Skip to main content
Erschienen in: Cellulose 3/2016

01.04.2016 | Original Paper

Cross-linked polyvinyl alcohol (PVA) foams reinforced with cellulose nanocrystals (CNCs)

verfasst von: Tao Song, Supachok Tanpichai, Kristiina Oksman

Erschienen in: Cellulose | Ausgabe 3/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Poly(vinyl alcohol) (PVA) foams reinforced with cellulose nanocrystals (CNCs) were prepared with formaldehyde as a crosslinking agent. Two initial reaction times (10, 120 s) and the addition of CNCs (0–2 wt% based on total reaction suspension) were found to affect the foam density, water uptake, morphology and mechanical properties. A longer initial reaction time resulted in higher mechanical properties and density, due to the small pore size. The addition of CNCs induced a progressive decrease in the pore diameter and an increase in the foam density, as well as improved mechanical properties. With 1.5 wt% CNC content, the compressive strength of the PVA foams was significantly improved from 7 to 58 kPa for 10 s-initial reaction time and from 65 to 115 kPa for 120 s-initial reaction time. Results showed that the cross-linked PVA foams with CNC had promising properties for use in biomedical applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Ashby MF, Medalist RFM (1983) The mechanical-properties of cellular solids. Metall Mater Trans A 14:1755–1769CrossRef Ashby MF, Medalist RFM (1983) The mechanical-properties of cellular solids. Metall Mater Trans A 14:1755–1769CrossRef
Zurück zum Zitat Avella M, Cocca M, Errico M, Gentile G (2011) Biodegradable PVOH-based foams for packaging applications. J Cell Plast 47(3):271–281CrossRef Avella M, Cocca M, Errico M, Gentile G (2011) Biodegradable PVOH-based foams for packaging applications. J Cell Plast 47(3):271–281CrossRef
Zurück zum Zitat Avella M, Cocca M, Errico ME, Gentile G (2012) Polyvinyl alcohol biodegradable foams containing cellulose fibres. J Cell Plast 48(5):459–470 Avella M, Cocca M, Errico ME, Gentile G (2012) Polyvinyl alcohol biodegradable foams containing cellulose fibres. J Cell Plast 48(5):459–470
Zurück zum Zitat Baheti V, Militky J (2013) Reinforcement of wet milled jute nano/micro particles in polyvinyl alcohol films. Fiber Polym 14(1):133–137CrossRef Baheti V, Militky J (2013) Reinforcement of wet milled jute nano/micro particles in polyvinyl alcohol films. Fiber Polym 14(1):133–137CrossRef
Zurück zum Zitat Bai HY, Li YF, Wang W, Chen GL, Rojas OJ, Dong WF, Liu XY (2015) Interpenetrated polymer networks in composites with poly(vinyl alcohol), micro- and nano-fibrillated cellulose (M/NFC) and polyHEMA to develop packaging materials. Cellulose 22:3877–3894CrossRef Bai HY, Li YF, Wang W, Chen GL, Rojas OJ, Dong WF, Liu XY (2015) Interpenetrated polymer networks in composites with poly(vinyl alcohol), micro- and nano-fibrillated cellulose (M/NFC) and polyHEMA to develop packaging materials. Cellulose 22:3877–3894CrossRef
Zurück zum Zitat Baldwin PM, Adler J, Davies MC, Melia CD (1998) High resolution imaging of starch granule surfaces by atomic force microscopy. J Cereal Sci 27:255–265CrossRef Baldwin PM, Adler J, Davies MC, Melia CD (1998) High resolution imaging of starch granule surfaces by atomic force microscopy. J Cereal Sci 27:255–265CrossRef
