Skip to main content
Erschienen in: Cellulose 6/2015

01.12.2015 | Original Paper

Flocculation behavior of cellulose nanofibrils under different salt conditions and its impact on network strength and dewatering ability

verfasst von: Kyujeong Sim, Jegon Lee, Hyeyoon Lee, Hye Jung Youn

Erschienen in: Cellulose | Ausgabe 6/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Flocculation of cellulose nanofibrils (CNF) was induced by charge neutralization with different types and concentrations of salt, and its effects on the network strength and dewatering ability of the CNF suspension were investigated. Aggregation of the CNF suspension was evaluated by measurement of light transmission using Turbiscan equipment. This procedure enabled us to characterize the aggregation and sedimentation behavior of nanofibrils under different salinity conditions. Aggregation and sedimentation of CNF occurred on salt addition because the degree of compression of the electrical double layer was changed by adsorption of cations onto the CNF, depending on the type and concentration of salt. The changes in network strength of the CNF suspension due to flocculation were evaluated using a conventional oscillatory rheometer. The viscosity, storage modulus, and yield stress of the CNF suspension increased with an increase in the ionic strength of the suspension. Microrheology measurements using the dynamic light scattering technique were also adopted to characterize the viscoelastic properties of the CNF suspension, revealing that CNF suspension containing a high concentration of salt showed more solid-like behavior. In addition, the aggregation degree of the CNF affected the dewatering ability of the CNF suspension. Bivalent cations were more effective for increasing the network strength and dewatering for a small amount of added salt compared with monovalent cations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Araki J, Kuga S (2001) Effect of trace electrolyte on liquid crystal type of cellulose microcrystals. Langmuir 17:4493–4496CrossRef Araki J, Kuga S (2001) Effect of trace electrolyte on liquid crystal type of cellulose microcrystals. Langmuir 17:4493–4496CrossRef
Zurück zum Zitat Bhardwaj NK, Kumar S, Bajpai PK (2005) Effect of zeta potential on retention and drainage of secondary fibres. Colloids Surf A 260:245–250CrossRef Bhardwaj NK, Kumar S, Bajpai PK (2005) Effect of zeta potential on retention and drainage of secondary fibres. Colloids Surf A 260:245–250CrossRef
Zurück zum Zitat Bhattacharya M, Malinen MM, Lauren P, Lou Y-R, Kuisma SW, Kanninen L, Lille M, Corlu A, GuGuen-Guillouzo C, Ikkala O, Laukkanen A, Urtti A, Yliperttula M (2012) Nanofibrillar cellulose hydrogel promotes three-dimensional liber cell culture. J Control Release 164:291–298CrossRef Bhattacharya M, Malinen MM, Lauren P, Lou Y-R, Kuisma SW, Kanninen L, Lille M, Corlu A, GuGuen-Guillouzo C, Ikkala O, Laukkanen A, Urtti A, Yliperttula M (2012) Nanofibrillar cellulose hydrogel promotes three-dimensional liber cell culture. J Control Release 164:291–298CrossRef
Zurück zum Zitat Bobacka V, Eklund D (1999) The influence of charge density of cationic starch on dissolved and colloidal material from peroxide bleached thermomechanical pulp. Colloids Surf A 152:285–291CrossRef Bobacka V, Eklund D (1999) The influence of charge density of cationic starch on dissolved and colloidal material from peroxide bleached thermomechanical pulp. Colloids Surf A 152:285–291CrossRef
Zurück zum Zitat Cai H, Sharma S, Liu W, Mu W, Liu W, Zhang X, Deng Y (2014) Aerogel microspheres from natural cellulose nanofibrils and their application as cell culture scaffold. Biomacromolecules 15:2540–2547CrossRef Cai H, Sharma S, Liu W, Mu W, Liu W, Zhang X, Deng Y (2014) Aerogel microspheres from natural cellulose nanofibrils and their application as cell culture scaffold. Biomacromolecules 15:2540–2547CrossRef
Zurück zum Zitat Carambassis A, Rutland MK (1999) Interactions of cellulose surfaces: effect of electrolyte. Langmuir 15:5584–5590CrossRef Carambassis A, Rutland MK (1999) Interactions of cellulose surfaces: effect of electrolyte. Langmuir 15:5584–5590CrossRef
