Skip to main content
Erschienen in: Cellulose 3/2016

19.03.2016 | Original Paper

A comparative guide to controlled hydrophobization of cellulose nanocrystals via surface esterification

verfasst von: Shane X. Peng, Huibin Chang, Satish Kumar, Robert J. Moon, Jeffrey P. Youngblood

Erschienen in: Cellulose | Ausgabe 3/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Surface esterification methods of cellulose nanocrystals (CNC) using acid anhydrides, acid chlorides, acid catalyzed carboxylic acids, and 1′1-carbonyldiimidazole (CDI) activated carboxylic acids were evaluated with acetyl-, hexanoyl-, dodecanoyl-, oleoyl-, and methacryloyl-functionalization. Their grafting efficiency was investigated using Fourier-transform infrared spectroscopy and 13C solid state NMR spectroscopy. Acid anhydride and CDI were found to be the most applicable reagents to graft short and long chain aliphatic carbons, respectively. The preservation of structural morphology and crystallinity of grafted CNCs were confirmed using transmission electron microscopy and X-ray diffraction. The hydrophobicity of grafted CNCs was evaluated by dispersing them in organic solvents with different Hansen’s solubility parameters. The dispersibility of grafted CNCs in organic solvents was improved by using never-dried CNCs as source materials and keep CNCs wet in their washing solvents after grafting, thus increasing the solvency range to disperse CNCs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Araki J, Wada M, Kuga S, Okano T (1998) Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloids Surf A Physicochem Eng Asp 142:75–82. doi:10.1016/S0927-7757(98)00404-X CrossRef Araki J, Wada M, Kuga S, Okano T (1998) Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloids Surf A Physicochem Eng Asp 142:75–82. doi:10.​1016/​S0927-7757(98)00404-X CrossRef
Zurück zum Zitat Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6:1048–1054. doi:10.1021/bm049300p CrossRef Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6:1048–1054. doi:10.​1021/​bm049300p CrossRef
Zurück zum Zitat Belton PS, Tanner SF, Cartier N, Chanzy H (1989) High-resolution solid-state carbon-13 nuclear magnetic resonance spectroscopy of tunicin, an animal cellulose. Macromolecules 22:1615–1617. doi:10.1021/ma00194a019 CrossRef Belton PS, Tanner SF, Cartier N, Chanzy H (1989) High-resolution solid-state carbon-13 nuclear magnetic resonance spectroscopy of tunicin, an animal cellulose. Macromolecules 22:1615–1617. doi:10.​1021/​ma00194a019 CrossRef
Zurück zum Zitat Bendahou A, Hajlane A, Dufresne A et al (2014) Esterification and amidation for grafting long aliphatic chains on to cellulose nanocrystals: a comparative study. Res Chem Intermed. doi:10.1007/s11164-014-1530-z Bendahou A, Hajlane A, Dufresne A et al (2014) Esterification and amidation for grafting long aliphatic chains on to cellulose nanocrystals: a comparative study. Res Chem Intermed. doi:10.​1007/​s11164-014-1530-z
Zurück zum Zitat Berlioz S, Molina-Boisseau S, Nishiyama Y, Heux L (2009) Gas-phase surface esterification of cellulose microfibrils and whiskers. Biomacromolecules 10:2144–2151. doi:10.1021/bm900319k CrossRef Berlioz S, Molina-Boisseau S, Nishiyama Y, Heux L (2009) Gas-phase surface esterification of cellulose microfibrils and whiskers. Biomacromolecules 10:2144–2151. doi:10.​1021/​bm900319k CrossRef
Zurück zum Zitat Braun B, Dorgan JR (2009) Single-step method for the isolation and surface functionalization of cellulosic nanowhiskers. Biomacromolecules 10:334–341. doi:10.1021/bm8011117 CrossRef Braun B, Dorgan JR (2009) Single-step method for the isolation and surface functionalization of cellulosic nanowhiskers. Biomacromolecules 10:334–341. doi:10.​1021/​bm8011117 CrossRef
