Skip to main content
Erschienen in: International Journal of Technology and Design Education 5/2019

01.11.2018

Learning while designing in a fourth-grade integrated STEM problem

verfasst von: Lyn D. English

Erschienen in: International Journal of Technology and Design Education | Ausgabe 5/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This article reports on a 4th-grade problem activity implemented as part of a 4-year longitudinal, design research study across grades 3–6. The activity integrated the four STEM disciplines through a focus on design. Following investigations of their feet measurements and shoes, two classes of 9-year-olds explored the roles of designers and engineers in shoe manufacture, experimented with materials, and then designed and constructed their own pairs of shoes. A conceptual framework, towards informed design (adapted from Crismond and Adams in J Eng Educ 101(4):738–797, 2012), is advanced for exploring students’ learning while designing. Drawing on this framework, consideration is given to students’ use of design strategies, including posing their own problems and design aims, sketching their shoe designs, testing and reflecting on their products, and redesigning and reconstructing. Although more students expressed a desired shoe than a design problem to be solved, they nevertheless were able to develop their own design aims and constraints. Designing a functional and aesthetically pleasing shoe was most common, together with comfort. Material properties typically less accessible to young students (water repellent, durable, insulated) were also considered in their designs. Students’ attention to detail in their design sketches (e.g., style features, 2-D and 3-D perspectives, measurements, materials) suggested they had progressed beyond beginning designers. Likewise, students’ increased satisfaction with their redesigns, displaying knowledge of material properties, measurement and spatial skills, and design processes indicated progress towards informed design.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Baaki, J., Tracey, M. W., & Hutchinson, A. (2017). Give us something to react to and make it rich: Designers reflecting-in-action with external representations. International Journal of Technology and Design Education, 27, 667–682.CrossRef Baaki, J., Tracey, M. W., & Hutchinson, A. (2017). Give us something to react to and make it rich: Designers reflecting-in-action with external representations. International Journal of Technology and Design Education, 27, 667–682.CrossRef
Zurück zum Zitat Bagiati, A., & Evangelou, D. (2018). Identifying Engineering in a PreK classroom: An observation protocol to support guided project-based instruction. In L. D. English & T. Moore (Eds.), Early engineering learning (pp. 83–111). Berlin: Springer.CrossRef Bagiati, A., & Evangelou, D. (2018). Identifying Engineering in a PreK classroom: An observation protocol to support guided project-based instruction. In L. D. English & T. Moore (Eds.), Early engineering learning (pp. 83–111). Berlin: Springer.CrossRef
Zurück zum Zitat Bryan, L. A., Moore, T. J., Johnson, C. C., & Roehrig, G. H. (2015). Integrated STEM education. In C. C. Johnson, E. E. Peters-Burton, & T. J. Moore (Eds.), STEM road map: A framework for integrated STEM education (pp. 23–37). New York, NY: Routledge.CrossRef Bryan, L. A., Moore, T. J., Johnson, C. C., & Roehrig, G. H. (2015). Integrated STEM education. In C. C. Johnson, E. E. Peters-Burton, & T. J. Moore (Eds.), STEM road map: A framework for integrated STEM education (pp. 23–37). New York, NY: Routledge.CrossRef
Zurück zum Zitat Burghardt, D., & Hacker, M. (2004). Informed design: A contemporary approach to design pedagogy as a core process in technology. The Technology Teacher, 64(1), 6–8. Burghardt, D., & Hacker, M. (2004). Informed design: A contemporary approach to design pedagogy as a core process in technology. The Technology Teacher, 64(1), 6–8.
Zurück zum Zitat Bybee, R. W. (2013). The case for STEM education: Challenges and opportunities. Arlington, VA: NSTA Press. Bybee, R. W. (2013). The case for STEM education: Challenges and opportunities. Arlington, VA: NSTA Press.
