Skip to main content
Erschienen in: Cellulose 3/2016

28.03.2016 | Original Paper

Chemically peeling layers of cellulose nanocrystals by periodate and chlorite oxidation

verfasst von: Kevin Conley, M. A. Whitehead, Theo G. M. van de Ven

Erschienen in: Cellulose | Ausgabe 3/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Layers of cellulose nanocrystals are peeled off by controlled periodate and chlorite oxidation to produce nanocrystals with a tunable width. The chemical modification increases the solubility of the polymers at the crystal surface to the extent that they preferentially exist in solution and detach from the crystal. The number of layers removed is controlled by the degree of partial oxidation. The reaction occurs on the crystal surface and at the crystal ends, resulting in crystals which are both shorter and thinner, likely with dangling chains at each end. The crystallinity index is reduced with each layer removed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abitbol T, Kloser E, Gray DG (2013) Estimation of the surface sulfur content of cellulose nanocrystals prepared by sulfuric acid hydrolysis. Cellulose 20(2):785–794CrossRef Abitbol T, Kloser E, Gray DG (2013) Estimation of the surface sulfur content of cellulose nanocrystals prepared by sulfuric acid hydrolysis. Cellulose 20(2):785–794CrossRef
Zurück zum Zitat Alam MN, Antal M, Tejado A, van de Ven TG (2012) Salt-induced acceleration of chemical reactions in cellulose nanopores. Cellulose 19(2):517–522CrossRef Alam MN, Antal M, Tejado A, van de Ven TG (2012) Salt-induced acceleration of chemical reactions in cellulose nanopores. Cellulose 19(2):517–522CrossRef
Zurück zum Zitat Araki J, Wada M, Kuga S (2001) Steric stabilization of a cellulose microcrystal suspension by poly (ethylene glycol) grafting. Langmuir 17(1):21–27CrossRef Araki J, Wada M, Kuga S (2001) Steric stabilization of a cellulose microcrystal suspension by poly (ethylene glycol) grafting. Langmuir 17(1):21–27CrossRef
Zurück zum Zitat Azzam F, Galliot M, Putaux JL, Heux L, Jean B (2015) Surface peeling of cellulose nanocrystals resulting from periodate oxidation and reductive amination with water-soluble polymers. Cellulose 22(6):3701–3714CrossRef Azzam F, Galliot M, Putaux JL, Heux L, Jean B (2015) Surface peeling of cellulose nanocrystals resulting from periodate oxidation and reductive amination with water-soluble polymers. Cellulose 22(6):3701–3714CrossRef
Zurück zum Zitat Casu B, Naggi A, Torri G, Allegra G, Meille S, Cosani A, Terbojevich M (1985) Stereoregular acyclic polyalcohols and polyacetates from cellulose and amylose. Macromolecules 18(12):2762–2767CrossRef Casu B, Naggi A, Torri G, Allegra G, Meille S, Cosani A, Terbojevich M (1985) Stereoregular acyclic polyalcohols and polyacetates from cellulose and amylose. Macromolecules 18(12):2762–2767CrossRef
Zurück zum Zitat Chen D, van de Ven TG (2016) Morphological changes of sterically stabilized nanocrystalline cellulose after periodate oxidation. Cellulose 23(2):1051–1059CrossRef Chen D, van de Ven TG (2016) Morphological changes of sterically stabilized nanocrystalline cellulose after periodate oxidation. Cellulose 23(2):1051–1059CrossRef
Zurück zum Zitat Cheng D, Wen Y, Wang L, An X, Zhu X, Ni Y (2015) Adsorption of polyethylene glycol (peg) onto cellulose nano-crystals to improve its dispersity. Carbohydr Polym 123:157–163CrossRef Cheng D, Wen Y, Wang L, An X, Zhu X, Ni Y (2015) Adsorption of polyethylene glycol (peg) onto cellulose nano-crystals to improve its dispersity. Carbohydr Polym 123:157–163CrossRef
