Skip to main content
Erschienen in: Cellulose 1/2022

11.11.2021 | Original Research

Extraction and characterization of cellulose nanowhiskers from TEMPO oxidized sisal fibers

verfasst von: Fangwei Fan, Mengting Zhu, Kaiyang Fang, Endi Cao, Yinzhi Yang, Jinpeng Xie, Zhongmin Deng, Yiren Chen, Xinwang Cao

Erschienen in: Cellulose | Ausgabe 1/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Cellulose nanowhiskers as one kind of renewable and biocompatible nanomaterials evoke much interest because of its versatility in various applications. Herein, the sisal cellulose nanowhiskers with ultrathin diameter of 5–10 nm, high crystallinity of 74% and C6 carboxylate groups converted from C6 primary hydroxyls were prepared via a 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)/NaBr/NaClO system selective oxidization combined with mechanical homogenization. The effects of sodium hydroxide concentration in alkali pretreatment on the final sisal cellulose nanowhiskers were explored. It was found that with the increase of sodium hydroxide concentration, the sisal fiber crystalline type would change from cellulose I to cellulose II. The versatile sisal cellulose nanowhiskers would be particularly useful for applications in the nanocomposites as reinforcing phase, as well as in tissue engineering, filtration, pharmaceutical and optical industries as additives.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Achaby ME, Miri NE, Hannache H et al (2018) Cellulose nanocrystals from Miscanthus fibers: insights into rheological, physicochemical properties and polymer reinforcing ability. Cellulose 25:6603–6619CrossRef Achaby ME, Miri NE, Hannache H et al (2018) Cellulose nanocrystals from Miscanthus fibers: insights into rheological, physicochemical properties and polymer reinforcing ability. Cellulose 25:6603–6619CrossRef
Zurück zum Zitat Ajouguim S, Abdelouahdi K, Waqif M et al (2019) Modifications of Alfa fibers by alkali and hydrothermal treatment. Cellulose 26(3):1503–1516CrossRef Ajouguim S, Abdelouahdi K, Waqif M et al (2019) Modifications of Alfa fibers by alkali and hydrothermal treatment. Cellulose 26(3):1503–1516CrossRef
Zurück zum Zitat Aryaie MMH, Zeydanloo S, Dehghani FAMR et al (2019) Producing and evaluating of bacterial nano-cellulose (BNC) using Acetobacter xylinum bacterial. J Wood for Sci Technol 26(3):29–42 Aryaie MMH, Zeydanloo S, Dehghani FAMR et al (2019) Producing and evaluating of bacterial nano-cellulose (BNC) using Acetobacter xylinum bacterial. J Wood for Sci Technol 26(3):29–42
Zurück zum Zitat Ávila HM, Feldmann EM, Pleumeekers MM et al (2015) Novel bilayer bacterial cellulose nanowhiskers scaffold supports neocartilage formation in vitro and in vivo. Biomaterials 44:122–133CrossRef Ávila HM, Feldmann EM, Pleumeekers MM et al (2015) Novel bilayer bacterial cellulose nanowhiskers scaffold supports neocartilage formation in vitro and in vivo. Biomaterials 44:122–133CrossRef
Zurück zum Zitat Aziz T, Ullah A, Fan H et al (2021) Cellulose nanocrystals applications in health, medicine and catalysis. J Polym Environ 29(4):1–10 Aziz T, Ullah A, Fan H et al (2021) Cellulose nanocrystals applications in health, medicine and catalysis. J Polym Environ 29(4):1–10
Zurück zum Zitat Cao X, Ding B, Yu J et al (2012) Cellulose nanowhiskers extracted from TEMPO-oxidized jute fibers. Carbohydr Polym 90(2):1075–1080PubMedCrossRef Cao X, Ding B, Yu J et al (2012) Cellulose nanowhiskers extracted from TEMPO-oxidized jute fibers. Carbohydr Polym 90(2):1075–1080PubMedCrossRef
Zurück zum Zitat Cao X, Huang M, Ding B, Yu J, Sun G (2013) Robust polyacrylonitrile nanofibrous membrane reinforced with jute cellulose nanowhiskers for water purification. Desalination 316:120–126CrossRef Cao X, Huang M, Ding B, Yu J, Sun G (2013) Robust polyacrylonitrile nanofibrous membrane reinforced with jute cellulose nanowhiskers for water purification. Desalination 316:120–126CrossRef
