Skip to main content
Erschienen in: Journal of Computational Electronics 5/2021

06.08.2021

The design, analysis, and simulation of an optimized all-optical AND gate using a Y-shaped plasmonic waveguide for high-speed computing devices

verfasst von: Surya Pavan Kumar Anguluri, Srinivas Raja Banda, Sabbi Vamshi Krishna, Sandip Swarnakar, Santosh Kumar

Erschienen in: Journal of Computational Electronics | Ausgabe 5/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

All-optical logic gates have proven their significance in the digital world for the implementation of high-speed computations. We propose herein a novel structure for an all-optical AND gate using the concept of a power combiner based on a Y-shaped metal–insulator–metal waveguide with a 4 µm × 7 µm footprint. This design works based on the principle of linear interference. The insertion loss and extinction ratio of the design are given as 0.165 and 14.11 dB, respectively. The design is analyzed by using the finite-difference time-domain (FDTD) method and verified using MATLAB. The minimized structure can be used to design any complex logic circuit to achieve better performance in the future.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Cotter, D., Manning, R.J., Blow, K.J., Ellis, A.D., Kelly, A.E., Nesset, D., Phillips, I.D., Poustie, A.J., Rogers, D.C.: Nonlinear optics for high-speed digital information processing. Science 286(54444), 1523–1528 (1999)CrossRef Cotter, D., Manning, R.J., Blow, K.J., Ellis, A.D., Kelly, A.E., Nesset, D., Phillips, I.D., Poustie, A.J., Rogers, D.C.: Nonlinear optics for high-speed digital information processing. Science 286(54444), 1523–1528 (1999)CrossRef
2.
Zurück zum Zitat Kumar, S., Singh, L.: Proposed new approach to design all-optical AND gate using plasmonic-based Mach-Zehnder interferometer for high-speed communication. In: Proceedings of SPIE, Nanophoton, VI, vol. 9884, pp. 1–7 (2016) Kumar, S., Singh, L.: Proposed new approach to design all-optical AND gate using plasmonic-based Mach-Zehnder interferometer for high-speed communication. In: Proceedings of SPIE, Nanophoton, VI, vol. 9884, pp. 1–7 (2016)
3.
Zurück zum Zitat Tang, Y., Zeng, X., Liang, J.: Surface plasmon resonance: an introduction to a surface spectroscopy technique. J. Chem. Educ. 87(7), 742–746 (2010)CrossRef Tang, Y., Zeng, X., Liang, J.: Surface plasmon resonance: an introduction to a surface spectroscopy technique. J. Chem. Educ. 87(7), 742–746 (2010)CrossRef
4.
Zurück zum Zitat Holmgaard, T., Bozhevolnyi, S.I.: Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides. Phys. Rev. B 75(24), 1–12 (2007)CrossRef Holmgaard, T., Bozhevolnyi, S.I.: Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides. Phys. Rev. B 75(24), 1–12 (2007)CrossRef
5.
Zurück zum Zitat Wu, Y.D.: Nonlinear all-optical switching device by using the spatial soliton collision. Fib. Int. Opt. 23, 387–404 (2004)CrossRef Wu, Y.D.: Nonlinear all-optical switching device by using the spatial soliton collision. Fib. Int. Opt. 23, 387–404 (2004)CrossRef
6.
Zurück zum Zitat Kumar, S., Singh, L., Chen, N.K.: Design of all-optical universal gates using plasmonics Mach-Zehnder interferometer for WDM applications. Plasmonics 13, 1277–1286 (2018)CrossRef Kumar, S., Singh, L., Chen, N.K.: Design of all-optical universal gates using plasmonics Mach-Zehnder interferometer for WDM applications. Plasmonics 13, 1277–1286 (2018)CrossRef
7.
Zurück zum Zitat Ozbay, E.: Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311(5758), 189–193 (2006)CrossRef Ozbay, E.: Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311(5758), 189–193 (2006)CrossRef
8.
Zurück zum Zitat Gibbs, H.M.: Optical bistability: controlling light with light. Academic, New York (1985) Gibbs, H.M.: Optical bistability: controlling light with light. Academic, New York (1985)
9.
Zurück zum Zitat Hu, X., Jiang, P., Ding, C., Yang, H., Gong, Q.: Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity. Nat. Photon. 2(3), 185–189 (2008)CrossRef Hu, X., Jiang, P., Ding, C., Yang, H., Gong, Q.: Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity. Nat. Photon. 2(3), 185–189 (2008)CrossRef
10.
