Skip to main content
Erschienen in: Cellulose 12/2018

06.10.2018 | Original Paper

A novel method to prepare lignocellulose nanofibrils directly from bamboo chips

verfasst von: Hailong Lu, Lili Zhang, Cuicui Liu, Zhibin He, Xiaofan Zhou, Yonghao Ni

Erschienen in: Cellulose | Ausgabe 12/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nanocelluloses, including cellulose nanocrystals (CNCs), bacterial nanocellulose (BNC), and cellulose nanofibrils (CNFs), have attracted much attention in recent years all over the world. However, commercial applications of nanocelluloses are still limited due to the high cost of nanocelluloses. In this study, we developed a novel method to prepare lignocellulose nanofibrils (LCNF) directly from bamboo chips (BC), which can readily be scaled up. The method developed consists of three primary steps, which are as follows: glycerol pretreatment, screw extrusion, and mechanical refining/milling in a colloid mill. Glycerol can readily penetrate into bamboo chips and it is used as an effective reaction medium for fibrillation and delignification. The LCNF yield is about 77.2% based on bone dry bamboo chips. The morphology of the LCNF was investigated by transmission electron microscopy (TEM), which shows that the LCNFs have a diameter of 20–80 nm and a length of several thousand nanometers. X-ray diffraction (XRD) analysis shows that the crystallinity of the LCNF was 52.7%, which was slightly lower than that of the bamboo raw material. This process can be easily scaled up for commercial production of LCNF.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abe K (2016) Nanofibrillation of dried pulp in NaOH solutions using bead milling. Cellulose 23:1257–1261CrossRef Abe K (2016) Nanofibrillation of dried pulp in NaOH solutions using bead milling. Cellulose 23:1257–1261CrossRef
Zurück zum Zitat Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 8:3276–3278CrossRef Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 8:3276–3278CrossRef
Zurück zum Zitat Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues–Wheat straw and soy hulls. Bioresour Technol 99:1664–1671CrossRef Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues–Wheat straw and soy hulls. Bioresour Technol 99:1664–1671CrossRef
Zurück zum Zitat An X, Wen Y, Cheng D et al (2016) Preparation of cellulose nano-crystals through a sequential process of cellulase pretreatment and acid hydrolysis. Cellulose 23:2409–2420CrossRef An X, Wen Y, Cheng D et al (2016) Preparation of cellulose nano-crystals through a sequential process of cellulase pretreatment and acid hydrolysis. Cellulose 23:2409–2420CrossRef
Zurück zum Zitat Baker AA, Helbert W, Sugiyama J, Miles MJ (1997) High-resolution atomic force microscopy of native valonia cellulose I microcrystals. J Struct Biol 119:129–138CrossRef Baker AA, Helbert W, Sugiyama J, Miles MJ (1997) High-resolution atomic force microscopy of native valonia cellulose I microcrystals. J Struct Biol 119:129–138CrossRef
Zurück zum Zitat Chen W, Yu H, Liu Y (2011b) Preparation of millimeter-long cellulose I nanofibers with diameters of 30–80 nm from bamboo fibers. Carbohydr Polym 86:453–461CrossRef Chen W, Yu H, Liu Y (2011b) Preparation of millimeter-long cellulose I nanofibers with diameters of 30–80 nm from bamboo fibers. Carbohydr Polym 86:453–461CrossRef
Zurück zum Zitat Demirba A (1998) Aqueous glycerol delignification of wood chips and ground wood. Bioresour Technol 63:179–185CrossRef Demirba A (1998) Aqueous glycerol delignification of wood chips and ground wood. Bioresour Technol 63:179–185CrossRef
Zurück zum Zitat Ferrer A, Filpponen I, Rodríguez A et al (2012) Valorization of residual Empty Palm Fruit Bunch Fibers (EPFBF) by microfluidization: production of nanofibrillated cellulose and EPFBF nanopaper. Bioresour Technol 125:249–255CrossRef Ferrer A, Filpponen I, Rodríguez A et al (2012) Valorization of residual Empty Palm Fruit Bunch Fibers (EPFBF) by microfluidization: production of nanofibrillated cellulose and EPFBF nanopaper. Bioresour Technol 125:249–255CrossRef
Zurück zum Zitat Huang Z-M, Zhang Y-Z, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63:2223–2253CrossRef Huang Z-M, Zhang Y-Z, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63:2223–2253CrossRef
Zurück zum Zitat Iwamoto S, Yamamoto S, Lee S-H et al (2014) Mechanical and thermal properties of polypropylene composites reinforced with lignocellulose nanofibers dried in melted ethylene-butene copolymer. Materials 7:6919–6929CrossRef Iwamoto S, Yamamoto S, Lee S-H et al (2014) Mechanical and thermal properties of polypropylene composites reinforced with lignocellulose nanofibers dried in melted ethylene-butene copolymer. Materials 7:6919–6929CrossRef