Zurück zum Zitat Derakhshandeh B, Hatzikiriakos SG, Bennington CPJ (2010) The apparent yield stress of pulp fiber suspensions. J Rheol 54:1137–1154CrossRef Derakhshandeh B, Hatzikiriakos SG, Bennington CPJ (2010) The apparent yield stress of pulp fiber suspensions. J Rheol 54:1137–1154CrossRef
Zurück zum Zitat Dimic-Misic K, Gane PAC, Paltakari J (2013) Micro- and nanofibrillated cellulose as a rheology modifier additive in CMC-containing pigment-coating formulations. Ind Eng Chem Res 52:16066–16083CrossRef Dimic-Misic K, Gane PAC, Paltakari J (2013) Micro- and nanofibrillated cellulose as a rheology modifier additive in CMC-containing pigment-coating formulations. Ind Eng Chem Res 52:16066–16083CrossRef
Zurück zum Zitat Dong XM, Kimura T, Revol J-F, Gray DG (1996) Effect of ionic strength on the isotropic-chiral nematic phase transition of suspensions of cellulose crystallites. Langmuir 12:2076–2082CrossRef Dong XM, Kimura T, Revol J-F, Gray DG (1996) Effect of ionic strength on the isotropic-chiral nematic phase transition of suspensions of cellulose crystallites. Langmuir 12:2076–2082CrossRef
Zurück zum Zitat Eklund D, Lindström T (1991) Paper chemistry: an introduction. DT Paper Science, Grankulla, pp 114–118 Eklund D, Lindström T (1991) Paper chemistry: an introduction. DT Paper Science, Grankulla, pp 114–118
Zurück zum Zitat Fall AB, Lindström SB, Sprakel J, Wågberg L (2013) A physical cross-linking process of cellulose nanofibril gels with shear-controlled fibril orientation. Soft Matter 9:1852–1863CrossRef Fall AB, Lindström SB, Sprakel J, Wågberg L (2013) A physical cross-linking process of cellulose nanofibril gels with shear-controlled fibril orientation. Soft Matter 9:1852–1863CrossRef
Zurück zum Zitat Fermin D, Riley J (2010) Charge in colloidal systems. In: Cosgroven T (ed) Colloid science: principles, methods, and applications, 2nd edn. Wiley, Bristol, pp 23–44 Fermin D, Riley J (2010) Charge in colloidal systems. In: Cosgroven T (ed) Colloid science: principles, methods, and applications, 2nd edn. Wiley, Bristol, pp 23–44
Zurück zum Zitat Guenet JM (2000) Structure versus rheological properties in fibrillary thermoreversible gels from polymers and biopolymers. J Rheol 44:947–960CrossRef Guenet JM (2000) Structure versus rheological properties in fibrillary thermoreversible gels from polymers and biopolymers. J Rheol 44:947–960CrossRef
Zurück zum Zitat Hii C, Gregersen ØW, Chinga-Carrasco G, Eriksen Ø (2012) The effect of MFC on the pressability and paper properties of TMP and GCC based sheets. Nord Pulp Pap Res J 27:388–396CrossRef Hii C, Gregersen ØW, Chinga-Carrasco G, Eriksen Ø (2012) The effect of MFC on the pressability and paper properties of TMP and GCC based sheets. Nord Pulp Pap Res J 27:388–396CrossRef
Zurück zum Zitat Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85CrossRef Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85CrossRef
Zurück zum Zitat Iwamoto S, Nakagaito AN, Yano H (2007) Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Appl Phys A 89:461–466CrossRef Iwamoto S, Nakagaito AN, Yano H (2007) Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Appl Phys A 89:461–466CrossRef
Zurück zum Zitat Karppinen A, Vesterinen A-H, Saarinen T, Pietikäinen P, Seppälä J (2011) Effect of cationic polymethacrylates on the rheology and flocculation of microfibrillated cellulose. Cellulose 18:1381–1390CrossRef Karppinen A, Vesterinen A-H, Saarinen T, Pietikäinen P, Seppälä J (2011) Effect of cationic polymethacrylates on the rheology and flocculation of microfibrillated cellulose. Cellulose 18:1381–1390CrossRef
Zurück zum Zitat Kékicheff P, Marcelja S, Senden TJ, Shubin VE (1993) Charge reversal seen in electrical double layer interaction of surfaces immersed in 2:1 calcium electrolyte. J Chem Phys 99:6098–6113CrossRef Kékicheff P, Marcelja S, Senden TJ, Shubin VE (1993) Charge reversal seen in electrical double layer interaction of surfaces immersed in 2:1 calcium electrolyte. J Chem Phys 99:6098–6113CrossRef
Zurück zum Zitat Kirby BJ, Hasselbrink EF (2004) Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations. Electrophoresis 25:187–202CrossRef Kirby BJ, Hasselbrink EF (2004) Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations. Electrophoresis 25:187–202CrossRef