Zurück zum Zitat Hayashi, S., Okamoto, T.: Plasmonics: visit the past to know the future. J. Phys. D: Appl. Phys. 45, 1–24 (2012)CrossRef Hayashi, S., Okamoto, T.: Plasmonics: visit the past to know the future. J. Phys. D: Appl. Phys. 45, 1–24 (2012)CrossRef
11.
Zurück zum Zitat Barnes, W.L., Dereux, A., Ebbesen, T.W.: Surface plasmon subwavelength optics. Nature 424, 824–830 (2003)CrossRef Barnes, W.L., Dereux, A., Ebbesen, T.W.: Surface plasmon subwavelength optics. Nature 424, 824–830 (2003)CrossRef
12.
Zurück zum Zitat Zhang, Q., Huang, X.G., Lin, X.S., Tao, J., Jin, X.P.A.: Subwavelength coupler-type MIM optical filter. Opt. Exp. 17(9), 7549–7554 (2009)CrossRef Zhang, Q., Huang, X.G., Lin, X.S., Tao, J., Jin, X.P.A.: Subwavelength coupler-type MIM optical filter. Opt. Exp. 17(9), 7549–7554 (2009)CrossRef
13.
Zurück zum Zitat Talebi, N., Mahjoubfar, A., Shahabadi, M.: Plasmonic ring resonator. J. Opt. Soc. Am. B 25(12), 2116–2122 (2008)CrossRef Talebi, N., Mahjoubfar, A., Shahabadi, M.: Plasmonic ring resonator. J. Opt. Soc. Am. B 25(12), 2116–2122 (2008)CrossRef
14.
Zurück zum Zitat Gramotnev, D.K., Bozhevolnyi, S.I.: Plasmonics beyond the diffraction limit. Nat. Photon. 4, 83–91 (2010)CrossRef Gramotnev, D.K., Bozhevolnyi, S.I.: Plasmonics beyond the diffraction limit. Nat. Photon. 4, 83–91 (2010)CrossRef
15.
Zurück zum Zitat Khan, S.A., Chang, C.M., Zaidi, Z., Shin, W., Shi, Y., Bowden, A.K.E., Solgaard, O.: Metal-insulator-metal waveguides for particle trapping and separation. Lab Chip 16(12), 2302–2308 (2016)CrossRef Khan, S.A., Chang, C.M., Zaidi, Z., Shin, W., Shi, Y., Bowden, A.K.E., Solgaard, O.: Metal-insulator-metal waveguides for particle trapping and separation. Lab Chip 16(12), 2302–2308 (2016)CrossRef
16.
Zurück zum Zitat Armacost, M., Agugstin, A., Felsner, P., Feng, Y., Friese, G., Heidenreich, J., Hueckel, G., Prigge, O., Stein, K.: A high reliability metal insulator metal capacitor for 0.18 µm copper technology. In: International Electron Devices Meeting (IEDM) Technical Digest, IEEE Conference, CA, USA, pp. 157–160 (2000). https://doi.org/10.1109/IEDM.2000.904282 Armacost, M., Agugstin, A., Felsner, P., Feng, Y., Friese, G., Heidenreich, J., Hueckel, G., Prigge, O., Stein, K.: A high reliability metal insulator metal capacitor for 0.18 µm copper technology. In: International Electron Devices Meeting (IEDM) Technical Digest, IEEE Conference, CA, USA, pp. 157–160 (2000). https://​doi.​org/​10.​1109/​IEDM.​2000.​904282
17.
Zurück zum Zitat Feng, N., Brongersma, M.L., Negro, L.D.: Metal—dielectric slot-waveguide structures for the propagation of surface plasmon polaritons at 1. 55 µm. IEEE J. Quant. Electron. 43(6), 479–485 (2007)CrossRef Feng, N., Brongersma, M.L., Negro, L.D.: Metal—dielectric slot-waveguide structures for the propagation of surface plasmon polaritons at 1. 55 µm. IEEE J. Quant. Electron. 43(6), 479–485 (2007)CrossRef
18.
