Skip to main content
Erschienen in: Fire Technology 1/2021

06.07.2020

Experimental Study on Burning Characteristics of the Large-Scale Transformer Oil Pool Fire with Different Extinguishing Methods

verfasst von: Chuanping Wu, Tiannian Zhou, Baohui Chen, Yu Liu, Ping Liang

Erschienen in: Fire Technology | Ausgabe 1/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this study, a 100 m2 steel tank was used to simulate transformer oil fires, with an aim of investigating the burning characteristics of a large-scale pool fire. To recover a real thermal state of transformer oil in operation, a heating system was employed to raise the initial fuel temperature. In total, three fire-extinguishing tests were performed using two delivery methods, i.e., a hand-held fire water branch (FWB) and fire water monitor (FWM) to understand their performance in fighting large-scale pool fires. The extinguishing activities using the FWB method were conducted by four trained firefighters, and the FWM was operated by a trained firefighter. Also, a sequence of bench-scale tests was conducted to investigate the impact of initial fuel temperature on the mass burning rate of transformer oil pool fires. This part is a supplement to the large-scale tests. The results demonstrated that the temperatures adjacent to the tank border were reduced as the vertical height increased. The growth rate of the flame height was enhanced in the development stage when the initial fuel temperature was pre-heated to a higher value. Meanwhile, it was found that the burning rate of transformer oil pool fire occurred a slight increase with the initial fuel temperature was grown according to the bench-scale data, while the impact of initial temperature was limited within the tested temperature range. In addition, it was shown that the FWB and FWM were both effective for fighting a large-scale transformer oil pool fire. However, their efficiency was influenced significantly by the concentration of the extinguishing agents and the application density of delivery. In contrast, the FWM might be a good choice when considering the safety of firefighters, because its delivery range is greater and extinguishing time is shorter as compared to the FWB. Here, it shall be noted that the FWM has also its flipsides. Sometimes, the application of a single FWM is not well to extinguish the corner fire or other fire types, in such cases, the FWM strategy should be to use two or more fire trucks in order to cover the whole accident pool.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Duarte D (2004) A performace overview about fire risk management in the Brazilian hydroelectric generating plants and transmission network. J Loss Prev Process Ind 17(1):65–75CrossRef Duarte D (2004) A performace overview about fire risk management in the Brazilian hydroelectric generating plants and transmission network. J Loss Prev Process Ind 17(1):65–75CrossRef
2.
Zurück zum Zitat Muñoz M, Arnaldos J, Casal J, Planas E (2004) Analysis of the geometric and radiative characteristics of hydrocarbon pool fires. Combust Flame 139(3):263–277CrossRef Muñoz M, Arnaldos J, Casal J, Planas E (2004) Analysis of the geometric and radiative characteristics of hydrocarbon pool fires. Combust Flame 139(3):263–277CrossRef
3.
Zurück zum Zitat Munoz M, Planas E, Ferrero F, Casal J (2007) Predicting the emissive power of hydrocarbon pool fires. J Hazard Mater 144(3):725–729CrossRef Munoz M, Planas E, Ferrero F, Casal J (2007) Predicting the emissive power of hydrocarbon pool fires. J Hazard Mater 144(3):725–729CrossRef
4.
Zurück zum Zitat Leite RM, Centeno FR (2018) Effect of tank diameter on thermal behavior of gasoline and diesel storage tanks fires. J Hazard Mater 342:544–552CrossRef Leite RM, Centeno FR (2018) Effect of tank diameter on thermal behavior of gasoline and diesel storage tanks fires. J Hazard Mater 342:544–552CrossRef