Zurück zum Zitat Braun B, Dorgan JR, Hollingsworth LO (2012) Supra-molecular ecobionanocomposites based on polylactide and cellulosic nanowhiskers: synthesis and properties. Biomacromolecules 13:2013–2019. doi:10.1021/bm300149w CrossRef Braun B, Dorgan JR, Hollingsworth LO (2012) Supra-molecular ecobionanocomposites based on polylactide and cellulosic nanowhiskers: synthesis and properties. Biomacromolecules 13:2013–2019. doi:10.​1021/​bm300149w CrossRef
Zurück zum Zitat Capadona JR, Van Den Berg O, Capadona LA et al (2007) A versatile approach for the processing of polymer nanocomposites with self-assembled nanofibre templates. Nat Nanotechnol 2:765–769. doi:10.1038/nnano.2007.379 CrossRef Capadona JR, Van Den Berg O, Capadona LA et al (2007) A versatile approach for the processing of polymer nanocomposites with self-assembled nanofibre templates. Nat Nanotechnol 2:765–769. doi:10.​1038/​nnano.​2007.​379 CrossRef
Zurück zum Zitat Chen S, Schueneman G, Pipes RB et al (2014) Effects of crystal orientation on cellulose nanocrystals–cellulose acetate nanocomposite fibers prepared by dry spinning. Biomacromolecules 15:3827–3835. doi:10.1021/bm501161v CrossRef Chen S, Schueneman G, Pipes RB et al (2014) Effects of crystal orientation on cellulose nanocrystals–cellulose acetate nanocomposite fibers prepared by dry spinning. Biomacromolecules 15:3827–3835. doi:10.​1021/​bm501161v CrossRef
Zurück zum Zitat Diaz JA, Wu X, Martini A et al (2013) Thermal expansion of self-organized and shear-oriented cellulose nanocrystal films. Biomacromolecules 14:2900–2908. doi:10.1021/bm400794e CrossRef Diaz JA, Wu X, Martini A et al (2013) Thermal expansion of self-organized and shear-oriented cellulose nanocrystal films. Biomacromolecules 14:2900–2908. doi:10.​1021/​bm400794e CrossRef
Zurück zum Zitat Diaz JA, Ye Z, Wu X et al (2014) Thermal conductivity in nanostructured films: from single cellulose nanocrystals to bulk films. Biomacromolecules 15:4096–4101. doi:10.1021/bm501131a CrossRef Diaz JA, Ye Z, Wu X et al (2014) Thermal conductivity in nanostructured films: from single cellulose nanocrystals to bulk films. Biomacromolecules 15:4096–4101. doi:10.​1021/​bm501131a CrossRef
Zurück zum Zitat Dong XM, Gray DG (1997) Effect of counterions on ordered phase formation in suspensions of charged rodlike cellulose crystallites. Langmuir 13:2404–2409. doi:10.1021/la960724h CrossRef Dong XM, Gray DG (1997) Effect of counterions on ordered phase formation in suspensions of charged rodlike cellulose crystallites. Langmuir 13:2404–2409. doi:10.​1021/​la960724h CrossRef
Zurück zum Zitat Elazzouzi-Hafraoui S, Nishiyama Y, Putaux J-L et al (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9:57–65. doi:10.1021/bm700769p CrossRef Elazzouzi-Hafraoui S, Nishiyama Y, Putaux J-L et al (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9:57–65. doi:10.​1021/​bm700769p CrossRef
Zurück zum Zitat Espino-Pérez E, Domenek S, Belgacem N et al (2014) Green process for chemical functionalization of nanocellulose with carboxylic acids. Biomacromolecules 15:4551–4560. doi:10.1021/bm5013458 CrossRef Espino-Pérez E, Domenek S, Belgacem N et al (2014) Green process for chemical functionalization of nanocellulose with carboxylic acids. Biomacromolecules 15:4551–4560. doi:10.​1021/​bm5013458 CrossRef
Zurück zum Zitat Fumagalli M, Sanchez F, Boisseau SM, Heux L (2013) Gas-phase esterification of cellulose nanocrystal aerogels for colloidal dispersion in apolar solvents. Soft Matter 9:11309. doi:10.1039/c3sm52062e CrossRef Fumagalli M, Sanchez F, Boisseau SM, Heux L (2013) Gas-phase esterification of cellulose nanocrystal aerogels for colloidal dispersion in apolar solvents. Soft Matter 9:11309. doi:10.​1039/​c3sm52062e CrossRef
Zurück zum Zitat Gårdebjer S, Bergstrand A, Idström A et al (2015) Solid-state NMR to quantify surface coverage and chain length of lactic acid modified cellulose nanocrystals, used as fillers in biodegradable composites. Compos Sci Technol 107:1–9. doi:10.1016/j.compscitech.2014.11.014 CrossRef Gårdebjer S, Bergstrand A, Idström A et al (2015) Solid-state NMR to quantify surface coverage and chain length of lactic acid modified cellulose nanocrystals, used as fillers in biodegradable composites. Compos Sci Technol 107:1–9. doi:10.​1016/​j.​compscitech.​2014.​11.​014 CrossRef