Zurück zum Zitat Singh, A., Pal, A., Singh, Y., Sharma, S.: Design of optimized all-optical NAND gate using metal-insulator-metal waveguide. Optik 182, 524–528 (2019)CrossRef Singh, A., Pal, A., Singh, Y., Sharma, S.: Design of optimized all-optical NAND gate using metal-insulator-metal waveguide. Optik 182, 524–528 (2019)CrossRef
19.
Zurück zum Zitat Zia, R., Schuller, J.A., Chandran, A., Brongersma, M.L.: Plasmonics: the next chip-scale technology. Mater. Today 9(7–8), 20–27 (2006)CrossRef Zia, R., Schuller, J.A., Chandran, A., Brongersma, M.L.: Plasmonics: the next chip-scale technology. Mater. Today 9(7–8), 20–27 (2006)CrossRef
20.
Zurück zum Zitat Dionne, J.A., Sweatlock, L.A., Atwater, H.A., Polman, A.: Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization. Phys. Rev. B 73(3), 035407 (2006)CrossRef Dionne, J.A., Sweatlock, L.A., Atwater, H.A., Polman, A.: Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization. Phys. Rev. B 73(3), 035407 (2006)CrossRef
21.
Zurück zum Zitat Pile, D.F., Ogawa, T., Gramotnev, D.K., Matsuzaki, Y., Vernon, K.C., Yamaguchi, K., Okamoto, T., Haraguchi, M., Fukui, M.: Two-dimensionally localized modes of a nanoscale gap plasmon waveguide. Appl. Phys. Lett. 87(26), 1–3 (2005)CrossRef Pile, D.F., Ogawa, T., Gramotnev, D.K., Matsuzaki, Y., Vernon, K.C., Yamaguchi, K., Okamoto, T., Haraguchi, M., Fukui, M.: Two-dimensionally localized modes of a nanoscale gap plasmon waveguide. Appl. Phys. Lett. 87(26), 1–3 (2005)CrossRef
22.
Zurück zum Zitat Chen, Z., Holmgaard, T., Bozhevolnyi, S.I., Krasavin, A.V., Zayats, A.V., Markey, L., Dereux, A.: Wavelength-selective directional coupling with dielectric-loaded plasmonic waveguides. Opt. Lett. 34(3), 310–312 (2009)CrossRef Chen, Z., Holmgaard, T., Bozhevolnyi, S.I., Krasavin, A.V., Zayats, A.V., Markey, L., Dereux, A.: Wavelength-selective directional coupling with dielectric-loaded plasmonic waveguides. Opt. Lett. 34(3), 310–312 (2009)CrossRef
23.
Zurück zum Zitat Charbonneau, R., Lahoud, N., Mattiussi, G., Berini, P.: Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons. Opt. Exp. 13(3), 977–984 (2005)CrossRef Charbonneau, R., Lahoud, N., Mattiussi, G., Berini, P.: Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons. Opt. Exp. 13(3), 977–984 (2005)CrossRef
24.
Zurück zum Zitat Jung, J.H.: Optimal design of dielectric-loaded surface plasmon polariton waveguide with genetic algorithm. J. Opt. Soc. Korea 14(3), 277–281 (2010)CrossRef Jung, J.H.: Optimal design of dielectric-loaded surface plasmon polariton waveguide with genetic algorithm. J. Opt. Soc. Korea 14(3), 277–281 (2010)CrossRef
25.
Zurück zum Zitat Rao, D.G.S., Swarnakar, S., Palacharla, V., Raju, K.S.R., Kumar, S.: Design of all-optical AND, OR, and XOR logic gates using photonic crystals for switching applications. Photon. Netw. Commun. 41, 109–118 (2021)CrossRef Rao, D.G.S., Swarnakar, S., Palacharla, V., Raju, K.S.R., Kumar, S.: Design of all-optical AND, OR, and XOR logic gates using photonic crystals for switching applications. Photon. Netw. Commun. 41, 109–118 (2021)CrossRef
26.
Zurück zum Zitat Birr, T., Zywietz, U., Chhantyal, P., Chichkov, B.N., Reinhardt, C.: Ultrafast surface plasmon-polariton logic gates and half-adder. Opt. Exp. 23(25), 31755–31765 (2015)CrossRef Birr, T., Zywietz, U., Chhantyal, P., Chichkov, B.N., Reinhardt, C.: Ultrafast surface plasmon-polariton logic gates and half-adder. Opt. Exp. 23(25), 31755–31765 (2015)CrossRef
27.
