Skip to main content
Erschienen in: Journal of Elasticity 1/2019

11.12.2018

A Comparison Between Active Strain and Active Stress in Transversely Isotropic Hyperelastic Materials

verfasst von: Giulia Giantesio, Alessandro Musesti, Davide Riccobelli

Erschienen in: Journal of Elasticity | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Active materials are media for which deformations can occur in absence of loads, given an external stimulus. Two approaches to the modeling of such materials are mainly used in literature, both based on the introduction of a new tensor: an additive stress \(\mathsf{P}_{\text{act}}\) in the active stress case and a multiplicative strain \(\mathsf{F}_{a}\) in the active strain one. Aim of this paper is the comparison between the two approaches on simple shears.
Considering an incompressible and transversely isotropic material, we design constitutive relations for \(\mathsf{P}_{\text{act}}\) and \(\mathsf{F}_{a}\) so that they produce the same results for a uniaxial deformation along the symmetry axis. We then study the two approaches in the case of a simple shear deformation. In a hyperelastic setting, we show that the two approaches produce different stress components along a simple shear, unless some necessary conditions on the strain energy density are fulfilled. However, such conditions are very restrictive and rule out the usual elastic strain energy functionals. Active stress and active strain therefore produce different results in shear, even if they both fit uniaxial data.
Our results show that experimental data on the stress-stretch response on uniaxial deformations are not enough to establish which activation approach can capture better the mechanics of active materials. We conclude that other types of deformations, beyond the uniaxial one, should be taken into consideration in the modeling of such materials.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ambrosi, D., Pezzuto, S.: Active stress vs. active strain in mechanobiology: constitutive issues. J. Elast. 107, 199–212 (2012) MathSciNetMATHCrossRef Ambrosi, D., Pezzuto, S.: Active stress vs. active strain in mechanobiology: constitutive issues. J. Elast. 107, 199–212 (2012) MathSciNetMATHCrossRef
2.
Zurück zum Zitat Ambrosi, D., Arioli, G., Nobile, F., Quarteroni, A.: Electromechanical coupling in cardiac dynamics: the active strain approach. SIAM J. Appl. Math. 71(2), 605–621 (2011) MathSciNetMATHCrossRef Ambrosi, D., Arioli, G., Nobile, F., Quarteroni, A.: Electromechanical coupling in cardiac dynamics: the active strain approach. SIAM J. Appl. Math. 71(2), 605–621 (2011) MathSciNetMATHCrossRef
3.
Zurück zum Zitat Blemker, S.S., Pinsky, P.M., Delp, S.L.: A 3D model of muscle reveals the causes of nonuniform strains in the biceps brachii. J. Biomech. 38(4), 657–665 (2005) CrossRef Blemker, S.S., Pinsky, P.M., Delp, S.L.: A 3D model of muscle reveals the causes of nonuniform strains in the biceps brachii. J. Biomech. 38(4), 657–665 (2005) CrossRef
4.
Zurück zum Zitat Ehret, A.E., Böl, M., Itskov, M.: A continuum constitutive model for the active behaviour of skeletal muscle. J. Mech. Phys. Solids 59(3), 625–636 (2011) ADSMathSciNetMATHCrossRef Ehret, A.E., Böl, M., Itskov, M.: A continuum constitutive model for the active behaviour of skeletal muscle. J. Mech. Phys. Solids 59(3), 625–636 (2011) ADSMathSciNetMATHCrossRef
5.
