Skip to main content
Erschienen in: Cellulose 6/2015

01.12.2015 | Original Paper

Effect of a TiO2 additive on the morphology and permeability of cellulose ultrafiltration membranes prepared via immersion precipitation with ionic liquid as a solvent

verfasst von: D. Nevstrueva, A. Pihlajamäki, M. Mänttäri

Erschienen in: Cellulose | Ausgabe 6/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This work studies structure and properties of cellulose ultrafiltration membrane created by coupling of TiO2 nanoparticles onto the cellulose matrix. Supported cellulose ultrafiltration membranes were cast out of cellulose-titanium dioxide-ionic liquid solution via phase inversion. The aim was to determine the effect of titanium dioxide concentration on cellulose membrane morphology and performance. 1-ethyl-3-methylimidazolium acetate ([emim][OAc]) was used to obtain cellulose-ionic liquid solutions at a concentration of 9 %. Thin polymeric films of 250 µm thickness were cast onto a non-woven PET support material with an adjustable casting knife. Pure deionized water was employed as a non-solvent agent. The obtained product morphology (cross-section) was examined with field emission scanning electron microscopy. Filtration tests were made to determine pure water flux and molar mass cut-off (MMCO). Filtration tests with humic acid solutions were carried out to provide initial indications of performance in industrial applications. The obtained results showed that addition of titanium dioxide particles in small amounts had a positive impact on virgin cellulose ultrafiltration membranes. Tested samples had good mechanical stability, stable pure water flux and a MMCO typical for commercial ultrafiltration membranes. In addition, all tested samples showed excellent fouling resistance to humic acid solutions. In general, incorporation of titanium dioxide particles into cellulose matrix membrane should be taken into account as a potential way to create ultrafiltration membranes with high operation performance.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Arsuaga JM, Sotto A, del Rosario G, Martinez A, Molina S, Teli SB, de Abajo J (2013) Influence of the type, size, and distribution of metal oxide particles on the properties of nanocomposite ultrafiltration membranes. J Membr Sci 428:131–141CrossRef Arsuaga JM, Sotto A, del Rosario G, Martinez A, Molina S, Teli SB, de Abajo J (2013) Influence of the type, size, and distribution of metal oxide particles on the properties of nanocomposite ultrafiltration membranes. J Membr Sci 428:131–141CrossRef
Zurück zum Zitat Baker RW (2004) Membrane technology and applications. Wiley, ChichesterCrossRef Baker RW (2004) Membrane technology and applications. Wiley, ChichesterCrossRef
Zurück zum Zitat Balta S, Sotto A, Luis P, Benea L, Van der Bruggen B, Kim J (2012) A new outlook on membrane enhancement with nanoparticles: the alternative of ZnO. J Memb Sci 389:155–161CrossRef Balta S, Sotto A, Luis P, Benea L, Van der Bruggen B, Kim J (2012) A new outlook on membrane enhancement with nanoparticles: the alternative of ZnO. J Memb Sci 389:155–161CrossRef
Zurück zum Zitat Cao Y, Wu J, Zhang J, Li H, Zhang Y, He J (2009) Room temperature ionic liquids (RTILs): a new and versatile platform for cellulose processing and derivatization. Chem Eng J 147:13–21 Cao Y, Wu J, Zhang J, Li H, Zhang Y, He J (2009) Room temperature ionic liquids (RTILs): a new and versatile platform for cellulose processing and derivatization. Chem Eng J 147:13–21
Zurück zum Zitat Cao Y, Li H, Zhang Y, Zhang J, He J (2010) Structure and properties of novel regenerated cellulose films prepared from cornhusk cellulose in room temperature ionic liquids. J Appl Polym Sci 116:547–554CrossRef Cao Y, Li H, Zhang Y, Zhang J, He J (2010) Structure and properties of novel regenerated cellulose films prepared from cornhusk cellulose in room temperature ionic liquids. J Appl Polym Sci 116:547–554CrossRef