Zurück zum Zitat Capobianco, B. M., DeLisi, J., & Radloff, J. (2017). Characterizing elementary teachers’ enactment of high-leverage practices through engineering design-based science instruction. Science Education, 102(2), 342–376.CrossRef Capobianco, B. M., DeLisi, J., & Radloff, J. (2017). Characterizing elementary teachers’ enactment of high-leverage practices through engineering design-based science instruction. Science Education, 102(2), 342–376.CrossRef
Zurück zum Zitat Cobb, P., Jackson, K., & Dunlap, C. (2016). Design research: An analysis and critique. In L. D. English & D. Kirshner (Eds.), Handbook of international research in mathematics education (3rd ed., pp. 481–503). New York, NY: Routledge. Cobb, P., Jackson, K., & Dunlap, C. (2016). Design research: An analysis and critique. In L. D. English & D. Kirshner (Eds.), Handbook of international research in mathematics education (3rd ed., pp. 481–503). New York, NY: Routledge.
Zurück zum Zitat Creswell, J. W. (2002). Educational research: Planning, conducting, and evaluating quantitative and qualitative research. Upper Saddle River, NJ: Merrill. Creswell, J. W. (2002). Educational research: Planning, conducting, and evaluating quantitative and qualitative research. Upper Saddle River, NJ: Merrill.
Zurück zum Zitat Crismond, D. (2013). Troubleshooting: A bridge that connects engineering design and scientific inquiry. Science Scope, 36, 74–79. Crismond, D. (2013). Troubleshooting: A bridge that connects engineering design and scientific inquiry. Science Scope, 36, 74–79.
Zurück zum Zitat Crismond, D. P., & Adams, R. S. (2012). The informed design teaching and learning matrix. Journal of Engineering Education, 101(4), 738–797.CrossRef Crismond, D. P., & Adams, R. S. (2012). The informed design teaching and learning matrix. Journal of Engineering Education, 101(4), 738–797.CrossRef
Zurück zum Zitat Daugherty, M. K., & Carter, V. (2018). The nature of interdisciplinary STEM education. In M. J. de Vries (Ed.), Handbook of technology education (pp. 159–171). Berlin: Springer.CrossRef Daugherty, M. K., & Carter, V. (2018). The nature of interdisciplinary STEM education. In M. J. de Vries (Ed.), Handbook of technology education (pp. 159–171). Berlin: Springer.CrossRef
Zurück zum Zitat Dym, C. L., Agogino, A. M., Eris, O., Frey, D. D., & Leifer, L. J. (2005). Engineering design thinking, teaching, and learning. Journal of Engineering Education, 94(1), 103–120.CrossRef Dym, C. L., Agogino, A. M., Eris, O., Frey, D. D., & Leifer, L. J. (2005). Engineering design thinking, teaching, and learning. Journal of Engineering Education, 94(1), 103–120.CrossRef
Zurück zum Zitat English, L. D. (2017). Advancing elementary and middle school STEM education. International Journal of Science and Mathematics Education, 15(1), 5–24.CrossRef English, L. D. (2017). Advancing elementary and middle school STEM education. International Journal of Science and Mathematics Education, 15(1), 5–24.CrossRef
Zurück zum Zitat English, L. D. (2018). Engineering education in early childhood: Reflections and future directions. In L. D. English & T. Moore (Eds.), Early engineering learning (pp. 273–284). Berlin: Springer.CrossRef English, L. D. (2018). Engineering education in early childhood: Reflections and future directions. In L. D. English & T. Moore (Eds.), Early engineering learning (pp. 273–284). Berlin: Springer.CrossRef
Zurück zum Zitat Fan, S., & Yu, K. (2017). How an integrative STEM curriculum can benefit students in engineering design practices. International Journal of Technology and Design Education, 27, 107–129.CrossRef Fan, S., & Yu, K. (2017). How an integrative STEM curriculum can benefit students in engineering design practices. International Journal of Technology and Design Education, 27, 107–129.CrossRef
Zurück zum Zitat Froyd, J. E., & Lohmann, J. R. (2014). Chronological and ontological development of engineering education as a field of scientific inquiry. In A. Johri & B. M. Olds (Eds.), Cambridge handbook of engineering education research (pp. 3–26). New York: Cambridge University Press. Froyd, J. E., & Lohmann, J. R. (2014). Chronological and ontological development of engineering education as a field of scientific inquiry. In A. Johri & B. M. Olds (Eds.), Cambridge handbook of engineering education research (pp. 3–26). New York: Cambridge University Press.