Zurück zum Zitat Laka M, Chernyavskaya S (2009) Effect of salts on the formation and properties of microcrystalline cellulose and chitosan gels. Holzforschung 63:665–669CrossRef Laka M, Chernyavskaya S (2009) Effect of salts on the formation and properties of microcrystalline cellulose and chitosan gels. Holzforschung 63:665–669CrossRef
Zurück zum Zitat Lasseuguette E, Roux D, Nishiyama Y (2008) Rheological properties of microfibrillar suspension of TEMPO-oxidized pulp. Cellulose 15:425–433CrossRef Lasseuguette E, Roux D, Nishiyama Y (2008) Rheological properties of microfibrillar suspension of TEMPO-oxidized pulp. Cellulose 15:425–433CrossRef
Zurück zum Zitat Lavoine N, Bras J, Desloges I (2014) Mechanical and barrier properties of cardboard and 3D packaging coated with microfibrillated cellulose. J Appl Polym Sci 131:40106CrossRef Lavoine N, Bras J, Desloges I (2014) Mechanical and barrier properties of cardboard and 3D packaging coated with microfibrillated cellulose. J Appl Polym Sci 131:40106CrossRef
Zurück zum Zitat Okahisa Y, Yoshida A, Miyaguchi S, Yano H (2009) Optically transparent wood-cellulose nanocomposite as a base substrate for flexible organic light-emitting diode displays. Compos Sci Technol 69:1958–1961CrossRef Okahisa Y, Yoshida A, Miyaguchi S, Yano H (2009) Optically transparent wood-cellulose nanocomposite as a base substrate for flexible organic light-emitting diode displays. Compos Sci Technol 69:1958–1961CrossRef
Zurück zum Zitat Olszewska A, Eronen P, Johansson L-S, Malho J-M, Ankerfors M, Lindström T, Ruokolainen J, Laine J, Österberg M (2011) The behaviour of cationic nanofibrillar cellulose in aqueous media. Cellulose 18:1213–1226CrossRef Olszewska A, Eronen P, Johansson L-S, Malho J-M, Ankerfors M, Lindström T, Ruokolainen J, Laine J, Österberg M (2011) The behaviour of cationic nanofibrillar cellulose in aqueous media. Cellulose 18:1213–1226CrossRef
Zurück zum Zitat Ono H, Shimaya Y, Sato K, Hongo T (2004) 1H spin-spin relaxation time of water and rheological properties of cellulose nanofiber dispersion, transparent cellulose hydrogel (TCG). Polym J 36:684–694CrossRef Ono H, Shimaya Y, Sato K, Hongo T (2004) 1H spin-spin relaxation time of water and rheological properties of cellulose nanofiber dispersion, transparent cellulose hydrogel (TCG). Polym J 36:684–694CrossRef
Zurück zum Zitat Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941CrossRef Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941CrossRef
Zurück zum Zitat Plackett DV, Letchford K, Jackson JK, Burt HM (2014) A review of nanocellulose as a novel vehicle for drug delivery. Nord Pulp Pap Res J 29:105–118CrossRef Plackett DV, Letchford K, Jackson JK, Burt HM (2014) A review of nanocellulose as a novel vehicle for drug delivery. Nord Pulp Pap Res J 29:105–118CrossRef
Zurück zum Zitat Rodionova G, Lenes M, Eriksen Ø, Gregersen Ø (2011) Surface chemical modification of microfibrillated cellulose: improvement of barrier properties for packaging applications. Cellulose 18:127–134CrossRef Rodionova G, Lenes M, Eriksen Ø, Gregersen Ø (2011) Surface chemical modification of microfibrillated cellulose: improvement of barrier properties for packaging applications. Cellulose 18:127–134CrossRef
Zurück zum Zitat Ryu (2013) Fundamental properties of nanofibrillated cellulose in suspension and mat states. Ph.D. thesis, Seoul National University Ryu (2013) Fundamental properties of nanofibrillated cellulose in suspension and mat states. Ph.D. thesis, Seoul National University
Zurück zum Zitat Saarikoski E, Saarinen T, Salmela J, Seppälä J (2012) Flocculated flow of microfibrillated cellulose water suspensions: an imaging approach for characterization of rheological behaviour. Cellulose 19:647–659CrossRef Saarikoski E, Saarinen T, Salmela J, Seppälä J (2012) Flocculated flow of microfibrillated cellulose water suspensions: an imaging approach for characterization of rheological behaviour. Cellulose 19:647–659CrossRef
Zurück zum Zitat Shaw DJ (1992) Charged interfaces. In: Shaw DJ (ed) Introduction to colloid and surface chemistry, 4th edn. Butterworth Heinemann, Oxford, pp 174–209CrossRef Shaw DJ (1992) Charged interfaces. In: Shaw DJ (ed) Introduction to colloid and surface chemistry, 4th edn. Butterworth Heinemann, Oxford, pp 174–209CrossRef