Zurück zum Zitat Conley K, Godbout L, Whitehead MA, van de Ven TG (2016) Origin of the twist of cellulosic materials. Carbohydr Polym 135:285–299CrossRef Conley K, Godbout L, Whitehead MA, van de Ven TG (2016) Origin of the twist of cellulosic materials. Carbohydr Polym 135:285–299CrossRef
Zurück zum Zitat Dash R, Elder T, Ragauskas AJ (2012) Grafting of model primary amine compounds to cellulose nanowhiskers through periodate oxidation. Cellulose 19(6):2069–2079CrossRef Dash R, Elder T, Ragauskas AJ (2012) Grafting of model primary amine compounds to cellulose nanowhiskers through periodate oxidation. Cellulose 19(6):2069–2079CrossRef
Zurück zum Zitat Elazzouzi-Hafraoui S, Nishiyama Y, Putaux JL, Heux L, Dubreuil F, Rochas C (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9(1):57–65CrossRef Elazzouzi-Hafraoui S, Nishiyama Y, Putaux JL, Heux L, Dubreuil F, Rochas C (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9(1):57–65CrossRef
Zurück zum Zitat Eyley S, Thielemans W (2014) Surface modification of cellulose nanocrystals. Nanoscale 6(14):7764–7779CrossRef Eyley S, Thielemans W (2014) Surface modification of cellulose nanocrystals. Nanoscale 6(14):7764–7779CrossRef
Zurück zum Zitat French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21(2):885–896CrossRef French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21(2):885–896CrossRef
Zurück zum Zitat French AD, Santiago Cintrón M (2013) Cellulose polymorphy, crystallite size, and the segal crystallinity index. Cellulose 20(1):583–588CrossRef French AD, Santiago Cintrón M (2013) Cellulose polymorphy, crystallite size, and the segal crystallinity index. Cellulose 20(1):583–588CrossRef
Zurück zum Zitat Galbraikh L, Rogovin Z, Bikales N, Segal L (1971) Cellulose and cellulose derivatives. Bikales NM, Segal L (eds) 5(Part V):893–894 Galbraikh L, Rogovin Z, Bikales N, Segal L (1971) Cellulose and cellulose derivatives. Bikales NM, Segal L (eds) 5(Part V):893–894
Zurück zum Zitat Guigo N, Mazeau K, Putaux JL, Heux L (2014) Surface modification of cellulose microfibrils by periodate oxidation and subsequent reductive amination with benzylamine: a topochemical study. Cellulose 21(6):4119–4133CrossRef Guigo N, Mazeau K, Putaux JL, Heux L (2014) Surface modification of cellulose microfibrils by periodate oxidation and subsequent reductive amination with benzylamine: a topochemical study. Cellulose 21(6):4119–4133CrossRef
Zurück zum Zitat Habibi Y (2014) Key advances in the chemical modification of nanocelluloses. Chem Soc Rev 43(5):1519–1542CrossRef Habibi Y (2014) Key advances in the chemical modification of nanocelluloses. Chem Soc Rev 43(5):1519–1542CrossRef
Zurück zum Zitat Habibi Y, Chanzy H, Vignon MR (2006) Tempo-mediated surface oxidation of cellulose whiskers. Cellulose 13(6):679–687CrossRef Habibi Y, Chanzy H, Vignon MR (2006) Tempo-mediated surface oxidation of cellulose whiskers. Cellulose 13(6):679–687CrossRef
Zurück zum Zitat Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500CrossRef Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500CrossRef
Zurück zum Zitat Kasai W, Morooka T, Ek M (2014) Mechanical properties of films made from dialcohol cellulose prepared by homogeneous periodate oxidation. Cellulose 21(1):769–776CrossRef Kasai W, Morooka T, Ek M (2014) Mechanical properties of films made from dialcohol cellulose prepared by homogeneous periodate oxidation. Cellulose 21(1):769–776CrossRef