Zurück zum Zitat Jahan MS, Mun SP (2009) Studies on the macromolecular components of nonwood available in Bangladesh. Ind Crops Prod 30:344–350CrossRef Jahan MS, Mun SP (2009) Studies on the macromolecular components of nonwood available in Bangladesh. Ind Crops Prod 30:344–350CrossRef
Zurück zum Zitat Jang J-H, Lee S-H, Kim N-H (2014) Preparation of lignocellulose nanofibers from Korean white pine and its application to polyurethane nanocomposite. J Korean Wood Sci Technol 42:700–707CrossRef Jang J-H, Lee S-H, Kim N-H (2014) Preparation of lignocellulose nanofibers from Korean white pine and its application to polyurethane nanocomposite. J Korean Wood Sci Technol 42:700–707CrossRef
Zurück zum Zitat Li W, Zhao X, Liu S (2013) Preparation of entangled nanocellulose fibers from APMP and its magnetic functional property as matrix. Carbohydr Polym 94:278–285CrossRef Li W, Zhao X, Liu S (2013) Preparation of entangled nanocellulose fibers from APMP and its magnetic functional property as matrix. Carbohydr Polym 94:278–285CrossRef
Zurück zum Zitat Li H, Zhang H, Li J, Du F (2014) Comparison of interfiber bonding ability of different poplar P-RC alkaline peroxide mechanical pulp (APMP) fiber fractions. BioResources 9:6019–6027 Li H, Zhang H, Li J, Du F (2014) Comparison of interfiber bonding ability of different poplar P-RC alkaline peroxide mechanical pulp (APMP) fiber fractions. BioResources 9:6019–6027
Zurück zum Zitat Liu C, van der Heide E, Wang H et al (2013) Alkaline twin-screw extrusion pretreatment for fermentable sugar production. Biotechnol Biofuels 6:97CrossRef Liu C, van der Heide E, Wang H et al (2013) Alkaline twin-screw extrusion pretreatment for fermentable sugar production. Biotechnol Biofuels 6:97CrossRef
Zurück zum Zitat Liu H, Pang B, Zhao Y et al (2018) Comparative study of two different alkali-mechanical pretreatments of corn stover for bioethanol production. Fuel 221:21–27CrossRef Liu H, Pang B, Zhao Y et al (2018) Comparative study of two different alkali-mechanical pretreatments of corn stover for bioethanol production. Fuel 221:21–27CrossRef
Zurück zum Zitat Martin C, Puls J, Saake B, Schreiber A (2011) Effect of glycerol pretreatment on component recovery and enzymatic hydrolysis of sugarcane bagasse. Cellul Chem Technol 45:487 Martin C, Puls J, Saake B, Schreiber A (2011) Effect of glycerol pretreatment on component recovery and enzymatic hydrolysis of sugarcane bagasse. Cellul Chem Technol 45:487
Zurück zum Zitat Meighan BN, Lima DRS, Cardoso WJ et al (2017) Two-stage fractionation of sugarcane bagasse by autohydrolysis and glycerol organosolv delignification in a lignocellulosic biorefinery concept. Ind Crops Prod 108:431–441CrossRef Meighan BN, Lima DRS, Cardoso WJ et al (2017) Two-stage fractionation of sugarcane bagasse by autohydrolysis and glycerol organosolv delignification in a lignocellulosic biorefinery concept. Ind Crops Prod 108:431–441CrossRef
Zurück zum Zitat Nelson ML, O’Connor RT (1964) Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part II. A new infrared ratio for estimation of crystallinity in celluloses I and II. J Appl Polym Sci 8:1325–1341CrossRef Nelson ML, O’Connor RT (1964) Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part II. A new infrared ratio for estimation of crystallinity in celluloses I and II. J Appl Polym Sci 8:1325–1341CrossRef
Zurück zum Zitat Romaní A, Ruiz HA, Pereira FB et al (2013) Fractionation of Eucalyptus globulus wood by glycerol–water pretreatment: optimization and modeling. Ind Eng Chem Res 52:14342–14352CrossRef Romaní A, Ruiz HA, Pereira FB et al (2013) Fractionation of Eucalyptus globulus wood by glycerol–water pretreatment: optimization and modeling. Ind Eng Chem Res 52:14342–14352CrossRef
Zurück zum Zitat Sain M, Panthapulakkal S (2006) Bioprocess preparation of wheat straw fibers and their characterization. Ind Crops Prod 23:1–8CrossRef Sain M, Panthapulakkal S (2006) Bioprocess preparation of wheat straw fibers and their characterization. Ind Crops Prod 23:1–8CrossRef
Zurück zum Zitat Sánchez R, Espinosa E, Domínguez-Robles J et al (2016) Isolation and characterization of lignocellulose nanofibers from different wheat straw pulps. Int J Biol Macromol 92:1025–1033CrossRef Sánchez R, Espinosa E, Domínguez-Robles J et al (2016) Isolation and characterization of lignocellulose nanofibers from different wheat straw pulps. Int J Biol Macromol 92:1025–1033CrossRef