Zurück zum Zitat Buchhlz FL, Graham T (1997) Modern superabsorbent polymer technology. Wiley-VCH, New York Buchhlz FL, Graham T (1997) Modern superabsorbent polymer technology. Wiley-VCH, New York
Zurück zum Zitat Cantournet S, Desmorat R, Besson J (2009) Mullins effect and cyclic stress softening of filled elastomers by internal sliding and friction thermodynamics model. Int J Solids Struct 46:2255–2264CrossRef Cantournet S, Desmorat R, Besson J (2009) Mullins effect and cyclic stress softening of filled elastomers by internal sliding and friction thermodynamics model. Int J Solids Struct 46:2255–2264CrossRef
Zurück zum Zitat Cho MJ, Park BD (2011) Tensile and thermal properties of nanocellulose-reinforced poly(vinyl alcohol) nanocomposites. J Ind Eng Chem 17:36–40CrossRef Cho MJ, Park BD (2011) Tensile and thermal properties of nanocellulose-reinforced poly(vinyl alcohol) nanocomposites. J Ind Eng Chem 17:36–40CrossRef
Zurück zum Zitat Christie MH, Nikolaos AP (2000) Structure and applications of poly(vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods. Adv Polym Sci 153:37–65CrossRef Christie MH, Nikolaos AP (2000) Structure and applications of poly(vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods. Adv Polym Sci 153:37–65CrossRef
Zurück zum Zitat De Merils CC, Schoneker DR (2003) Review of the oral toxicity of polyvinyl alcohol (PVA). Food Chem Toxicol 41:319–326CrossRef De Merils CC, Schoneker DR (2003) Review of the oral toxicity of polyvinyl alcohol (PVA). Food Chem Toxicol 41:319–326CrossRef
Zurück zum Zitat Drozdov AD (2009) Mullins’ effect in semicrystalline polymers. Int J Solids Struct 46:3336–3345CrossRef Drozdov AD (2009) Mullins’ effect in semicrystalline polymers. Int J Solids Struct 46:3336–3345CrossRef
Zurück zum Zitat Gong L, Kyriakides S, Jang WY (2005) Compressive response of open-cell foams. Part I: morphology and elastic properties. Int J Solids Struct 42:1355–1379CrossRef Gong L, Kyriakides S, Jang WY (2005) Compressive response of open-cell foams. Part I: morphology and elastic properties. Int J Solids Struct 42:1355–1379CrossRef
Zurück zum Zitat Gonzalez JS, Alvarez VA (2014) Mechanical properties of polyvinylakohol/hydroxyapatite cryogel as potential artificial cartilage. J Mech Behav Biomed 34:47–56CrossRef Gonzalez JS, Alvarez VA (2014) Mechanical properties of polyvinylakohol/hydroxyapatite cryogel as potential artificial cartilage. J Mech Behav Biomed 34:47–56CrossRef
Zurück zum Zitat Gottrup F, Agren MS, Karlsmark T (2000) Models for use in wound healing research: a survey focusing on in vitro and in vivo adult soft tissue. Wound Repair Regen 8:83–96CrossRef Gottrup F, Agren MS, Karlsmark T (2000) Models for use in wound healing research: a survey focusing on in vitro and in vivo adult soft tissue. Wound Repair Regen 8:83–96CrossRef
Zurück zum Zitat Gousse C, Gandini A (1997) Acetalization of polyvinyl alcohol with furfural. Eur Polym J 33(5):667–671CrossRef Gousse C, Gandini A (1997) Acetalization of polyvinyl alcohol with furfural. Eur Polym J 33(5):667–671CrossRef
Zurück zum Zitat Harrass K, Krueger R, Moeller M, Albrecht K, Groll J (2013) Mechanically strong hydrogels with reversible behaviour under cyclic compression with mPa loading. Soft Matter 9:2869–2877CrossRef Harrass K, Krueger R, Moeller M, Albrecht K, Groll J (2013) Mechanically strong hydrogels with reversible behaviour under cyclic compression with mPa loading. Soft Matter 9:2869–2877CrossRef