Zurück zum Zitat Hansen CM (2007) Hansen solubility parameters a user’s handbook, 2nd edn. CRC Press, Boca RatonCrossRef Hansen CM (2007) Hansen solubility parameters a user’s handbook, 2nd edn. CRC Press, Boca RatonCrossRef
Zurück zum Zitat Hartig SM (2013) Basic image analysis and manipulation in ImageJ. In: Taylor GP (ed) Current protocols in molecular biology. Wiley, Hoboken, pp 1–12 Hartig SM (2013) Basic image analysis and manipulation in ImageJ. In: Taylor GP (ed) Current protocols in molecular biology. Wiley, Hoboken, pp 1–12
Zurück zum Zitat Herrick FW, Casebier RL, Hamilton KJ, Sandberg KR (1983) Microfibrillated cellulose: morphology and accessibility. J Appl Polym Sci Appl Polym Symp 37:797–813 Herrick FW, Casebier RL, Hamilton KJ, Sandberg KR (1983) Microfibrillated cellulose: morphology and accessibility. J Appl Polym Sci Appl Polym Symp 37:797–813
Zurück zum Zitat Heux L, Chauve G, Bonini C (2000) Nonflocculating and chiral-nematic self-ordering of cellulose microcrystals suspensions in nonpolar solvents. Langmuir 16:8210–8212. doi:10.1021/la9913957 CrossRef Heux L, Chauve G, Bonini C (2000) Nonflocculating and chiral-nematic self-ordering of cellulose microcrystals suspensions in nonpolar solvents. Langmuir 16:8210–8212. doi:10.​1021/​la9913957 CrossRef
Zurück zum Zitat Hussain MA, Liebert T, Heinze T (2004) Acylation of cellulose with N,N′-carbonyldiimidazole-activated acids in the novel solvent dimethyl sulfoxide/tetrabutylammonium fluoride. Macromol Rapid Commun 25:916–920. doi:10.1002/marc.200300308 CrossRef Hussain MA, Liebert T, Heinze T (2004) Acylation of cellulose with N,N′-carbonyldiimidazole-activated acids in the novel solvent dimethyl sulfoxide/tetrabutylammonium fluoride. Macromol Rapid Commun 25:916–920. doi:10.​1002/​marc.​200300308 CrossRef
Zurück zum Zitat Ibbett RN, Domvoglou D, Fasching M (2007) Characterisation of the supramolecular structure of chemically and physically modified regenerated cellulosic fibres by means of high-resolution Carbon-13 solid-state NMR. Polymer (Guildf) 48:1287–1296. doi:10.1016/j.polymer.2006.12.034 CrossRef Ibbett RN, Domvoglou D, Fasching M (2007) Characterisation of the supramolecular structure of chemically and physically modified regenerated cellulosic fibres by means of high-resolution Carbon-13 solid-state NMR. Polymer (Guildf) 48:1287–1296. doi:10.​1016/​j.​polymer.​2006.​12.​034 CrossRef
Zurück zum Zitat Kim SH, Lee CM, Kafle K (2013) Characterization of crystalline cellulose in biomass: basic principles, applications, and limitations of XRD, NMR, IR, Raman, and SFG. Korean J Chem Eng 30:2127–2141. doi:10.1007/s11814-013-0162-0 CrossRef Kim SH, Lee CM, Kafle K (2013) Characterization of crystalline cellulose in biomass: basic principles, applications, and limitations of XRD, NMR, IR, Raman, and SFG. Korean J Chem Eng 30:2127–2141. doi:10.​1007/​s11814-013-0162-0 CrossRef
Zurück zum Zitat Labet M, Thielemans W (2011) Improving the reproducibility of chemical reactions on the surface of cellulose nanocrystals: ROP of ε-caprolactone as a case study. Cellulose 18:607–617. doi:10.1007/s10570-011-9527-x CrossRef Labet M, Thielemans W (2011) Improving the reproducibility of chemical reactions on the surface of cellulose nanocrystals: ROP of ε-caprolactone as a case study. Cellulose 18:607–617. doi:10.​1007/​s10570-011-9527-x CrossRef
Zurück zum Zitat Labet M, Thielemans W (2012) Citric acid as a benign alternative to metal catalysts for the production of cellulose-grafted-polycaprolactone copolymers. Polym Chem 3:679–684. doi:10.1039/c2py00493c CrossRef Labet M, Thielemans W (2012) Citric acid as a benign alternative to metal catalysts for the production of cellulose-grafted-polycaprolactone copolymers. Polym Chem 3:679–684. doi:10.​1039/​c2py00493c CrossRef