Zurück zum Zitat Gustafson, B., MacDonald, D., & Gentilini, S. (2007). Using talking and drawing to design: Elementary children collaborating with university industrial design students. Journal of Technology Education, 19(1), 19–34.CrossRef Gustafson, B., MacDonald, D., & Gentilini, S. (2007). Using talking and drawing to design: Elementary children collaborating with university industrial design students. Journal of Technology Education, 19(1), 19–34.CrossRef
Zurück zum Zitat Haupt, G. (2018). Design in technology education: Current state of affairs. In M. J. de Vries (Ed.), Handbook of technology education (pp. 643–659). Berlin: Springer.CrossRef Haupt, G. (2018). Design in technology education: Current state of affairs. In M. J. de Vries (Ed.), Handbook of technology education (pp. 643–659). Berlin: Springer.CrossRef
Zurück zum Zitat Hertel, J. D., Cunningham, C. M., & Kelly, G. J. (2017). The roles of engineering notebooks in shaping elementary engineering student discourse and practice. International Journal of Science Education, 39(9), 1194–1217.CrossRef Hertel, J. D., Cunningham, C. M., & Kelly, G. J. (2017). The roles of engineering notebooks in shaping elementary engineering student discourse and practice. International Journal of Science Education, 39(9), 1194–1217.CrossRef
Zurück zum Zitat Honey, M., Pearson, G., & Schweingruber, A. (2014). STEM integration in K-12 education: Status, prospects, and an agenda for research. Washington: National Academies Press. Honey, M., Pearson, G., & Schweingruber, A. (2014). STEM integration in K-12 education: Status, prospects, and an agenda for research. Washington: National Academies Press.
Zurück zum Zitat Jonassen, D. H., Strobel, J., & Lee, C. B. (2006). Everyday problem solving in engineering: Lessons for engineering educators. Journal of Engineering Education, 95(2), 139–151.CrossRef Jonassen, D. H., Strobel, J., & Lee, C. B. (2006). Everyday problem solving in engineering: Lessons for engineering educators. Journal of Engineering Education, 95(2), 139–151.CrossRef
Zurück zum Zitat Jones, A., Buntting, C., & de Vries, M. J. (2013). The developing field of technology education: A review to look forward. International Journal of Technology and Design Education, 23, 191–212.CrossRef Jones, A., Buntting, C., & de Vries, M. J. (2013). The developing field of technology education: A review to look forward. International Journal of Technology and Design Education, 23, 191–212.CrossRef
Zurück zum Zitat Kangas, K., Seitamaa-Hakkarainen, P., & Hakkarainen, K. (2013). Design expert’s participation in elementary students’ collaborative design process. International Journal of Technology and Design Education, 23(2), 161–178.CrossRef Kangas, K., Seitamaa-Hakkarainen, P., & Hakkarainen, K. (2013). Design expert’s participation in elementary students’ collaborative design process. International Journal of Technology and Design Education, 23(2), 161–178.CrossRef
Zurück zum Zitat Kelley, T. R., Brenner, D. C., & Pieper, J. T. (2010). Two approaches to engineering design: Observations in STEm education. Journal of STEM Teacher Education, 47(2), 5–40.CrossRef Kelley, T. R., Brenner, D. C., & Pieper, J. T. (2010). Two approaches to engineering design: Observations in STEm education. Journal of STEM Teacher Education, 47(2), 5–40.CrossRef
Zurück zum Zitat Kelley, T. R., Capobianco, B. M., & Kaluf, K. J. (2015). Concurrent think-aloud protocols to assess elementary design students. International Journal of Technology and Design Education, 25, 521–540.CrossRef Kelley, T. R., Capobianco, B. M., & Kaluf, K. J. (2015). Concurrent think-aloud protocols to assess elementary design students. International Journal of Technology and Design Education, 25, 521–540.CrossRef
Zurück zum Zitat Kelley, T. R., & Sung, E. (2017). Sketching by design: Teaching sketching to young learners. International Journal of Technology and Design Education, 27, 363–386.CrossRef Kelley, T. R., & Sung, E. (2017). Sketching by design: Teaching sketching to young learners. International Journal of Technology and Design Education, 27, 363–386.CrossRef
Zurück zum Zitat Kelly, E. A. (2014). Design-based research in engineering education: Current state and next steps. In A. Johri & B. M. Olds (Eds.), Cambridge handbook of engineering education research (pp. 497–518). New York: Cambridge University Press. Kelly, E. A. (2014). Design-based research in engineering education: Current state and next steps. In A. Johri & B. M. Olds (Eds.), Cambridge handbook of engineering education research (pp. 497–518). New York: Cambridge University Press.
