Skip to main content
Erschienen in: Designs, Codes and Cryptography 3/2017

31.12.2016

There is exactly one \({\mathbb {Z}}_2{\mathbb {Z}}_4\)-cyclic 1-perfect code

verfasst von: Joaquim Borges, Cristina Fernández-Córdoba

Erschienen in: Designs, Codes and Cryptography | Ausgabe 3/2017

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Let \(\mathcal{C}\) be a \({\mathbb {Z}}_2{\mathbb {Z}}_4\)-additive code of length \(n > 3\). We prove that if the binary Gray image of \(\mathcal{C}\) is a 1-perfect nonlinear code, then \(\mathcal{C}\) cannot be a \({\mathbb {Z}}_2{\mathbb {Z}}_4\)-cyclic code except for one case of length \(n=15\). Moreover, we give a parity check matrix for this cyclic code. Adding an even parity check coordinate to a \({\mathbb {Z}}_2{\mathbb {Z}}_4\)-additive 1-perfect code gives a \({\mathbb {Z}}_2{\mathbb {Z}}_4\)-additive extended 1-perfect code. We also prove that such a code cannot be \({\mathbb {Z}}_2{\mathbb {Z}}_4\)-cyclic.
Literatur
1.
Zurück zum Zitat Abualrub T., Siap I., Aydin H.: \(\mathbb{Z}_2\mathbb{Z}_4\)-additive cyclic codes. IEEE Trans. Inf. Theory 60, 1508–1514 (2014).CrossRefMATH Abualrub T., Siap I., Aydin H.: \(\mathbb{Z}_2\mathbb{Z}_4\)-additive cyclic codes. IEEE Trans. Inf. Theory 60, 1508–1514 (2014).CrossRefMATH
2.
Zurück zum Zitat Bonisoli A.: Every equidistant linear code is a sequence of dual Hamming codes. Ars Comb. 18, 181–186 (1984).MathSciNetMATH Bonisoli A.: Every equidistant linear code is a sequence of dual Hamming codes. Ars Comb. 18, 181–186 (1984).MathSciNetMATH
3.
Zurück zum Zitat Borges J., Fernández-Córdoba C., Pujol J., Rifà J., Villanueva M.: \(\mathbb{Z}_2\mathbb{Z}_4\)-linear codes: generator matrices and duality. Des. Codes Cryptogr. 54, 167–179 (2010).MathSciNetCrossRefMATH Borges J., Fernández-Córdoba C., Pujol J., Rifà J., Villanueva M.: \(\mathbb{Z}_2\mathbb{Z}_4\)-linear codes: generator matrices and duality. Des. Codes Cryptogr. 54, 167–179 (2010).MathSciNetCrossRefMATH
4.
Zurück zum Zitat Borges J., Fernández-Córdoba C., Ten-Valls R.: \(\mathbb{Z}_2\mathbb{Z}_4\)-additive cyclic codes, generator polynomials and dual codes. IEEE Trans. Inf. Theory 62, 6348–6354 (2016). Borges J., Fernández-Córdoba C., Ten-Valls R.: \(\mathbb{Z}_2\mathbb{Z}_4\)-additive cyclic codes, generator polynomials and dual codes. IEEE Trans. Inf. Theory 62, 6348–6354 (2016).
5.
Zurück zum Zitat Borges J., Phelps K.T., Rifà J.: The rank and kernel of extended 1-perfect \(\mathbb{Z}_4\)-linear and additive non-\(\mathbb{Z}_4\)-linear codes. IEEE Trans. Inf. Theory 49, 2028–2034 (2003).MathSciNetCrossRefMATH Borges J., Phelps K.T., Rifà J.: The rank and kernel of extended 1-perfect \(\mathbb{Z}_4\)-linear and additive non-\(\mathbb{Z}_4\)-linear codes. IEEE Trans. Inf. Theory 49, 2028–2034 (2003).MathSciNetCrossRefMATH
6.
8.
Zurück zum Zitat Justensen J., Forchhammer S.: Two-Dimensional Information Theory and Coding. Cambridge University Press, Cambridge (2010). Justensen J., Forchhammer S.: Two-Dimensional Information Theory and Coding. Cambridge University Press, Cambridge (2010).
9.
Zurück zum Zitat Krotov D.S.: \(\mathbb{Z}_4\)-linear perfect codes. Diskret. Anal. Issled. Oper. Ser. 1 7(4), 78–90 (2000) (in Russian). Krotov D.S.: \(\mathbb{Z}_4\)-linear perfect codes. Diskret. Anal. Issled. Oper. Ser. 1 7(4), 78–90 (2000) (in Russian).
10.
Zurück zum Zitat MacWilliams F.J., Sloane N.J.A.: The Theory of Error-Correcting Codes. North-Holland Publishing Company, New York (1977).MATH MacWilliams F.J., Sloane N.J.A.: The Theory of Error-Correcting Codes. North-Holland Publishing Company, New York (1977).MATH
12.
Zurück zum Zitat Rifà J.: On a categorial isomorphism between a class of completely regular codes and a class of distance regular graphs. In: Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, AAECC-8. LNCS, vol. 508, pp. 164–179 (1990). Rifà J.: On a categorial isomorphism between a class of completely regular codes and a class of distance regular graphs. In: Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, AAECC-8. LNCS, vol. 508, pp. 164–179 (1990).
Metadaten
Titel
There is exactly one -cyclic 1-perfect code
verfasst von
Joaquim Borges
Cristina Fernández-Córdoba
Publikationsdatum
31.12.2016
Verlag
Springer US
Erschienen in
Designs, Codes and Cryptography / Ausgabe 3/2017
Print ISSN: 0925-1022
Elektronische ISSN: 1573-7586
DOI
https://doi.org/10.1007/s10623-016-0323-3

Weitere Artikel der Ausgabe 3/2017

Designs, Codes and Cryptography 3/2017 Zur Ausgabe

Premium Partner