Zurück zum Zitat Lin N, Dufresne A (2014) Surface chemistry, morphological analysis and properties of cellulose nanocrystals with gradiented sulfation degrees. Nanoscale 6:5384–5393. doi:10.1039/c3nr06761k CrossRef Lin N, Dufresne A (2014) Surface chemistry, morphological analysis and properties of cellulose nanocrystals with gradiented sulfation degrees. Nanoscale 6:5384–5393. doi:10.​1039/​c3nr06761k CrossRef
Zurück zum Zitat Liu J-C, Moon RJ, Rudie A, Youngblood JP (2014) Mechanical performance of cellulose nanofibril film-wood flake laminate. Holzforschung 68:283–290. doi:10.1515/hf-2013-0071 Liu J-C, Moon RJ, Rudie A, Youngblood JP (2014) Mechanical performance of cellulose nanofibril film-wood flake laminate. Holzforschung 68:283–290. doi:10.​1515/​hf-2013-0071
Zurück zum Zitat Liu J-C, Martin DJ, Moon RJ, Youngblood JP (2015) Enhanced thermal stability of biomedical thermoplastic polyurethane with the addition of cellulose nanocrystals. J Appl Polym Sci 132:41970. doi:10.1002/app.41970 Liu J-C, Martin DJ, Moon RJ, Youngblood JP (2015) Enhanced thermal stability of biomedical thermoplastic polyurethane with the addition of cellulose nanocrystals. J Appl Polym Sci 132:41970. doi:10.​1002/​app.​41970
Zurück zum Zitat Majoinen J, Walther A, McKee JR et al (2011) Polyelectrolyte brushes grafted from cellulose nanocrystals using Cu-mediated surface-initiated controlled radical polymerization. Biomacromolecules 12:2997–3006. doi:10.1021/bm200613y CrossRef Majoinen J, Walther A, McKee JR et al (2011) Polyelectrolyte brushes grafted from cellulose nanocrystals using Cu-mediated surface-initiated controlled radical polymerization. Biomacromolecules 12:2997–3006. doi:10.​1021/​bm200613y CrossRef
Zurück zum Zitat Morandi G, Heath L, Thielemans W (2009) Cellulose nanocrystals grafted with polystyrene chains through surface-initiated atom transfer radical polymerization (SI-ATRP). Langmuir 25:8280–8286. doi:10.1021/la900452a CrossRef Morandi G, Heath L, Thielemans W (2009) Cellulose nanocrystals grafted with polystyrene chains through surface-initiated atom transfer radical polymerization (SI-ATRP). Langmuir 25:8280–8286. doi:10.​1021/​la900452a CrossRef
Zurück zum Zitat Nielsen LJ, Eyley S, Thielemans W, Aylott JW (2010) Dual fluorescent labelling of cellulose nanocrystals for pH sensing. Chem Commun (Camb) 46:8929–8931. doi:10.1039/c0cc03470c CrossRef Nielsen LJ, Eyley S, Thielemans W, Aylott JW (2010) Dual fluorescent labelling of cellulose nanocrystals for pH sensing. Chem Commun (Camb) 46:8929–8931. doi:10.​1039/​c0cc03470c CrossRef
Zurück zum Zitat Park S, Baker JO, Himmel ME et al (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:10. doi:10.1186/1754-6834-3-10 CrossRef Park S, Baker JO, Himmel ME et al (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:10. doi:10.​1186/​1754-6834-3-10 CrossRef
Zurück zum Zitat Podsiadlo P, Choi S-Y, Shim B et al (2005) Molecularly engineered nanocomposites: layer-by-layer assembly of cellulose nanocrystals. Biomacromolecules 6:2914–2918. doi:10.1021/bm050333u CrossRef Podsiadlo P, Choi S-Y, Shim B et al (2005) Molecularly engineered nanocomposites: layer-by-layer assembly of cellulose nanocrystals. Biomacromolecules 6:2914–2918. doi:10.​1021/​bm050333u CrossRef
Zurück zum Zitat Reiner RS, Rudie AW (2013) Process scale-up of cellulose nanocrystal production to 25 kg per batch at the forest products laboratory. In: Postek MT, Moon RJ, Rudie AW, Bilodeau MA (eds) Production and applications of Cellulose nanomaterials. TAPPI Press, Peachtree Corners, pp 21–24 Reiner RS, Rudie AW (2013) Process scale-up of cellulose nanocrystal production to 25 kg per batch at the forest products laboratory. In: Postek MT, Moon RJ, Rudie AW, Bilodeau MA (eds) Production and applications of Cellulose nanomaterials. TAPPI Press, Peachtree Corners, pp 21–24