Zurück zum Zitat Lachapelle, C. P., & Cunningham, C. M. (2014). Engineering in elementary schools. In S. Purzer, J. Stroble, & M. Cardella (Eds.), Engineering in pre-college settings: Research in synthesizing research, policy, and practices (pp. 61–88). Lafayette, IN: Purdue University Press.CrossRef Lachapelle, C. P., & Cunningham, C. M. (2014). Engineering in elementary schools. In S. Purzer, J. Stroble, & M. Cardella (Eds.), Engineering in pre-college settings: Research in synthesizing research, policy, and practices (pp. 61–88). Lafayette, IN: Purdue University Press.CrossRef
Zurück zum Zitat Lachapelle, C. P., Cunningham, C. M., & Davis, M. E. (2018). Middle childhood education: Engineering concepts, practices, and trajectories. In M. J. de Vries (Ed.), Handbook of technology education (pp. 141–157). Berlin: Springer.CrossRef Lachapelle, C. P., Cunningham, C. M., & Davis, M. E. (2018). Middle childhood education: Engineering concepts, practices, and trajectories. In M. J. de Vries (Ed.), Handbook of technology education (pp. 141–157). Berlin: Springer.CrossRef
Zurück zum Zitat Lawson, B., & Dorst, K. (2009). Design expertise. Oxford: Architectural Press. Lawson, B., & Dorst, K. (2009). Design expertise. Oxford: Architectural Press.
Zurück zum Zitat Lesh, R., & Lehrer, R. (2000). Iterative refinement cycles for videotape analyses of conceptual change. In R. Lesh & A. Kelly (Eds.), Research design in mathematics and science education (pp. 665–708). Hillsdale, NJ: Erlbaum. Lesh, R., & Lehrer, R. (2000). Iterative refinement cycles for videotape analyses of conceptual change. In R. Lesh & A. Kelly (Eds.), Research design in mathematics and science education (pp. 665–708). Hillsdale, NJ: Erlbaum.
Zurück zum Zitat Lewis, T. (1999). Research in technology education—Some areas of need. Journal of Technology Education, 10(2), 41–56.CrossRef Lewis, T. (1999). Research in technology education—Some areas of need. Journal of Technology Education, 10(2), 41–56.CrossRef
Zurück zum Zitat Lewis, T. (2005). Coming to terms with engineering design as content. Journal of Technology Education, 16(2), 2005.CrossRef Lewis, T. (2005). Coming to terms with engineering design as content. Journal of Technology Education, 16(2), 2005.CrossRef
Zurück zum Zitat Lippard, C. N., Lamm, M. H., & Riley, K. L. (2017). Engineering thinking in prekindergarten children: A systematic literature review. Journal of Engineering Education, 106(3), 454–474.CrossRef Lippard, C. N., Lamm, M. H., & Riley, K. L. (2017). Engineering thinking in prekindergarten children: A systematic literature review. Journal of Engineering Education, 106(3), 454–474.CrossRef
Zurück zum Zitat MacDonald, D., & Gustafson, B. (2004). The role of design drawing among children engaged in a parachute building activity. Journal of Technology Education, 16(1), 55–71.CrossRef MacDonald, D., & Gustafson, B. (2004). The role of design drawing among children engaged in a parachute building activity. Journal of Technology Education, 16(1), 55–71.CrossRef
Zurück zum Zitat Masters, G. (2016). Policy insights: Five challenges in Australian school education. Melbourne: Australian Council for Educational Research. Masters, G. (2016). Policy insights: Five challenges in Australian school education. Melbourne: Australian Council for Educational Research.