Zurück zum Zitat Costa AR, de Pinho MN (2005) Effect of membrane pore size and solution chemistry on the ultrafiltration of humic substances solutions. J Membr Sci 255:49–56CrossRef Costa AR, de Pinho MN (2005) Effect of membrane pore size and solution chemistry on the ultrafiltration of humic substances solutions. J Membr Sci 255:49–56CrossRef
Zurück zum Zitat Fink HP, Ganster J, Lehmann A (2014) Progress in cellulose shaping: 20 years industrial case studies at Fraunhofer IAP. Cellulose 21:31–51CrossRef Fink HP, Ganster J, Lehmann A (2014) Progress in cellulose shaping: 20 years industrial case studies at Fraunhofer IAP. Cellulose 21:31–51CrossRef
Zurück zum Zitat Gericke M, Fardim P, Heinze T (2012) Ionic liquids—promising but challenging solvents for homogeneous derivatization of cellulose. Molecules 17:7458–7502CrossRef Gericke M, Fardim P, Heinze T (2012) Ionic liquids—promising but challenging solvents for homogeneous derivatization of cellulose. Molecules 17:7458–7502CrossRef
Zurück zum Zitat Gullinkala T, Escobar I (2010) A green membrane functionalization method to decrease natural organic matter fouling. J Membr Sci 360:155–164CrossRef Gullinkala T, Escobar I (2010) A green membrane functionalization method to decrease natural organic matter fouling. J Membr Sci 360:155–164CrossRef
Zurück zum Zitat Hameed N, Xiong R, Salim NV, Guo Q (2013) Fabrication and characterization of transparent and biodegradable cellulose/poly(vinyl alcohol) blend films using an ionic liquid. Cellulose 20:2517–2527CrossRef Hameed N, Xiong R, Salim NV, Guo Q (2013) Fabrication and characterization of transparent and biodegradable cellulose/poly(vinyl alcohol) blend films using an ionic liquid. Cellulose 20:2517–2527CrossRef
Zurück zum Zitat Huang J, Zhang K, Wang K, Xie Z, Ladewig B, Wang H (2012) Fabrication of polyethersulfone-mesoporous silica nanocomposite ultrafiltration membranes with antifouling properties. J Membr Sci 423–424:362–370CrossRef Huang J, Zhang K, Wang K, Xie Z, Ladewig B, Wang H (2012) Fabrication of polyethersulfone-mesoporous silica nanocomposite ultrafiltration membranes with antifouling properties. J Membr Sci 423–424:362–370CrossRef
Zurück zum Zitat Kosan B, Michels C, Meister F (2008) Dissolution and forming of cellulose with ionic liquids. Cellulose 15:59–66CrossRef Kosan B, Michels C, Meister F (2008) Dissolution and forming of cellulose with ionic liquids. Cellulose 15:59–66CrossRef
Zurück zum Zitat Li JH, Xu YY, Zhu LP, Wang JH, Du GH (2009) Fabrication and characterization of a novel TiO2 nanoparticle self-assembly membrane with improved fouling resistance. J Membr Sci 326:659–666CrossRef Li JH, Xu YY, Zhu LP, Wang JH, Du GH (2009) Fabrication and characterization of a novel TiO2 nanoparticle self-assembly membrane with improved fouling resistance. J Membr Sci 326:659–666CrossRef
Zurück zum Zitat Li XL, Zhu LP, Zhu BK, Xu YY (2011) High-flux and anti-fouling cellulose nanofiltration membranes prepared via phase inversion with ionic liquid as solvent. Sep Purif Technol 83:66–73CrossRef Li XL, Zhu LP, Zhu BK, Xu YY (2011) High-flux and anti-fouling cellulose nanofiltration membranes prepared via phase inversion with ionic liquid as solvent. Sep Purif Technol 83:66–73CrossRef
Zurück zum Zitat Liu X, Pang J, Zhang X, Wu Y, Sun R (2013) Regenerated cellulose film with enhanced tensile strength prepared with ionic liquid 1-ethyl-3-methylimidazolium acetate (EMIMAc). Cellulose 20:1391–1399CrossRef Liu X, Pang J, Zhang X, Wu Y, Sun R (2013) Regenerated cellulose film with enhanced tensile strength prepared with ionic liquid 1-ethyl-3-methylimidazolium acetate (EMIMAc). Cellulose 20:1391–1399CrossRef