Zurück zum Zitat Reising AB, Moon RJ, Youngblood JP (2012) Effect of particle alignment on mechanical properties of neat cellulose nanocrystal films. J Sci Technol For Prod Process 2:32–41 Reising AB, Moon RJ, Youngblood JP (2012) Effect of particle alignment on mechanical properties of neat cellulose nanocrystal films. J Sci Technol For Prod Process 2:32–41
Zurück zum Zitat Sadeghifar H, Filpponen I, Clarke SP et al (2011) Production of cellulose nanocrystals using hydrobromic acid and click reactions on their surface. J Mater Sci 46:7344–7355. doi:10.1007/s10853-011-5696-0 CrossRef Sadeghifar H, Filpponen I, Clarke SP et al (2011) Production of cellulose nanocrystals using hydrobromic acid and click reactions on their surface. J Mater Sci 46:7344–7355. doi:10.​1007/​s10853-011-5696-0 CrossRef
Zurück zum Zitat Sèbe G, Ham-Pichavant F, Ibarboure E et al (2012) Supramolecular structure characterization of cellulose II nanowhiskers produced by acid hydrolysis of cellulose I substrates. Biomacromolecules 13:570–578. doi:10.1021/bm201777j CrossRef Sèbe G, Ham-Pichavant F, Ibarboure E et al (2012) Supramolecular structure characterization of cellulose II nanowhiskers produced by acid hydrolysis of cellulose I substrates. Biomacromolecules 13:570–578. doi:10.​1021/​bm201777j CrossRef
Zurück zum Zitat Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10:425–432. doi:10.1021/bm801193d CrossRef Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10:425–432. doi:10.​1021/​bm801193d CrossRef
Zurück zum Zitat Siqueira G, Bras J, Dufresne A (2010) New process of chemical grafting of cellulose nanoparticles with a long chain isocyanate. Langmuir 26:402–411. doi:10.1021/la9028595 CrossRef Siqueira G, Bras J, Dufresne A (2010) New process of chemical grafting of cellulose nanoparticles with a long chain isocyanate. Langmuir 26:402–411. doi:10.​1021/​la9028595 CrossRef
Zurück zum Zitat Sugiyama J, Vuong R, Chanzy H (1991) Electron-diffraction study on the two crystalline phases occurring in native cellulose from an algal cell-wall. Macromolecules 24:4168–4175. doi:10.1021/ma00014a033 CrossRef Sugiyama J, Vuong R, Chanzy H (1991) Electron-diffraction study on the two crystalline phases occurring in native cellulose from an algal cell-wall. Macromolecules 24:4168–4175. doi:10.​1021/​ma00014a033 CrossRef
Zurück zum Zitat Tian C, Fu S, Habibi Y, Lucia LA (2014) Polymerization topochemistry of cellulose nanocrystals: a function of surface dehydration control. Langmuir 30:14670–14679. doi:10.1021/la503990u CrossRef Tian C, Fu S, Habibi Y, Lucia LA (2014) Polymerization topochemistry of cellulose nanocrystals: a function of surface dehydration control. Langmuir 30:14670–14679. doi:10.​1021/​la503990u CrossRef
Zurück zum Zitat Xiao L, Mai Y, He F et al (2012) Bio-based green composites with high performance from poly(lactic acid) and surface-modified microcrystalline cellulose. J Mater Chem 22:15732–15739. doi:10.1039/c2jm32373g CrossRef Xiao L, Mai Y, He F et al (2012) Bio-based green composites with high performance from poly(lactic acid) and surface-modified microcrystalline cellulose. J Mater Chem 22:15732–15739. doi:10.​1039/​c2jm32373g CrossRef
Zurück zum Zitat Zhou Y, Fuentes-Hernandez C, Khan TM et al (2013) Recyclable organic solar cells on cellulose nanocrystal substrates. Sci Rep 3:1536. doi:10.1038/srep01536 Zhou Y, Fuentes-Hernandez C, Khan TM et al (2013) Recyclable organic solar cells on cellulose nanocrystal substrates. Sci Rep 3:1536. doi:10.​1038/​srep01536
Metadaten
Titel
A comparative guide to controlled hydrophobization of cellulose nanocrystals via surface esterification
verfasst von
Shane X. Peng
Huibin Chang
Satish Kumar
Robert J. Moon
Jeffrey P. Youngblood
Publikationsdatum
19.03.2016
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 3/2016
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-016-0912-3

Weitere Artikel der Ausgabe 3/2016

Cellulose 3/2016 Zur Ausgabe