Zurück zum Zitat Cao X, Zhu M, Fan F et al (2020) All-cellulose composites based on jute cellulose nanowhiskers and electrospun cellulose acetate (CA) fibrous membranes. Cellulose 27:1385–1391CrossRef Cao X, Zhu M, Fan F et al (2020) All-cellulose composites based on jute cellulose nanowhiskers and electrospun cellulose acetate (CA) fibrous membranes. Cellulose 27:1385–1391CrossRef
Zurück zum Zitat Cao Y, Tan H (2004) Structural characterization of cellulose with enzymatic treatment. J Mol Struct 705(1–3):189–193CrossRef Cao Y, Tan H (2004) Structural characterization of cellulose with enzymatic treatment. J Mol Struct 705(1–3):189–193CrossRef
Zurück zum Zitat Das K, Ray D, Banerjee C et al (2010) Physicomechanical and thermal properties of jute-nanofiber-reinforced biocopolyester composites. Ind Eng Chem Res 49(6):2775–2782CrossRef Das K, Ray D, Banerjee C et al (2010) Physicomechanical and thermal properties of jute-nanofiber-reinforced biocopolyester composites. Ind Eng Chem Res 49(6):2775–2782CrossRef
Zurück zum Zitat Fan F, Zhu M, Fang K, Xie J et al (2021) Comparative study on enhanced pectinase and alkali- oxygen degummings of sisal fibers. Cellulose 28(13):8375–8386CrossRef Fan F, Zhu M, Fang K, Xie J et al (2021) Comparative study on enhanced pectinase and alkali- oxygen degummings of sisal fibers. Cellulose 28(13):8375–8386CrossRef
Zurück zum Zitat Fan XS, Liu ZW, Liu ZT et al (2010) A novel chemical degumming process for ramie bast fiber. Text Res J 80(19):2046–2051CrossRef Fan XS, Liu ZW, Liu ZT et al (2010) A novel chemical degumming process for ramie bast fiber. Text Res J 80(19):2046–2051CrossRef
Zurück zum Zitat French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896CrossRef French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896CrossRef
Zurück zum Zitat Fritz C, Jeuck B, Salas C, Gonzalez R, Jameel H, Rojas OJ(2015) Nanocellulose and proteins: exploiting their interactions for production, immobilization, and synthesis of biocompatible materials. Cellulose chemistry and properties: fibers, cellulose nanocellulose and advanced materials. In: Advances in polymer science, vol 271. Springer, Cham, pp 207–224 Fritz C, Jeuck B, Salas C, Gonzalez R, Jameel H, Rojas OJ(2015) Nanocellulose and proteins: exploiting their interactions for production, immobilization, and synthesis of biocompatible materials. Cellulose chemistry and properties: fibers, cellulose nanocellulose and advanced materials. In: Advances in polymer science, vol 271. Springer, Cham, pp 207–224
Zurück zum Zitat Fukuzumi H, Saito T, Iwata T et al (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromol 10(1):162–165CrossRef Fukuzumi H, Saito T, Iwata T et al (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromol 10(1):162–165CrossRef
Zurück zum Zitat Fukuzumi H, Saito T, Okita Y et al (2010) Thermal stabilization of TEMPO-oxidized cellulose. Polym Degrad Stab 95(9):1502–1508CrossRef Fukuzumi H, Saito T, Okita Y et al (2010) Thermal stabilization of TEMPO-oxidized cellulose. Polym Degrad Stab 95(9):1502–1508CrossRef
Zurück zum Zitat Gupte Y, Kulkarni A, Raut B et al (2021) Characterization of nanocellulose production by strains of Komagataeibacter sp. isolated from organic waste and Kombucha. Carbohydr Polym 266:118176PubMedCrossRef Gupte Y, Kulkarni A, Raut B et al (2021) Characterization of nanocellulose production by strains of Komagataeibacter sp. isolated from organic waste and Kombucha. Carbohydr Polym 266:118176PubMedCrossRef
Zurück zum Zitat He M, Alam MK, Liu H, Zheng M, Zhao J, Wang L, Liu L, Qin X, Yu J (2021) Textile waste derived cellulose based composite aerogel for efficient solar steam generation. Compos Commun 28:100936CrossRef He M, Alam MK, Liu H, Zheng M, Zhao J, Wang L, Liu L, Qin X, Yu J (2021) Textile waste derived cellulose based composite aerogel for efficient solar steam generation. Compos Commun 28:100936CrossRef
Zurück zum Zitat Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3(1):71–85PubMedCrossRef Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3(1):71–85PubMedCrossRef