Zurück zum Zitat Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties, and applications. Polymers 2:728–765CrossRef Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties, and applications. Polymers 2:728–765CrossRef
Zurück zum Zitat Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494CrossRef Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494CrossRef
Zurück zum Zitat Sood YV, Tyagi R, Tyagi S, Pande PC, Tondon R (2010) Surface charge of different paper making raw materials and its influence on paper properties. J Sci Ind Res 69:300–304 Sood YV, Tyagi R, Tyagi S, Pande PC, Tondon R (2010) Surface charge of different paper making raw materials and its influence on paper properties. J Sci Ind Res 69:300–304
Zurück zum Zitat Taipale T, Österberg M, Nykänen A, Ruokolainen J, Laine J (2010) Effect of microfibrillated cellulose and fines on the drainage of kraft pulp suspension and paper strength. Cellulose 17:1005–1020CrossRef Taipale T, Österberg M, Nykänen A, Ruokolainen J, Laine J (2010) Effect of microfibrillated cellulose and fines on the drainage of kraft pulp suspension and paper strength. Cellulose 17:1005–1020CrossRef
Zurück zum Zitat Tatsumi D, Ishiok S, Matsumoto T (2002) Effect of fiber concentration and axial ratio on the rheological properties of cellulose fiber suspension. J Soc Rheol Jpn 30:27–32CrossRef Tatsumi D, Ishiok S, Matsumoto T (2002) Effect of fiber concentration and axial ratio on the rheological properties of cellulose fiber suspension. J Soc Rheol Jpn 30:27–32CrossRef
Zurück zum Zitat Varanasi S, Batchelor W (2014) Superior non-woven sheet forming characteristics of low-density cationic polymer-cellulose nanofiber colloids. Cellulose 21:3541–3550CrossRef Varanasi S, Batchelor W (2014) Superior non-woven sheet forming characteristics of low-density cationic polymer-cellulose nanofiber colloids. Cellulose 21:3541–3550CrossRef
Zurück zum Zitat Vesterinen A, Myllytie P, Laine J, Seppälä J (2010) The effect of water-soluble polymers on rheology of microfibrillar cellulose suspension and dynamic mechanical properties of paper sheet. J Appl Polym Sci 116:2990–2997 Vesterinen A, Myllytie P, Laine J, Seppälä J (2010) The effect of water-soluble polymers on rheology of microfibrillar cellulose suspension and dynamic mechanical properties of paper sheet. J Appl Polym Sci 116:2990–2997
Zurück zum Zitat Wågberg L, Decher G, Norgren M, Lindström T, Ankerfors M, Axnäs K (2008) The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir 24:784–795CrossRef Wågberg L, Decher G, Norgren M, Lindström T, Ankerfors M, Axnäs K (2008) The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir 24:784–795CrossRef
Zurück zum Zitat Xhanari K, Syverud K, Chinga-Carrasco G, Paso K, Stenius P (2011) Reduction of water wettability of nanofibrillated cellulose by adsorption of cationic surfactants. Cellulose 18:257–270CrossRef Xhanari K, Syverud K, Chinga-Carrasco G, Paso K, Stenius P (2011) Reduction of water wettability of nanofibrillated cellulose by adsorption of cationic surfactants. Cellulose 18:257–270CrossRef
Zurück zum Zitat Youn HJ, Lee HL (2002) An experimental investigation of the effect of pulp types, mechanical treatments and crill contents on fibre network strength. Nord Pulp Pap Res J 17:187–192CrossRef Youn HJ, Lee HL (2002) An experimental investigation of the effect of pulp types, mechanical treatments and crill contents on fibre network strength. Nord Pulp Pap Res J 17:187–192CrossRef
Zurück zum Zitat Zheng GY, Cui Y, Karabulut E, Wågberg L, Zhu H, Hu L (2013) Nanostructured paper for flexible energy and electronic devices. MRS Bull 38:320–325CrossRef Zheng GY, Cui Y, Karabulut E, Wågberg L, Zhu H, Hu L (2013) Nanostructured paper for flexible energy and electronic devices. MRS Bull 38:320–325CrossRef
Metadaten
Titel
Flocculation behavior of cellulose nanofibrils under different salt conditions and its impact on network strength and dewatering ability
verfasst von
Kyujeong Sim
Jegon Lee
Hyeyoon Lee
Hye Jung Youn
Publikationsdatum
01.12.2015
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 6/2015
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-015-0784-y

Weitere Artikel der Ausgabe 6/2015

Cellulose 6/2015 Zur Ausgabe