M (2010) Preparation of nanofibrillar carbon from chitin nanofibers. Carbohydr Polym 81:919–924CrossRef Nogi M, Kurosaki F, Yano H, Takano M (2010) Preparation of nanofibrillar carbon from chitin nanofibers. Carbohydr Polym 81:919–924CrossRef
Zurück zum Zitat Oh SY, Yoo DI, Shin Y, Kim HC, Kim HY, Chung YS et al (2005) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydr Res 340:2376–2391CrossRef Oh SY, Yoo DI, Shin Y, Kim HC, Kim HY, Chung YS et al (2005) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydr Res 340:2376–2391CrossRef
Zurück zum Zitat Salmon S, Hudson SM (1997) Crystal morphology, biosynthesis, and physical assembly of cellulose, chitin, and chitosan. J Macromol Sci R M C C37:199–276 Salmon S, Hudson SM (1997) Crystal morphology, biosynthesis, and physical assembly of cellulose, chitin, and chitosan. J Macromol Sci R M C C37:199–276
Zurück zum Zitat Sekiguchi Y, Frye JS, Shafizadeh F (1983) Structure and formation of cellulosic chars. J Appl Polym Sci 28:3513–3525CrossRef Sekiguchi Y, Frye JS, Shafizadeh F (1983) Structure and formation of cellulosic chars. J Appl Polym Sci 28:3513–3525CrossRef
Zurück zum Zitat Sevilla M, Fuertes AB (2010) Graphitic carbon nanostructures from cellulose. Chem Phys Lett 490:63–68CrossRef Sevilla M, Fuertes AB (2010) Graphitic carbon nanostructures from cellulose. Chem Phys Lett 490:63–68CrossRef
Zurück zum Zitat Shen DK, Gu S (2009) The mechanism for thermal decomposition of cellulose and its main products. Biores Tech 100:6496–6504CrossRef Shen DK, Gu S (2009) The mechanism for thermal decomposition of cellulose and its main products. Biores Tech 100:6496–6504CrossRef
Zurück zum Zitat Shin S, Jang J, Yoon SH, Mochida I (1997) A study on the effect of heat treatment on functional groups of pitch based activated carbon fiber using FTIR. Carbon 35:1739–1743CrossRef Shin S, Jang J, Yoon SH, Mochida I (1997) A study on the effect of heat treatment on functional groups of pitch based activated carbon fiber using FTIR. Carbon 35:1739–1743CrossRef
Zurück zum Zitat Tang MM, Bacon R (1964) Carbonization of cellulose fibers-I: low temperature pyrolysis. Carbon 2:211–214CrossRef Tang MM, Bacon R (1964) Carbonization of cellulose fibers-I: low temperature pyrolysis. Carbon 2:211–214CrossRef
Zurück zum Zitat Tran PA, Zhang LJ, Webster TJ (2009) Carbon nanofibers and carbon nanotubes in regenerative medicine. Adv Drug Deliver Rev 61:1097–1114CrossRef Tran PA, Zhang LJ, Webster TJ (2009) Carbon nanofibers and carbon nanotubes in regenerative medicine. Adv Drug Deliver Rev 61:1097–1114CrossRef
Zurück zum Zitat Uchida T, Anderson DP, Minus ML, Kumar S (2006) Morphology and modulus of vapor grown carbon nano fibers. J Mater Sci 41:5851–5856CrossRef Uchida T, Anderson DP, Minus ML, Kumar S (2006) Morphology and modulus of vapor grown carbon nano fibers. J Mater Sci 41:5851–5856CrossRef
Zurück zum Zitat Xie X, Goodell B, Zhang D, Nagle DC, Qian Y, Peterson ML et al (2009) Characterization of carbons derived from cellulose and lignin and their oxidative behavior. Biores Tech 100:1797–1802CrossRef Xie X, Goodell B, Zhang D, Nagle DC, Qian Y, Peterson ML et al (2009) Characterization of carbons derived from cellulose and lignin and their oxidative behavior. Biores Tech 100:1797–1802CrossRef
Zurück zum Zitat Yoshino K, Matsuoka R, Nogami K, Yamanaka S, Watanabe K, Takahashi M et al (1990) Graphite film prepared by pyrolysis of bacterial cellulose. J Appl Phys 68:1720–1725CrossRef Yoshino K, Matsuoka R, Nogami K, Yamanaka S, Watanabe K, Takahashi M et al (1990) Graphite film prepared by pyrolysis of bacterial cellulose. J Appl Phys 68:1720–1725CrossRef
Zurück zum Zitat Zhang L, Tsuzuki T, Wang X (2010) Preparation and characterization on cellulose nanofiber film. Mater Sci Forum 654–656:1760–1763CrossRef Zhang L, Tsuzuki T, Wang X (2010) Preparation and characterization on cellulose nanofiber film. Mater Sci Forum 654–656:1760–1763CrossRef
Zurück zum Zitat Zhou JH, Sui ZJ, Zhu J, Li P, Chen D, Dai YC (2007) Characterization of surface oxygen complexes on carbon nanofibers by TPD, XPS and FT-IR. Carbon 45:785–796CrossRef Zhou JH, Sui ZJ, Zhu J, Li P, Chen D, Dai YC (2007) Characterization of surface oxygen complexes on carbon nanofibers by TPD, XPS and FT-IR. Carbon 45:785–796CrossRef
Metadaten
Titel
Effect of pyrolysis conditions on the properties of carbonaceous nanofibers obtained from freeze-dried cellulose nanofibers
verfasst von
Ehsan Jazaeri
Takuya Tsuzuki
Publikationsdatum
01.04.2013
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 2/2013
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-012-9858-2

Weitere Artikel der Ausgabe 2/2013

Cellulose 2/2013 Zur Ausgabe