Zurück zum Zitat Mativo, J., & Wicklein, R. (2011). Learning effects of design strategies on high school students. Journal of STEM Teacher Education, 48(3), 8.CrossRef Mativo, J., & Wicklein, R. (2011). Learning effects of design strategies on high school students. Journal of STEM Teacher Education, 48(3), 8.CrossRef
Zurück zum Zitat McKenna, A. F. (2014). Adaptive expertise and knowledge fluency in design and innovation. In A. Johri & B. M. Olds (Eds.), Cambridge handbook of engineering education research (pp. 227–242). New York: Cambridge University Press. McKenna, A. F. (2014). Adaptive expertise and knowledge fluency in design and innovation. In A. Johri & B. M. Olds (Eds.), Cambridge handbook of engineering education research (pp. 227–242). New York: Cambridge University Press.
Zurück zum Zitat Mentzer, N., Becker, K., & Sutton, M. (2015). Engineering design thinking: High school students’ performance and knowledge. Journal of Engineering Education, 104(4), 417–432.CrossRef Mentzer, N., Becker, K., & Sutton, M. (2015). Engineering design thinking: High school students’ performance and knowledge. Journal of Engineering Education, 104(4), 417–432.CrossRef
Zurück zum Zitat Moore, T. J., & Smith, K. A. (2014). Advancing the state of the art of STEM integration. Journal of STEM Education, 15(1), 5–10. Moore, T. J., & Smith, K. A. (2014). Advancing the state of the art of STEM integration. Journal of STEM Education, 15(1), 5–10.
Zurück zum Zitat Moore, T. J., Stohlmann, M. S., Wang, H., Tank, K. M., Glancy, A. W., & Roehrig, G. H. (2014). Implementation and integration of engineering in K-12 STEM education. In S. Purzer, J. Strobel, & M. Cardella (Eds.), Engineering in pre-college settings: Research into practice (pp. 35–60). West Lafayette, IN: Purdue University Press.CrossRef Moore, T. J., Stohlmann, M. S., Wang, H., Tank, K. M., Glancy, A. W., & Roehrig, G. H. (2014). Implementation and integration of engineering in K-12 STEM education. In S. Purzer, J. Strobel, & M. Cardella (Eds.), Engineering in pre-college settings: Research into practice (pp. 35–60). West Lafayette, IN: Purdue University Press.CrossRef
Zurück zum Zitat Nathan, M. J., Srisurichan, R., Walkington, C., Wolfgram, M., Williams, C., & Alibali, M. W. (2013). Building cohesion across representations: A mechanism for STEM integration. Journal of Engineering Education, 102(1), 77–116.CrossRef Nathan, M. J., Srisurichan, R., Walkington, C., Wolfgram, M., Williams, C., & Alibali, M. W. (2013). Building cohesion across representations: A mechanism for STEM integration. Journal of Engineering Education, 102(1), 77–116.CrossRef
Zurück zum Zitat Park, D.-Y., Park, M.-H., & Bates, A. B. (2018). Exploring young children’s understanding about the concept of volume through engineering design in a STEM activity: A case study. International Journal of Science and Mathematics Education, 16(2), 275–294.CrossRef Park, D.-Y., Park, M.-H., & Bates, A. B. (2018). Exploring young children’s understanding about the concept of volume through engineering design in a STEM activity: A case study. International Journal of Science and Mathematics Education, 16(2), 275–294.CrossRef
Zurück zum Zitat Reiser, B. J. (2004). Scaffolding complex learning: The mechanisms of structuring and problematizing student work. Journal of the Learning Sciences, 13(3), 273–304.CrossRef Reiser, B. J. (2004). Scaffolding complex learning: The mechanisms of structuring and problematizing student work. Journal of the Learning Sciences, 13(3), 273–304.CrossRef
Zurück zum Zitat Rennie, L., Venville, G., & Wallace, J. (2018). Making STEM curriculum useful, relevant, and motivating for students. In R. Jorgensen & K. Larkin (Eds.), STEM education in the junior secondary (pp. 91–109). Berlin: Springer.CrossRef Rennie, L., Venville, G., & Wallace, J. (2018). Making STEM curriculum useful, relevant, and motivating for students. In R. Jorgensen & K. Larkin (Eds.), STEM education in the junior secondary (pp. 91–109). Berlin: Springer.CrossRef
Zurück zum Zitat Shaughnessy, M. (2013). By way of introduction: Mathematics in a STEM context. Mathematics Teaching in the Middle School, 18(6), 324.CrossRef Shaughnessy, M. (2013). By way of introduction: Mathematics in a STEM context. Mathematics Teaching in the Middle School, 18(6), 324.CrossRef
Zurück zum Zitat Smith, J. (2001). The current and future role of modeling in design and technology. Journal of Design and Technology Education, 6(1), 5–15. Smith, J. (2001). The current and future role of modeling in design and technology. Journal of Design and Technology Education, 6(1), 5–15.