5.
Zurück zum Zitat GB2536-90 (1991) Transformer oils, Chinese standard. State Administration for Market Regulation of China GB2536-90 (1991) Transformer oils, Chinese standard. State Administration for Market Regulation of China
6.
Zurück zum Zitat Heskestad G, Dobson HP (1997) Pool fires of transformer oil sinking into a rock bed. Fire Saf J 28:33–46CrossRef Heskestad G, Dobson HP (1997) Pool fires of transformer oil sinking into a rock bed. Fire Saf J 28:33–46CrossRef
7.
Zurück zum Zitat Hayasaka H (1996) Unsteady burning rates of small pool fires. Bull Jpn Assoc Fire Sci Eng 45(1.2):19–25 Hayasaka H (1996) Unsteady burning rates of small pool fires. Bull Jpn Assoc Fire Sci Eng 45(1.2):19–25
8.
Zurück zum Zitat Chen B, Lu S, Li C, Kang Q, Lecoustre V (2011) Initial fuel temperature effects on burning rate of pool fire. J Hazard Mater 188:369–374CrossRef Chen B, Lu S, Li C, Kang Q, Lecoustre V (2011) Initial fuel temperature effects on burning rate of pool fire. J Hazard Mater 188:369–374CrossRef
9.
Zurück zum Zitat Zhang Q, Wang L, Bi Y, Xu D, Zhi H, Qiu P (2015) Experimental investigation of foam spread and extinguishment of the large-scale methanol pool fire. J Hazard Mater 287:87–92CrossRef Zhang Q, Wang L, Bi Y, Xu D, Zhi H, Qiu P (2015) Experimental investigation of foam spread and extinguishment of the large-scale methanol pool fire. J Hazard Mater 287:87–92CrossRef
10.
Zurück zum Zitat Zhou T, Chen Q, Wang X, Zhao J, Ding C, Wang J (2018) The burning rate of n-heptane pool fires with constraint effect beneath an arced ceiling. Fuel 233:825–833CrossRef Zhou T, Chen Q, Wang X, Zhao J, Ding C, Wang J (2018) The burning rate of n-heptane pool fires with constraint effect beneath an arced ceiling. Fuel 233:825–833CrossRef
11.
Zurück zum Zitat Chen Q, Liu X, Wang X, Zhao J, Zhou T, Ding C, Wang J (2018) Experimental study of liquid fuel boilover behavior in normal and low pressures. Fire Mater 42(7):843–858CrossRef Chen Q, Liu X, Wang X, Zhao J, Zhou T, Ding C, Wang J (2018) Experimental study of liquid fuel boilover behavior in normal and low pressures. Fire Mater 42(7):843–858CrossRef
12.
Zurück zum Zitat Arai M, Saito K, Altenkirch RA (1990) A study of boilover in liquid pool fires supported on water part I: effects of a water sublayer on pool fires. Combust Sci Technol 71(1–3):25–40CrossRef Arai M, Saito K, Altenkirch RA (1990) A study of boilover in liquid pool fires supported on water part I: effects of a water sublayer on pool fires. Combust Sci Technol 71(1–3):25–40CrossRef
13.
Zurück zum Zitat Chatris JM, Planas E, Arnaldos J, Casal J (2001) Effects of thin-layer boilover on hydrocarbon pool fires. Combust Sci Technol 171(1):141–161CrossRef Chatris JM, Planas E, Arnaldos J, Casal J (2001) Effects of thin-layer boilover on hydrocarbon pool fires. Combust Sci Technol 171(1):141–161CrossRef
14.
Zurück zum Zitat Kong D, Liu P, Zhang J, Fan M, Tao C (2017) Small scale experiment study on the characteristics of boilover. J Loss Prev Process Ind 48:101–110CrossRef Kong D, Liu P, Zhang J, Fan M, Tao C (2017) Small scale experiment study on the characteristics of boilover. J Loss Prev Process Ind 48:101–110CrossRef
15.
Zurück zum Zitat Babrauskas V (2016) Heat release rates. SFPE handbook of fire protection engineering, vol 26, pp 799–904CrossRef Babrauskas V (2016) Heat release rates. SFPE handbook of fire protection engineering, vol 26, pp 799–904CrossRef
16.
Zurück zum Zitat Blinov V, Khudyakov G (1961) Diffusion burning of liquids. Army Engineer Research and Development Labs Fort Belvoir VA, Armed Services Technical Information Agency, Arlington Hall Station, Arlington 12, Virginia Blinov V, Khudyakov G (1961) Diffusion burning of liquids. Army Engineer Research and Development Labs Fort Belvoir VA, Armed Services Technical Information Agency, Arlington Hall Station, Arlington 12, Virginia