Zurück zum Zitat Imai K, Shiomi T, Tezuka Y, Miya M (1984) Acetalization of poly(vinyl alcohol) by kornblum reaction. J Polym Sci Pol Chem 22(3):841–842CrossRef Imai K, Shiomi T, Tezuka Y, Miya M (1984) Acetalization of poly(vinyl alcohol) by kornblum reaction. J Polym Sci Pol Chem 22(3):841–842CrossRef
Zurück zum Zitat Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85CrossRef Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85CrossRef
Zurück zum Zitat Iwasaki K, Maeda S, Oomori Y, Kawakami H (1985) Odorless phenolic foam. Japanese Patent No. JPS60149638 (A) Iwasaki K, Maeda S, Oomori Y, Kawakami H (1985) Odorless phenolic foam. Japanese Patent No. JPS60149638 (A)
Zurück zum Zitat Karimi A, Navidbakhsh M (2014) Mechanical properties of PVA material for tissue engineering applications. Mater Technol Adv Perform Mater 29(2):90–100 Karimi A, Navidbakhsh M (2014) Mechanical properties of PVA material for tissue engineering applications. Mater Technol Adv Perform Mater 29(2):90–100
Zurück zum Zitat Karimi A, Navidbakhsh M, Razaghi R (2014) An experimental-finite element analysis on the kinetic energy absorption capacity of polyvinyl alcohol sponge. Mater Sci Eng, C 39:253–258CrossRef Karimi A, Navidbakhsh M, Razaghi R (2014) An experimental-finite element analysis on the kinetic energy absorption capacity of polyvinyl alcohol sponge. Mater Sci Eng, C 39:253–258CrossRef
Zurück zum Zitat Kumar A, Negi YS, Bhardwaj NK, Choudhary V (2013) Synthesis and characterization of cellulose nanocrystals/PVA based bionanocomposite. Adv Mater Lett 4(8):626–631 Kumar A, Negi YS, Bhardwaj NK, Choudhary V (2013) Synthesis and characterization of cellulose nanocrystals/PVA based bionanocomposite. Adv Mater Lett 4(8):626–631
Zurück zum Zitat Kumar A, Negi YS, Choudhary V, Bhardwaj NK (2014) Microstructural and mechanical properties of porous biocomposite scaffolds based on polyvinyl alcohol, nano-hydroxyapatite and cellulose nanocrystals. Cellulose 21:3409–3426CrossRef Kumar A, Negi YS, Choudhary V, Bhardwaj NK (2014) Microstructural and mechanical properties of porous biocomposite scaffolds based on polyvinyl alcohol, nano-hydroxyapatite and cellulose nanocrystals. Cellulose 21:3409–3426CrossRef
Zurück zum Zitat Lacroix M, Khan R, Senna M, Sharmin N, Salmieri S, Safrany A (2014) Radiation grafting on natural films. Radiat Phys Chem 94:88–92CrossRef Lacroix M, Khan R, Senna M, Sharmin N, Salmieri S, Safrany A (2014) Radiation grafting on natural films. Radiat Phys Chem 94:88–92CrossRef
Zurück zum Zitat Lani NS, Ngadi N, Johari A, Jusoh M (2014) Isolation, characterisation, and application of nanocellulose from oil palm empty fruit bunch fiber as nanocomposites. J Nanomater. doi:10.1155/2014/702538 Lani NS, Ngadi N, Johari A, Jusoh M (2014) Isolation, characterisation, and application of nanocellulose from oil palm empty fruit bunch fiber as nanocomposites. J Nanomater. doi:10.​1155/​2014/​702538
Zurück zum Zitat Lee SY, Mohan DJ, Kang IA, Doh GH, Lee S, Han SO (2009) Nanocellulose reinforced PVA composite films: effects of acid treatment and filler loading. Fiber Polym 10(1):77–82CrossRef Lee SY, Mohan DJ, Kang IA, Doh GH, Lee S, Han SO (2009) Nanocellulose reinforced PVA composite films: effects of acid treatment and filler loading. Fiber Polym 10(1):77–82CrossRef