Zurück zum Zitat Kaushik M, Chen WC, van de Ven TG, Moores A (2014) An improved methodology for imaging cellulose nanocrystals by transmission electron microscopy. Nordic Pulp Paper Res J 29(1):77–84CrossRef Kaushik M, Chen WC, van de Ven TG, Moores A (2014) An improved methodology for imaging cellulose nanocrystals by transmission electron microscopy. Nordic Pulp Paper Res J 29(1):77–84CrossRef
Zurück zum Zitat Kim UJ, Kuga S, Wada M, Okano T, Kondo T (2000) Periodate oxidation of crystalline cellulose. Biomacromolecules 1(3):488–492CrossRef Kim UJ, Kuga S, Wada M, Okano T, Kondo T (2000) Periodate oxidation of crystalline cellulose. Biomacromolecules 1(3):488–492CrossRef
Zurück zum Zitat Klemm D, Kramer F, Moritz S, Lindstrm T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature based materials. Angew Chem Int Ed 50(24):5438–5466CrossRef Klemm D, Kramer F, Moritz S, Lindstrm T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature based materials. Angew Chem Int Ed 50(24):5438–5466CrossRef
Zurück zum Zitat Kloser E, Gray DG (2010) Surface grafting of cellulose nanocrystals with poly (ethylene oxide) in aqueous media. Langmuir 26(16):13,450–13,456CrossRef Kloser E, Gray DG (2010) Surface grafting of cellulose nanocrystals with poly (ethylene oxide) in aqueous media. Langmuir 26(16):13,450–13,456CrossRef
Zurück zum Zitat Lagerwall JP, Schütz C, Salajkova M, Noh J, Park JH, Scalia G, Bergström L (2014) Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films. NPG Asia Mater 6(1):e80CrossRef Lagerwall JP, Schütz C, Salajkova M, Noh J, Park JH, Scalia G, Bergström L (2014) Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films. NPG Asia Mater 6(1):e80CrossRef
Zurück zum Zitat Lenfant G, Heuzey M, van de Ven T, Carreau P (2015) Intrinsic viscosity of suspensions of electrosterically stabilized nanocrystals of cellulose. Cellulose 22(2):1109–1122CrossRef Lenfant G, Heuzey M, van de Ven T, Carreau P (2015) Intrinsic viscosity of suspensions of electrosterically stabilized nanocrystals of cellulose. Cellulose 22(2):1109–1122CrossRef
Zurück zum Zitat Li Q, Renneckar S (2011) Supramolecular structure characterization of molecularly thin cellulose i nanoparticles. Biomacromolecules 12(3):650–659CrossRef Li Q, Renneckar S (2011) Supramolecular structure characterization of molecularly thin cellulose i nanoparticles. Biomacromolecules 12(3):650–659CrossRef
Zurück zum Zitat Maute RL, Owens M Jr (1956) Rapid determination of carbonyl content in acrylonitrile. Anal Chem 28(8):1312–1314CrossRef Maute RL, Owens M Jr (1956) Rapid determination of carbonyl content in acrylonitrile. Anal Chem 28(8):1312–1314CrossRef
Zurück zum Zitat Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose i from synchrotron x-ray and neutron fiber diffraction. J Am Chem Soc 124(31):9074–9082CrossRef Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose i from synchrotron x-ray and neutron fiber diffraction. J Am Chem Soc 124(31):9074–9082CrossRef
Zurück zum Zitat Nishiyama Y, Johnson GP, French AD (2012) Diffraction from nonperiodic models of cellulose crystals. Cellulose 19(2):319–336CrossRef Nishiyama Y, Johnson GP, French AD (2012) Diffraction from nonperiodic models of cellulose crystals. Cellulose 19(2):319–336CrossRef