17.
Zurück zum Zitat Hu L (2017) A review of physics and correlations of pool fire behaviour in wind and future challenges. Fire Saf J 91:41–55CrossRef Hu L (2017) A review of physics and correlations of pool fire behaviour in wind and future challenges. Fire Saf J 91:41–55CrossRef
18.
Zurück zum Zitat Li JS, Chow W (2003) Numerical studies on performance evaluation of tunnel ventilation safety systems. Tunn Undergr Space Technol 18(5):435–452CrossRef Li JS, Chow W (2003) Numerical studies on performance evaluation of tunnel ventilation safety systems. Tunn Undergr Space Technol 18(5):435–452CrossRef
19.
Zurück zum Zitat Lu JZ, Chen B, Wu CP, Liu X, Zhou TJ Tan YJ (2016) A multi-additive suppressant agent-based low-flow and long-distance firefighting approach for suppressing wildfires near electrical transmission lines. J Fire Sci 34(5):1–18CrossRef Lu JZ, Chen B, Wu CP, Liu X, Zhou TJ Tan YJ (2016) A multi-additive suppressant agent-based low-flow and long-distance firefighting approach for suppressing wildfires near electrical transmission lines. J Fire Sci 34(5):1–18CrossRef
20.
Zurück zum Zitat Liu J, He Y, Zhou Z, Yuen R, Wang J (2016) Investigation of enclosure effect of pressure chamber on the burning behavior of a hydrocarbon fuel. Appl Therm Eng 101:202–216CrossRef Liu J, He Y, Zhou Z, Yuen R, Wang J (2016) Investigation of enclosure effect of pressure chamber on the burning behavior of a hydrocarbon fuel. Appl Therm Eng 101:202–216CrossRef
21.
Zurück zum Zitat Lei J, Liu N, Zhang L, Chen H, Shu L, Chen P, Deng Z, Zhu J, Satoh K, de Ris JL (2011) Experimental research on combustion dynamics of medium-scale fire whirl. Proc Combust Inst 33(2):2407–2415CrossRef Lei J, Liu N, Zhang L, Chen H, Shu L, Chen P, Deng Z, Zhu J, Satoh K, de Ris JL (2011) Experimental research on combustion dynamics of medium-scale fire whirl. Proc Combust Inst 33(2):2407–2415CrossRef
22.
Zurück zum Zitat Soma S, Saito K (1991) Reconstruction of fire whirls using scale models. Combust Flame 86(3):269–284CrossRef Soma S, Saito K (1991) Reconstruction of fire whirls using scale models. Combust Flame 86(3):269–284CrossRef
23.
Zurück zum Zitat Sjöström J, Amon F, Appel G, Persson H (2015) Thermal exposure from large scale ethanol fuel pool fires. Fire Saf J 78:229–237CrossRef Sjöström J, Amon F, Appel G, Persson H (2015) Thermal exposure from large scale ethanol fuel pool fires. Fire Saf J 78:229–237CrossRef
24.
Zurück zum Zitat Heskestad G (2016) Fire plumes, flame height, and air entrainment. SFPE handbook of fire protection engineering, pp 396–428 Heskestad G (2016) Fire plumes, flame height, and air entrainment. SFPE handbook of fire protection engineering, pp 396–428
25.
Zurück zum Zitat Zukoski EE, Cetegen B, Kubota T (1984) Visible structure of buoyant diffusion flames. In: 20th Symposium international on combustion, vol 20, no. 1 The Combustion Institute, Pennsylvania, pp 361–366 Zukoski EE, Cetegen B, Kubota T (1984) Visible structure of buoyant diffusion flames. In: 20th Symposium international on combustion, vol 20, no. 1 The Combustion Institute, Pennsylvania, pp 361–366
Metadaten
Titel
Experimental Study on Burning Characteristics of the Large-Scale Transformer Oil Pool Fire with Different Extinguishing Methods
verfasst von
Chuanping Wu
Tiannian Zhou
Baohui Chen
Yu Liu
Ping Liang
Publikationsdatum
06.07.2020
Verlag
Springer US
Erschienen in
Fire Technology / Ausgabe 1/2021
Print ISSN: 0015-2684
Elektronische ISSN: 1572-8099
DOI
https://doi.org/10.1007/s10694-020-01012-x

Weitere Artikel der Ausgabe 1/2021

Fire Technology 1/2021 Zur Ausgabe