Zurück zum Zitat Giantesio, G., Musesti, A.: A continuum model of skeletal muscle tissue with loss of activation. In: Gerisch, A., Penta, R., Lang, J. (eds.) Multiscale Models in Mechano and Tumor Biology: Modeling, Homogenization, and Applications. Lecture Notes in Computational Science and Engineering, vol. 122, pp. 139–159. Springer, Berlin (2017) CrossRef Giantesio, G., Musesti, A.: A continuum model of skeletal muscle tissue with loss of activation. In: Gerisch, A., Penta, R., Lang, J. (eds.) Multiscale Models in Mechano and Tumor Biology: Modeling, Homogenization, and Applications. Lecture Notes in Computational Science and Engineering, vol. 122, pp. 139–159. Springer, Berlin (2017) CrossRef
6.
Zurück zum Zitat Giantesio, G., Musesti, A.: Strain-dependent internal parameters in hyperelastic biological materials. Int. J. Non-Linear Mech. 95, 162–167 (2017) ADSCrossRef Giantesio, G., Musesti, A.: Strain-dependent internal parameters in hyperelastic biological materials. Int. J. Non-Linear Mech. 95, 162–167 (2017) ADSCrossRef
7.
Zurück zum Zitat Giantesio, G., Marzocchi, A., Musesti, A.: Loss of mass and performance in skeletal muscle tissue: a continuum model. Commun. Appl. Ind. Math. 9(1), 1–19 (2018) MathSciNetMATH Giantesio, G., Marzocchi, A., Musesti, A.: Loss of mass and performance in skeletal muscle tissue: a continuum model. Commun. Appl. Ind. Math. 9(1), 1–19 (2018) MathSciNetMATH
8.
Zurück zum Zitat Hawkins, D., Bey, M.: A comprehensive approach for studying muscle-tendon mechanics. ASME J. Biomech. Eng. 116, 51–55 (1994) CrossRef Hawkins, D., Bey, M.: A comprehensive approach for studying muscle-tendon mechanics. ASME J. Biomech. Eng. 116, 51–55 (1994) CrossRef
9.
Zurück zum Zitat Heidlauf, T., Röhrle, O.: Modeling the chemoelectromechanical behavior of skeletal muscle using the parallel open-source software library OpenCMISS. Comput. Math. Methods Med. 2013, 1–14 (2013) MATHCrossRef Heidlauf, T., Röhrle, O.: Modeling the chemoelectromechanical behavior of skeletal muscle using the parallel open-source software library OpenCMISS. Comput. Math. Methods Med. 2013, 1–14 (2013) MATHCrossRef
10.
Zurück zum Zitat Heidlauf, T., Röhrle, O.: On the treatment of active behaviour in continuum muscle mechanics. PAMM 13(1), 71–72 (2013) MATHCrossRef Heidlauf, T., Röhrle, O.: On the treatment of active behaviour in continuum muscle mechanics. PAMM 13(1), 71–72 (2013) MATHCrossRef
11.
Zurück zum Zitat Heidlauf, T., Röhrle, O.: A multiscale chemo-electro-mechanical skeletal muscle model to analyze muscle contraction and force generation for different muscle fiber arrangements. Front. Physiol. 5, 498 (2014) CrossRef Heidlauf, T., Röhrle, O.: A multiscale chemo-electro-mechanical skeletal muscle model to analyze muscle contraction and force generation for different muscle fiber arrangements. Front. Physiol. 5, 498 (2014) CrossRef
12.
Zurück zum Zitat Hernández-Gascón, B., Grasa, J., Calvo, B., Rodríguez, J.: A 3D electro-mechanical continuum model for simulating skeletal muscle contraction. J. Theor. Biol. 335, 108–118 (2013) MATHCrossRef Hernández-Gascón, B., Grasa, J., Calvo, B., Rodríguez, J.: A 3D electro-mechanical continuum model for simulating skeletal muscle contraction. J. Theor. Biol. 335, 108–118 (2013) MATHCrossRef
13.
14.
15.
Zurück zum Zitat Martins, J., Pires, E., Salvado, R., Dinis, P.: A numerical model of passive and active behavior of skeletal muscles. Comput. Methods Appl. Mech. Eng. 151(3–4), 419–433 (1998) ADSMATHCrossRef Martins, J., Pires, E., Salvado, R., Dinis, P.: A numerical model of passive and active behavior of skeletal muscles. Comput. Methods Appl. Mech. Eng. 151(3–4), 419–433 (1998) ADSMATHCrossRef
16.