Zurück zum Zitat Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794CrossRef Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text Res J 29:786–794CrossRef
Zurück zum Zitat Silva GA, Czeisler C, Niece KL et al (2004) Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 303:1352–1355CrossRef Silva GA, Czeisler C, Niece KL et al (2004) Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 303:1352–1355CrossRef
Zurück zum Zitat Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494CrossRef Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494CrossRef
Zurück zum Zitat Sun F, Chen H (2008) Enhanced enzymatic hydrolysis of wheat straw by aqueous glycerol pretreatment. Bioresour Technol 99:6156–6161CrossRef Sun F, Chen H (2008) Enhanced enzymatic hydrolysis of wheat straw by aqueous glycerol pretreatment. Bioresour Technol 99:6156–6161CrossRef
Zurück zum Zitat Sun B, Hou Q, He Z et al (2014) Cellulose nanocrystals (CNC) as carriers for a spirooxazine dye and its effect on photochromic efficiency. Carbohydr Polym 111:419–424CrossRef Sun B, Hou Q, He Z et al (2014) Cellulose nanocrystals (CNC) as carriers for a spirooxazine dye and its effect on photochromic efficiency. Carbohydr Polym 111:419–424CrossRef
Zurück zum Zitat Theng D, Arbat G, Delgado-Aguilar M et al (2015) All-lignocellulosic fiberboard from corn biomass and cellulose nanofibers. Ind Crops Prod 76:166–173CrossRef Theng D, Arbat G, Delgado-Aguilar M et al (2015) All-lignocellulosic fiberboard from corn biomass and cellulose nanofibers. Ind Crops Prod 76:166–173CrossRef
Zurück zum Zitat Wang J-P, Chen Y-Z, Yuan S-J et al (2009) Synthesis and characterization of a novel cationic chitosan-based flocculant with a high water-solubility for pulp mill wastewater treatment. Water Res 43:5267–5275CrossRef Wang J-P, Chen Y-Z, Yuan S-J et al (2009) Synthesis and characterization of a novel cationic chitosan-based flocculant with a high water-solubility for pulp mill wastewater treatment. Water Res 43:5267–5275CrossRef
Zurück zum Zitat Xu EC, Sabourin MJ (1999) Evaluation of APMP and BCTMP for market pulps from South American eucalyptus. Tappi J 82 Xu EC, Sabourin MJ (1999) Evaluation of APMP and BCTMP for market pulps from South American eucalyptus. Tappi J 82
Zurück zum Zitat Yano H, Nakahara S (2004) Bio-composites produced from plant microfiber bundles with a nanometer unit web-like network. J Mater Sci 39:1635–1638CrossRef Yano H, Nakahara S (2004) Bio-composites produced from plant microfiber bundles with a nanometer unit web-like network. J Mater Sci 39:1635–1638CrossRef
Zurück zum Zitat Yousefi H, Faezipour M, Hedjazi S et al (2013) Comparative study of paper and nanopaper properties prepared from bacterial cellulose nanofibers and fibers/ground cellulose nanofibers of canola straw. Ind Crops Prod 43:732–737CrossRef Yousefi H, Faezipour M, Hedjazi S et al (2013) Comparative study of paper and nanopaper properties prepared from bacterial cellulose nanofibers and fibers/ground cellulose nanofibers of canola straw. Ind Crops Prod 43:732–737CrossRef
Zurück zum Zitat Yousefi H, Azari V, Khazaeian A (2018) Direct mechanical production of wood nanofibers from raw wood microparticles with no chemical treatment. Ind Crops Prod 115:26–31CrossRef Yousefi H, Azari V, Khazaeian A (2018) Direct mechanical production of wood nanofibers from raw wood microparticles with no chemical treatment. Ind Crops Prod 115:26–31CrossRef
Zurück zum Zitat Zhang Z, Harrison MD, Rackemann DW et al (2016) Organosolv pretreatment of plant biomass for enhanced enzymatic saccharification. Green Chem 18:360–381CrossRef Zhang Z, Harrison MD, Rackemann DW et al (2016) Organosolv pretreatment of plant biomass for enhanced enzymatic saccharification. Green Chem 18:360–381CrossRef
Zurück zum Zitat Zhu Q, Zhou X, Ma J, Liu X (2013) Preparation and characterization of novel regenerated cellulose films via sol–gel technology. Ind Eng Chem Res 52:17900–17906CrossRef Zhu Q, Zhou X, Ma J, Liu X (2013) Preparation and characterization of novel regenerated cellulose films via sol–gel technology. Ind Eng Chem Res 52:17900–17906CrossRef
Metadaten
Titel
A novel method to prepare lignocellulose nanofibrils directly from bamboo chips
verfasst von
Hailong Lu
Lili Zhang
Cuicui Liu
Zhibin He
Xiaofan Zhou
Yonghao Ni
Publikationsdatum
06.10.2018
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 12/2018
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-018-2067-x

Weitere Artikel der Ausgabe 12/2018

Cellulose 12/2018 Zur Ausgabe