Zurück zum Zitat Li X, Li Y, Zhang S, Ye Z (2012) Preparation and characterization of new foam adsorbents of poly(vinyl alcohol)/chitosan composites and their removal for dye and heavy metal from aqueous solution. Chem Eng J 183:88–97CrossRef Li X, Li Y, Zhang S, Ye Z (2012) Preparation and characterization of new foam adsorbents of poly(vinyl alcohol)/chitosan composites and their removal for dye and heavy metal from aqueous solution. Chem Eng J 183:88–97CrossRef
Zurück zum Zitat Li W, Zhao X, Huang Z, Liu S (2013) Nanocellulose fibrils isolated from BHKP using ultrasonication and their reinforcing properties in transparent poly(vinyl alcohol) films. J Polym Res 20:210–216CrossRef Li W, Zhao X, Huang Z, Liu S (2013) Nanocellulose fibrils isolated from BHKP using ultrasonication and their reinforcing properties in transparent poly(vinyl alcohol) films. J Polym Res 20:210–216CrossRef
Zurück zum Zitat Liu D, Sun X, Tian H, Maiti S, Ma Z (2013) Effects of cellulose nanofibrils on the structure and properties on PVA nanocomposites. Cellulose 20:2981–2989CrossRef Liu D, Sun X, Tian H, Maiti S, Ma Z (2013) Effects of cellulose nanofibrils on the structure and properties on PVA nanocomposites. Cellulose 20:2981–2989CrossRef
Zurück zum Zitat Liu D, Ma Z, Wang Z, Tian H, Gu M (2014) Biodegradable poly(vinyl alcohol) foams supported by cellulose nanofibrils: processing, structure, and properties. Langmuir 30:9544–9550CrossRef Liu D, Ma Z, Wang Z, Tian H, Gu M (2014) Biodegradable poly(vinyl alcohol) foams supported by cellulose nanofibrils: processing, structure, and properties. Langmuir 30:9544–9550CrossRef
Zurück zum Zitat Mariano M, Kissi NE, Dufresne A (2014) Cellulose nanocrystals and related nanocomposites: review of some properties and challenges. J Polym Sci Pol Phys 52:791–806CrossRef Mariano M, Kissi NE, Dufresne A (2014) Cellulose nanocrystals and related nanocomposites: review of some properties and challenges. J Polym Sci Pol Phys 52:791–806CrossRef
Zurück zum Zitat Nishimura H, Sato SM, Sato S (1972) Method of producing polyvinyl acetal porous articles and the shaped porous articles made therefrom. U.S. Patent No. 3663470 Nishimura H, Sato SM, Sato S (1972) Method of producing polyvinyl acetal porous articles and the shaped porous articles made therefrom. U.S. Patent No. 3663470
Zurück zum Zitat Pampolini G, Piero GD (2009) Strain localization in polyurethane foams: experiments and theoretical model. In: Pfeiffer F, Wriggers P (eds) Mechanics of microstructured solids: cellular materials, fibre reinforced solids and soft tissues. Springer, Berlin Pampolini G, Piero GD (2009) Strain localization in polyurethane foams: experiments and theoretical model. In: Pfeiffer F, Wriggers P (eds) Mechanics of microstructured solids: cellular materials, fibre reinforced solids and soft tissues. Springer, Berlin
Zurück zum Zitat Pan Y, Wang W, Peng C, Shi K, Luo Y, Ji X (2014) Novel hydrophobic polyvinyl alcohol-formaldehyde foams for organic solvents absorption and effective separation. RSC Adv 4:660–669CrossRef Pan Y, Wang W, Peng C, Shi K, Luo Y, Ji X (2014) Novel hydrophobic polyvinyl alcohol-formaldehyde foams for organic solvents absorption and effective separation. RSC Adv 4:660–669CrossRef