Zurück zum Zitat Morrow, D.A., Donahue, T.L.H., Odegard, G.M., Kaufman, K.R.: Transversely isotropic tensile material properties of skeletal muscle tissue. J. Mech. Behav. Biomed. Mater. 3(1), 124–129 (2010) CrossRef Morrow, D.A., Donahue, T.L.H., Odegard, G.M., Kaufman, K.R.: Transversely isotropic tensile material properties of skeletal muscle tissue. J. Mech. Behav. Biomed. Mater. 3(1), 124–129 (2010) CrossRef
18.
Zurück zum Zitat Neff, P.: Some results concerning the mathematical treatment of finite plasticity. In: Deformation and Failure in Metallic Materials, pp. 251–274. Springer, Berlin (2003) CrossRef Neff, P.: Some results concerning the mathematical treatment of finite plasticity. In: Deformation and Failure in Metallic Materials, pp. 251–274. Springer, Berlin (2003) CrossRef
19.
Zurück zum Zitat Odegard, G.M., Haut Donahue, T.L., Morrow, D.A., Kaufman, K.R.: Constitutive modeling of skeletal muscle tissue with an explicit strain-energy function. J. Biomech. Eng. 130, 061017 (2008) CrossRef Odegard, G.M., Haut Donahue, T.L., Morrow, D.A., Kaufman, K.R.: Constitutive modeling of skeletal muscle tissue with an explicit strain-energy function. J. Biomech. Eng. 130, 061017 (2008) CrossRef
21.
Zurück zum Zitat Pathmanathan, P., Chapman, S.J., Gavaghan, D.J., Whiteley, J.P.: Cardiac electromechanics: the effect of contraction model on the mathematical problem and accuracy of the numerical scheme. Q. J. Mech. Appl. Math. 63(3), 375 (2010) MathSciNetMATHCrossRef Pathmanathan, P., Chapman, S.J., Gavaghan, D.J., Whiteley, J.P.: Cardiac electromechanics: the effect of contraction model on the mathematical problem and accuracy of the numerical scheme. Q. J. Mech. Appl. Math. 63(3), 375 (2010) MathSciNetMATHCrossRef
22.
Zurück zum Zitat Pezzuto, S., Ambrosi, D., Quarteroni, A.: An orthotropic active-strain model for the myocardium mechanics and its numerical approximation. Eur. J. Mech. A, Solids 48, 83–96 (2014) ADSMathSciNetMATHCrossRef Pezzuto, S., Ambrosi, D., Quarteroni, A.: An orthotropic active-strain model for the myocardium mechanics and its numerical approximation. Eur. J. Mech. A, Solids 48, 83–96 (2014) ADSMathSciNetMATHCrossRef
23.
Zurück zum Zitat Rossi, S., Ruiz-Baier, R., Pavarino, L.F., Quarteroni, A.: Orthotropic active strain models for the numerical simulation of cardiac biomechanics. Int. J. Numer. Methods Biomed. Eng. 28(6–7), 761–788 (2012) MathSciNetCrossRef Rossi, S., Ruiz-Baier, R., Pavarino, L.F., Quarteroni, A.: Orthotropic active strain models for the numerical simulation of cardiac biomechanics. Int. J. Numer. Methods Biomed. Eng. 28(6–7), 761–788 (2012) MathSciNetCrossRef
25.
Zurück zum Zitat Weickenmeier, J., Itskov, M., Mazza, E., Jabareen, M.: A physically motivated constitutive model for 3D numerical simulation of skeletal muscles. Int. J. Numer. Methods Biomed. Eng. 30(5), 545–562 (2014) MathSciNetCrossRef Weickenmeier, J., Itskov, M., Mazza, E., Jabareen, M.: A physically motivated constitutive model for 3D numerical simulation of skeletal muscles. Int. J. Numer. Methods Biomed. Eng. 30(5), 545–562 (2014) MathSciNetCrossRef
26.
Zurück zum Zitat Wilkie, D.R.: The mechanical properties of muscle. Br. Med. Bull. 12(3), 177–182 (1956) CrossRef Wilkie, D.R.: The mechanical properties of muscle. Br. Med. Bull. 12(3), 177–182 (1956) CrossRef
Metadaten
Titel
A Comparison Between Active Strain and Active Stress in Transversely Isotropic Hyperelastic Materials
verfasst von
Giulia Giantesio
Alessandro Musesti
Davide Riccobelli
Publikationsdatum
11.12.2018
Verlag
Springer Netherlands
Erschienen in
Journal of Elasticity / Ausgabe 1/2019
Print ISSN: 0374-3535
Elektronische ISSN: 1573-2681
DOI
https://doi.org/10.1007/s10659-018-9708-z

Weitere Artikel der Ausgabe 1/2019

Journal of Elasticity 1/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.