Zurück zum Zitat Rajalaxmi D, Jiang N, Leslie G, Ragauskas AJ (2010) Synthesis of novel water-soluble sulfonated cellulose. Carbohydr Res 345(2):284–290CrossRef Rajalaxmi D, Jiang N, Leslie G, Ragauskas AJ (2010) Synthesis of novel water-soluble sulfonated cellulose. Carbohydr Res 345(2):284–290CrossRef
Zurück zum Zitat Rutherford HA, Minor FW, Martin AR, Harris M (1942) Oxidation of cellulose: the reaction of cellulose with periodic acid. J Res Nat Bur Stand 29:131–140CrossRef Rutherford HA, Minor FW, Martin AR, Harris M (1942) Oxidation of cellulose: the reaction of cellulose with periodic acid. J Res Nat Bur Stand 29:131–140CrossRef
Zurück zum Zitat Scherrer P (1918) Bestimmung der grösse und der inneren struktur von kolloidteilchen mittels röntgenstrahlen. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, mathematisch-physikalische Klasse 1918:98–100 Scherrer P (1918) Bestimmung der grösse und der inneren struktur von kolloidteilchen mittels röntgenstrahlen. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, mathematisch-physikalische Klasse 1918:98–100
Zurück zum Zitat Segal L, Creely J, Martin A, Conrad C (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the x-ray diffractometer. Text Res J 29(10):786–794CrossRef Segal L, Creely J, Martin A, Conrad C (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the x-ray diffractometer. Text Res J 29(10):786–794CrossRef
Zurück zum Zitat Sheikhi A, Safari S, Yang H, van de Ven TG (2015) Copper removal using electrosterically stabilized nanocrystalline cellulose. ACS Appl Mater Interfaces Sheikhi A, Safari S, Yang H, van de Ven TG (2015) Copper removal using electrosterically stabilized nanocrystalline cellulose. ACS Appl Mater Interfaces
Zurück zum Zitat Yang H, Tejado A, Alam N, Antal M, van de Ven TG (2012) Films prepared from electrosterically stabilized nanocrystalline cellulose. Langmuir 28(20):7834–7842CrossRef Yang H, Tejado A, Alam N, Antal M, van de Ven TG (2012) Films prepared from electrosterically stabilized nanocrystalline cellulose. Langmuir 28(20):7834–7842CrossRef
Zurück zum Zitat Yang H, Alam MN, van de Ven TG (2013) Highly charged nanocrystalline cellulose and dicarboxylated cellulose from periodate and chlorite oxidized cellulose fibers. Cellulose 20(4):1865–1875CrossRef Yang H, Alam MN, van de Ven TG (2013) Highly charged nanocrystalline cellulose and dicarboxylated cellulose from periodate and chlorite oxidized cellulose fibers. Cellulose 20(4):1865–1875CrossRef
Zurück zum Zitat Yang H, Chen D, van de Ven TG (2015) Preparation and characterization of sterically stabilized nanocrystalline cellulose obtained by periodate oxidation of cellulose fibers. Cellulose 22(3):1743–1752CrossRef Yang H, Chen D, van de Ven TG (2015) Preparation and characterization of sterically stabilized nanocrystalline cellulose obtained by periodate oxidation of cellulose fibers. Cellulose 22(3):1743–1752CrossRef
Zurück zum Zitat Zhang J, Jiang N, Dang Z, Elder TJ, Ragauskas AJ (2008) Oxidation and sulfonation of cellulosics. Cellulose 15(3):489–496CrossRef Zhang J, Jiang N, Dang Z, Elder TJ, Ragauskas AJ (2008) Oxidation and sulfonation of cellulosics. Cellulose 15(3):489–496CrossRef
Metadaten
Titel
Chemically peeling layers of cellulose nanocrystals by periodate and chlorite oxidation
verfasst von
Kevin Conley
M. A. Whitehead
Theo G. M. van de Ven
Publikationsdatum
28.03.2016
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 3/2016
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-016-0922-1

Weitere Artikel der Ausgabe 3/2016

Cellulose 3/2016 Zur Ausgabe