Zurück zum Zitat Peppas NA, Tennenhouse D (2004) Semicrystalline poly(vinyl alcohol) films and their blends with poly(acrylic acid) and poly(ethylene glycol) for drug delivery applications. J Drug Deliv Sci Technol 14(4):291–297CrossRef Peppas NA, Tennenhouse D (2004) Semicrystalline poly(vinyl alcohol) films and their blends with poly(acrylic acid) and poly(ethylene glycol) for drug delivery applications. J Drug Deliv Sci Technol 14(4):291–297CrossRef
Zurück zum Zitat Peresin MS, Habibi Y, Vesterinen AH, Rojas OJ, Pawlak JJ, Seppälä JV (2010) Effect of moisture on electrospun nanofiber composites of poly(vinyl alcohol) and cellulose nanocrystals. Biomacromolecules 11:2471–2477CrossRef Peresin MS, Habibi Y, Vesterinen AH, Rojas OJ, Pawlak JJ, Seppälä JV (2010) Effect of moisture on electrospun nanofiber composites of poly(vinyl alcohol) and cellulose nanocrystals. Biomacromolecules 11:2471–2477CrossRef
Zurück zum Zitat Răpă M, Grosu E, Stoica P, Andreica M, Hetvary M (2014) Polyvinyl alcohol and starch blends: properties and biodegradation behavior. J Environ Res Prot 11(1):34–42 Răpă M, Grosu E, Stoica P, Andreica M, Hetvary M (2014) Polyvinyl alcohol and starch blends: properties and biodegradation behavior. J Environ Res Prot 11(1):34–42
Zurück zum Zitat Rosenblatt S (1996) Injection molded PVA sponge, U.S. Patent No. 5554658 Rosenblatt S (1996) Injection molded PVA sponge, U.S. Patent No. 5554658
Zurück zum Zitat Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8:2485–2491CrossRef Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8:2485–2491CrossRef
Zurück zum Zitat Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494CrossRef Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494CrossRef
Zurück zum Zitat Srithep Y, Turng LS, Sabo R, Clemons C (2012) Nanofibrillated cellulose (NFC) reinforced polyvinyl alcohol (PVOH) nanocomposites: properties, solubility of carbon dioxide, and foaming. Cellulose 19:1209–1223CrossRef Srithep Y, Turng LS, Sabo R, Clemons C (2012) Nanofibrillated cellulose (NFC) reinforced polyvinyl alcohol (PVOH) nanocomposites: properties, solubility of carbon dioxide, and foaming. Cellulose 19:1209–1223CrossRef
Zurück zum Zitat Sueoka A, Okamoto T, Ohmori A, Kawai S, Ueda M (1981) Polyvinyl alcohol semi-permeable membrane and method for producing same. U.S. Patent No. 4279752 Sueoka A, Okamoto T, Ohmori A, Kawai S, Ueda M (1981) Polyvinyl alcohol semi-permeable membrane and method for producing same. U.S. Patent No. 4279752
Zurück zum Zitat Tashiro K, Kobayashi M (1985) Calculation of crystallite modulus of native cellulose. Polym Bull 14:213–218 Tashiro K, Kobayashi M (1985) Calculation of crystallite modulus of native cellulose. Polym Bull 14:213–218
Zurück zum Zitat Toncheva VD, Ivanova SD, Velichkova RS (1992) Modified poly(vinyl acetals). Eur Polym J 28(2):191–198CrossRef Toncheva VD, Ivanova SD, Velichkova RS (1992) Modified poly(vinyl acetals). Eur Polym J 28(2):191–198CrossRef
Zurück zum Zitat Toncheva VD, Ivanova SD, Velichkova RS (1994) Poly(vinyl acetal)s from poly(vinyl alcohol) and 4-dimethylaminobenzaldehyde. Eur Polym J 30(6):741–747CrossRef Toncheva VD, Ivanova SD, Velichkova RS (1994) Poly(vinyl acetal)s from poly(vinyl alcohol) and 4-dimethylaminobenzaldehyde. Eur Polym J 30(6):741–747CrossRef
Zurück zum Zitat Virtanen S, Vartianen J, Setälä H, Tammelin T, Vuoti S (2014a) Modified nanofibrillated cellulose-polyvinyl alcohol films with improved mechanical performance. RSC Adv 4:11343–11350CrossRef Virtanen S, Vartianen J, Setälä H, Tammelin T, Vuoti S (2014a) Modified nanofibrillated cellulose-polyvinyl alcohol films with improved mechanical performance. RSC Adv 4:11343–11350CrossRef