Zurück zum Zitat Mulder M (2003) Basic principles of membrane technology. Kluwer, Dordrecht Mulder M (2003) Basic principles of membrane technology. Kluwer, Dordrecht
Zurück zum Zitat Oh SJ, Kim N, Lee YT (2009) Preparation and characterization of PVDF/TiO2 organic-inorganic composite membranes for fouling resistance improvement. J Membr Sci 345:13–20CrossRef Oh SJ, Kim N, Lee YT (2009) Preparation and characterization of PVDF/TiO2 organic-inorganic composite membranes for fouling resistance improvement. J Membr Sci 345:13–20CrossRef
Zurück zum Zitat Pinkert A, Marsh KN, Pang S, Staiger MP (2009) Ionic liquids and their interaction with cellulose. Chem Rev 109:6712–6728CrossRef Pinkert A, Marsh KN, Pang S, Staiger MP (2009) Ionic liquids and their interaction with cellulose. Chem Rev 109:6712–6728CrossRef
Zurück zum Zitat Reuvers AJ, van den Berg JWA, Smolders CA (1987) Formation of membranes by means of immersion precipitation: part I. A model to describe mass transfer during immersion precipitation. J Membr Sci 34:45–65CrossRef Reuvers AJ, van den Berg JWA, Smolders CA (1987) Formation of membranes by means of immersion precipitation: part I. A model to describe mass transfer during immersion precipitation. J Membr Sci 34:45–65CrossRef
Zurück zum Zitat Sotto A, Boromand A, Balta S, Kim J, Van der Bruggen B (2011) Doping of polyethersulfone nanofiltration membranes: antifouling effect observed at ultralow concentrations of TiO2 nanoparticles. J Mater Chem 21:10311–10320CrossRef Sotto A, Boromand A, Balta S, Kim J, Van der Bruggen B (2011) Doping of polyethersulfone nanofiltration membranes: antifouling effect observed at ultralow concentrations of TiO2 nanoparticles. J Mater Chem 21:10311–10320CrossRef
Zurück zum Zitat Stade S, Kallioinen M, Mikkola A, Tuuva T, Mänttäri M (2013) Reversible and irreversible compaction of ultrafiltration membranes. Sep Purif Technol 118:127–134CrossRef Stade S, Kallioinen M, Mikkola A, Tuuva T, Mänttäri M (2013) Reversible and irreversible compaction of ultrafiltration membranes. Sep Purif Technol 118:127–134CrossRef
Zurück zum Zitat Yang Y, Wang P, Zheng Q (2006) Preparation and properties of polysulfone/TiO2 composite ultrafiltration membranes. J Polym Sci 44:879–887CrossRef Yang Y, Wang P, Zheng Q (2006) Preparation and properties of polysulfone/TiO2 composite ultrafiltration membranes. J Polym Sci 44:879–887CrossRef
Zurück zum Zitat Zhang H, Wu J, Zhang J, He J (2005) 1-Allyl-3-methylimidazolium chloride room temperature ionic liquid: a new and powerful nonderivatizing solvent for cellulose. Macromolecules 38:8272–8277CrossRef Zhang H, Wu J, Zhang J, He J (2005) 1-Allyl-3-methylimidazolium chloride room temperature ionic liquid: a new and powerful nonderivatizing solvent for cellulose. Macromolecules 38:8272–8277CrossRef
Zurück zum Zitat Zhu T, Lin Y, Luo Y, Hu X, Lin W, Yu P, Huang C (2012) Preparation and characterization of TiO2-regenerated cellulose inorganic-polymer hybrid membranes for dehydration of caprolactam. Carbohydr Polym 87(2012):901–909CrossRef Zhu T, Lin Y, Luo Y, Hu X, Lin W, Yu P, Huang C (2012) Preparation and characterization of TiO2-regenerated cellulose inorganic-polymer hybrid membranes for dehydration of caprolactam. Carbohydr Polym 87(2012):901–909CrossRef
Metadaten
Titel
Effect of a TiO2 additive on the morphology and permeability of cellulose ultrafiltration membranes prepared via immersion precipitation with ionic liquid as a solvent
verfasst von
D. Nevstrueva
A. Pihlajamäki
M. Mänttäri
Publikationsdatum
01.12.2015
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 6/2015
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-015-0746-4

Weitere Artikel der Ausgabe 6/2015

Cellulose 6/2015 Zur Ausgabe