Zurück zum Zitat Ji YL, Kim EH, Park TU et al (2017) Development of metal ion absorbing filter using cellulose nanofibrils. Palpu Chongi Gisul/j Korea Tech Assoc Pulp Pap Ind 49(3):95–101 Ji YL, Kim EH, Park TU et al (2017) Development of metal ion absorbing filter using cellulose nanofibrils. Palpu Chongi Gisul/j Korea Tech Assoc Pulp Pap Ind 49(3):95–101
Zurück zum Zitat Kargarzadeh H, Ahmad I, Abdullah I et al (2012) Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers. Cellulose 19(3):855–866CrossRef Kargarzadeh H, Ahmad I, Abdullah I et al (2012) Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers. Cellulose 19(3):855–866CrossRef
Zurück zum Zitat Karim Z, Afrin S, Husain Q et al (2017) Necessity of enzymatic hydrolysis for production and functionalization of nanocelluloses. Crit Rev Biotechnol 37(3):355–370PubMedCrossRef Karim Z, Afrin S, Husain Q et al (2017) Necessity of enzymatic hydrolysis for production and functionalization of nanocelluloses. Crit Rev Biotechnol 37(3):355–370PubMedCrossRef
Zurück zum Zitat Kassab Z, Boujemaoui A, Youcef HB et al (2019) Production of cellulose nanofibrils from alfa fibers and its nanoreinforcement potential in polymer nanocomposites. Cellulose 26(18):9567–9581CrossRef Kassab Z, Boujemaoui A, Youcef HB et al (2019) Production of cellulose nanofibrils from alfa fibers and its nanoreinforcement potential in polymer nanocomposites. Cellulose 26(18):9567–9581CrossRef
Zurück zum Zitat Liu DY, Sui GX, Bhattacharyya D (2015a) Properties and characterization of electrically conductive nanocellulose-based composite films, fillers and reinforcements for advanced nanocomposites. Woodhead Publishing, Sawston, pp 3–25CrossRef Liu DY, Sui GX, Bhattacharyya D (2015a) Properties and characterization of electrically conductive nanocellulose-based composite films, fillers and reinforcements for advanced nanocomposites. Woodhead Publishing, Sawston, pp 3–25CrossRef
Zurück zum Zitat Liu H, Geng S, Hu P et al (2015b) Study of pickering emulsion stabilized by sulfonated cellulose nanowhiskers extracted from sisal fiber. Colloid Polym Sci 293:963–974CrossRef Liu H, Geng S, Hu P et al (2015b) Study of pickering emulsion stabilized by sulfonated cellulose nanowhiskers extracted from sisal fiber. Colloid Polym Sci 293:963–974CrossRef
Zurück zum Zitat Lin J, Yu L, Tian F et al (2014) Cellulose nanofibrils aerogels generated from jute fibers. Carbohydr Polym 109:35–43PubMedCrossRef Lin J, Yu L, Tian F et al (2014) Cellulose nanofibrils aerogels generated from jute fibers. Carbohydr Polym 109:35–43PubMedCrossRef
Zurück zum Zitat Luo H, Cha R, Li J et al (2019) Advances in tissue engineering of cellulose nanowhiskers-based scaffolds: a review. Carbohydr Polym 224:115144PubMedCrossRef Luo H, Cha R, Li J et al (2019) Advances in tissue engineering of cellulose nanowhiskers-based scaffolds: a review. Carbohydr Polym 224:115144PubMedCrossRef
Zurück zum Zitat Marín P, Martirani VASM, Urbina L et al (2019) Bacterial cellulose nanowhiskers production from naphthalene. Microb Biotechnol 12(4):662–676PubMedPubMedCentral Marín P, Martirani VASM, Urbina L et al (2019) Bacterial cellulose nanowhiskers production from naphthalene. Microb Biotechnol 12(4):662–676PubMedPubMedCentral
Zurück zum Zitat Martin AR, Martins MA, Silva ORF, Mattoso LHC (2010) Studies on the thermal properties of sisal fiber and its constituents. Thermochim Acta 506(s1–2):14–19CrossRef Martin AR, Martins MA, Silva ORF, Mattoso LHC (2010) Studies on the thermal properties of sisal fiber and its constituents. Thermochim Acta 506(s1–2):14–19CrossRef
Zurück zum Zitat Maiti S, Ray D, Mitra D, Misra M (2012) Study of compostable behavior of jute nanofiber reinforced biocopolyester composites in aerobic compost environment. J Appl Polym Sci 123(5):2952–2958CrossRef Maiti S, Ray D, Mitra D, Misra M (2012) Study of compostable behavior of jute nanofiber reinforced biocopolyester composites in aerobic compost environment. J Appl Polym Sci 123(5):2952–2958CrossRef