Zurück zum Zitat Virtanen S, Vuoti S, Heikkinen H, Lahtinen P (2014b) High strength modified nanofibrillated cellulose-polyvinyl alcohol films. Cellulose 21:3561–3571CrossRef Virtanen S, Vuoti S, Heikkinen H, Lahtinen P (2014b) High strength modified nanofibrillated cellulose-polyvinyl alcohol films. Cellulose 21:3561–3571CrossRef
Zurück zum Zitat Wajira SR, David SJ (2006) Gelatinization and solubility of corn starch during heating in excess water: new insights. J Agric Food Chem 54(10):3712–3716CrossRef Wajira SR, David SJ (2006) Gelatinization and solubility of corn starch during heating in excess water: new insights. J Agric Food Chem 54(10):3712–3716CrossRef
Zurück zum Zitat Wang C, Chiu K (2003) Foam filter and the manufacturing method thereof. U.S. Patent No. 20030140794 A1 Wang C, Chiu K (2003) Foam filter and the manufacturing method thereof. U.S. Patent No. 20030140794 A1
Zurück zum Zitat Wang X, Chung YS, Lyoo WS, Min BG (2006) Preparation and properties of chitosan/poly(vinyl alcohol) blend foams for copper adsorption. Polym Int 55:1230–1235CrossRef Wang X, Chung YS, Lyoo WS, Min BG (2006) Preparation and properties of chitosan/poly(vinyl alcohol) blend foams for copper adsorption. Polym Int 55:1230–1235CrossRef
Zurück zum Zitat Wilson CL (1952) Method of making expanded polyvinyl alcohol-formaldehyde reaction product and product resulting therefrom. U.S. Patent No. 2609347 A Wilson CL (1952) Method of making expanded polyvinyl alcohol-formaldehyde reaction product and product resulting therefrom. U.S. Patent No. 2609347 A
Zurück zum Zitat Wongsuban B, Muhammad K, Ghazali Z, Hashim K, Hassan MA (2003) The effect of electron beam irradiation on preparation of sago starch/polyvinyl alcohol foams. Nucl Instrum Methods Phys Res B 211:244–250CrossRef Wongsuban B, Muhammad K, Ghazali Z, Hashim K, Hassan MA (2003) The effect of electron beam irradiation on preparation of sago starch/polyvinyl alcohol foams. Nucl Instrum Methods Phys Res B 211:244–250CrossRef
Zurück zum Zitat Yoshizawa I (1990) Production of polyvinyl alcohol foam. Japanese Patent No. JPH02107648 (A) Yoshizawa I (1990) Production of polyvinyl alcohol foam. Japanese Patent No. JPH02107648 (A)
Zurück zum Zitat Zhao CX, Jin DD, Zhou GX, Li JC (2014) Preparation method of polyvinyl alcohol modified waterborne polyurethane. China Patent No. CN103589135A Zhao CX, Jin DD, Zhou GX, Li JC (2014) Preparation method of polyvinyl alcohol modified waterborne polyurethane. China Patent No. CN103589135A
Zurück zum Zitat Zhou YM, Fu SY, Zheng LM, Zhan HY (2012) Effect of nanocellulose isolation techniques on the formation of reinforced poly(vinyl alcohol) nanocomposite films. Exp Polym Lett 6(10):794–804CrossRef Zhou YM, Fu SY, Zheng LM, Zhan HY (2012) Effect of nanocellulose isolation techniques on the formation of reinforced poly(vinyl alcohol) nanocomposite films. Exp Polym Lett 6(10):794–804CrossRef
Metadaten
Titel
Cross-linked polyvinyl alcohol (PVA) foams reinforced with cellulose nanocrystals (CNCs)
verfasst von
Tao Song
Supachok Tanpichai
Kristiina Oksman
Publikationsdatum
01.04.2016
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 3/2016
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-016-0925-y

Weitere Artikel der Ausgabe 3/2016

Cellulose 3/2016 Zur Ausgabe