Zurück zum Zitat Song, S., & Agogino, A. M. (2004). Insights on designers’ sketching activities in new product design teams. In Proceedings of the DETC’04 ASME 2004 design engineering technical conference and computers and information in engineering conference (pp. 1–10). Salt Lake City, Utah, September 28–October 2. Song, S., & Agogino, A. M. (2004). Insights on designers’ sketching activities in new product design teams. In Proceedings of the DETC’04 ASME 2004 design engineering technical conference and computers and information in engineering conference (pp. 1–10). Salt Lake City, Utah, September 28–October 2.
Zurück zum Zitat Strauss, A., & Corbin, J. M. (1998). Basics of qualitative research: Techniques and procedures for developing grounded theory (2nd ed.). Thousand Oaks, CA: Sage. Strauss, A., & Corbin, J. M. (1998). Basics of qualitative research: Techniques and procedures for developing grounded theory (2nd ed.). Thousand Oaks, CA: Sage.
Zurück zum Zitat Vasquez, J., Sneider, C., & Comer, M. (2013). STEM lesson essentials, grades 3–8: Integrating science, technology, engineering, and mathematics. Portsmouth, NH: Heinemann. Vasquez, J., Sneider, C., & Comer, M. (2013). STEM lesson essentials, grades 3–8: Integrating science, technology, engineering, and mathematics. Portsmouth, NH: Heinemann.
Zurück zum Zitat Welch, M., Barlex, D., & Lim, H. S. (2000). Sketching: Friend or foe to the novice designer? International Journal of Technology and Design Education, 10, 125–148.CrossRef Welch, M., Barlex, D., & Lim, H. S. (2000). Sketching: Friend or foe to the novice designer? International Journal of Technology and Design Education, 10, 125–148.CrossRef
Zurück zum Zitat Wendell, K., & Lee, H. (2010). Elementary students’ learning of materials science practices through instruction based on engineering design tasks. Journal of Science and Technology Education, 19, 580–601.CrossRef Wendell, K., & Lee, H. (2010). Elementary students’ learning of materials science practices through instruction based on engineering design tasks. Journal of Science and Technology Education, 19, 580–601.CrossRef
Zurück zum Zitat Wendell, K., Wright, C. G., & Paugh, P. (2017). Reflective decision-making in elementary students’ engineering design. Journal of Engineering Education, 106(3), 356–397.CrossRef Wendell, K., Wright, C. G., & Paugh, P. (2017). Reflective decision-making in elementary students’ engineering design. Journal of Engineering Education, 106(3), 356–397.CrossRef
Metadaten
Titel
Learning while designing in a fourth-grade integrated STEM problem
verfasst von
Lyn D. English
Publikationsdatum
01.11.2018
Verlag
Springer Netherlands
Erschienen in
International Journal of Technology and Design Education / Ausgabe 5/2019
Print ISSN: 0957-7572
Elektronische ISSN: 1573-1804
DOI
https://doi.org/10.1007/s10798-018-9482-z

Weitere Artikel der Ausgabe 5/2019

International Journal of Technology and Design Education 5/2019 Zur Ausgabe

    Premium Partner