Zurück zum Zitat Meng C, Liu F, Li Z, Yu C (2016) The cellulose protection agent used in the oxidation degumming of ramie. Text Res J 86(10):1109–1118CrossRef Meng C, Liu F, Li Z, Yu C (2016) The cellulose protection agent used in the oxidation degumming of ramie. Text Res J 86(10):1109–1118CrossRef
Zurück zum Zitat Müller A, Ni Z, Hessler N et al (2013) The biopolymer bacterial cellulose nanowhiskers as drug delivery system: investigation of drug loading and release using the model protein albumin. J Pharm Sci 102(2):579–592PubMedCrossRef Müller A, Ni Z, Hessler N et al (2013) The biopolymer bacterial cellulose nanowhiskers as drug delivery system: investigation of drug loading and release using the model protein albumin. J Pharm Sci 102(2):579–592PubMedCrossRef
Zurück zum Zitat Nickerson RF, Habrle JA (1947) Cellulose intercrystalline structure. Ind Eng Chem 39(11):1507–1512CrossRef Nickerson RF, Habrle JA (1947) Cellulose intercrystalline structure. Ind Eng Chem 39(11):1507–1512CrossRef
Zurück zum Zitat Nogi M, Yano H (2008) Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry. Adv Mater 20(10):1849–1852CrossRef Nogi M, Yano H (2008) Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry. Adv Mater 20(10):1849–1852CrossRef
Zurück zum Zitat Poyraz B, Tozluoğlu A, Candan Z et al (2018) TEMPO-treated CNF composites: pulp and matrix effect. Fibers Polym 19(1):195–204CrossRef Poyraz B, Tozluoğlu A, Candan Z et al (2018) TEMPO-treated CNF composites: pulp and matrix effect. Fibers Polym 19(1):195–204CrossRef
Zurück zum Zitat Saito T, Isogai A (2004) TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromol 5(5):1983–1989CrossRef Saito T, Isogai A (2004) TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromol 5(5):1983–1989CrossRef
Zurück zum Zitat Saito T, Kimura S, Nishiyama Y et al (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromol 8(8):2485–2491CrossRef Saito T, Kimura S, Nishiyama Y et al (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromol 8(8):2485–2491CrossRef
Zurück zum Zitat Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromol 7(6):1687–1691CrossRef Saito T, Nishiyama Y, Putaux JL, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromol 7(6):1687–1691CrossRef
Zurück zum Zitat Yang W, Jiao L, Liu W et al (2019) Manufacture of highly transparent and hazy cellulose nanofibril films via coating TEMPO-oxidized wood fibers. Nanomaterials 9(1):107PubMedCentralCrossRef Yang W, Jiao L, Liu W et al (2019) Manufacture of highly transparent and hazy cellulose nanofibril films via coating TEMPO-oxidized wood fibers. Nanomaterials 9(1):107PubMedCentralCrossRef
Zurück zum Zitat Yu L, Lin J, Tian F et al (2014) Cellulose nanofibrils generated from jute fibers with tunable polymorphs and crystallinity. J Mat Chem A 2(18):6402–6411CrossRef Yu L, Lin J, Tian F et al (2014) Cellulose nanofibrils generated from jute fibers with tunable polymorphs and crystallinity. J Mat Chem A 2(18):6402–6411CrossRef
Zurück zum Zitat Zain NFM, Yusop SM, Ahmad I (2014) Preparation and characterization of cellulose and nanocellulose from pomelo (Citrus grandis) albedo. J Nutr Food Sci 5(1):334 Zain NFM, Yusop SM, Ahmad I (2014) Preparation and characterization of cellulose and nanocellulose from pomelo (Citrus grandis) albedo. J Nutr Food Sci 5(1):334
Zurück zum Zitat Zhang J, Pan HS (1995) The FTIR study of microcrystalline cellulose. Cell Sci Technol 3(1):22–27 Zhang J, Pan HS (1995) The FTIR study of microcrystalline cellulose. Cell Sci Technol 3(1):22–27
Metadaten
Titel
Extraction and characterization of cellulose nanowhiskers from TEMPO oxidized sisal fibers
verfasst von
Fangwei Fan
Mengting Zhu
Kaiyang Fang
Endi Cao
Yinzhi Yang
Jinpeng Xie
Zhongmin Deng
Yiren Chen
Xinwang Cao
Publikationsdatum
11.11.2021
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 1/2022
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-021-04305-8

Weitere Artikel der Ausgabe 1/2022

Cellulose 1/2022 Zur Ausgabe