Zurück zum Zitat Fakhruldeen, H.F., Mansour, T.S.: All-optical NOT gate based on nanoring silver-air plasmonic waveguide. Int. J. Engg. Tech. 7(4), 2818–2821 (2018)CrossRef Fakhruldeen, H.F., Mansour, T.S.: All-optical NOT gate based on nanoring silver-air plasmonic waveguide. Int. J. Engg. Tech. 7(4), 2818–2821 (2018)CrossRef
28.
Zurück zum Zitat Gogoi, N., Sahu, P.P.: Design of all-optical inverter using nonlinear plasmonic two-mode waveguide. Adv. Res. Elect. Electron. Eng. 2(11), 35–38 (2015) Gogoi, N., Sahu, P.P.: Design of all-optical inverter using nonlinear plasmonic two-mode waveguide. Adv. Res. Elect. Electron. Eng. 2(11), 35–38 (2015)
29.
Zurück zum Zitat Nozhat, N., Alikomak, H., Khodadadi, M.: All-optical XOR and NAND logic gates based on plasmonic nanoparticles. Opt. Commun. 392, 208–213 (2017)CrossRef Nozhat, N., Alikomak, H., Khodadadi, M.: All-optical XOR and NAND logic gates based on plasmonic nanoparticles. Opt. Commun. 392, 208–213 (2017)CrossRef
30.
Zurück zum Zitat Gogoi, N., Sahu, P.P.: All-optical surface plasmonic universal logic gate devices. Plasmonics 11, 1537–1542 (2016)CrossRef Gogoi, N., Sahu, P.P.: All-optical surface plasmonic universal logic gate devices. Plasmonics 11, 1537–1542 (2016)CrossRef
31.
Zurück zum Zitat Moradi, M., Danaie, M., Orouji, A.A.: Design of all-optical XOR and XNOR logic gates based on Fano resonance in plasmonic ring resonators. Opt. Quant. Electron. 51(5), 1–18 (2019)CrossRef Moradi, M., Danaie, M., Orouji, A.A.: Design of all-optical XOR and XNOR logic gates based on Fano resonance in plasmonic ring resonators. Opt. Quant. Electron. 51(5), 1–18 (2019)CrossRef
32.
Zurück zum Zitat Abdulnabi, S.H., Abbas, M.N.: All-optical logic gates based on nanoring insulator-metal–insulator plasmonic waveguides at optical communications band. J. Nanophoton. 13(1), 016009 (2019)CrossRef Abdulnabi, S.H., Abbas, M.N.: All-optical logic gates based on nanoring insulator-metal–insulator plasmonic waveguides at optical communications band. J. Nanophoton. 13(1), 016009 (2019)CrossRef
33.
Zurück zum Zitat Swarnakar, S., Rathi, S., Kumar, S.: Design of all-optical xor gate based on photonic crystal ring resonator. J. Opt. Commun. 41(1), 1–6 (2017) Swarnakar, S., Rathi, S., Kumar, S.: Design of all-optical xor gate based on photonic crystal ring resonator. J. Opt. Commun. 41(1), 1–6 (2017)
34.
Zurück zum Zitat Swarnakar, S., Kumar, S., Sharma, S.: Performance analysis of all-optical full-adder based on two-dimensional photonic crystals. J. Comput. Electron. 17, 1124–1134 (2018)CrossRef Swarnakar, S., Kumar, S., Sharma, S.: Performance analysis of all-optical full-adder based on two-dimensional photonic crystals. J. Comput. Electron. 17, 1124–1134 (2018)CrossRef
35.
Zurück zum Zitat Kumar, S., Singh, L., Swarnakar, S.: Design of one-bit magnitude comparator using nonlinear plasmonic waveguide. Plasmonics 12, 369–375 (2016)CrossRef Kumar, S., Singh, L., Swarnakar, S.: Design of one-bit magnitude comparator using nonlinear plasmonic waveguide. Plasmonics 12, 369–375 (2016)CrossRef
36.
Zurück zum Zitat Rao, D.G.S., Swarnakar, S., Kumar, S.: Performance analysis of all-optical NAND, NOR, and XNOR logic gates using photonic crystal waveguide for optical computing applications. Opt. Eng. 59(5), 1–11 (2020) Rao, D.G.S., Swarnakar, S., Kumar, S.: Performance analysis of all-optical NAND, NOR, and XNOR logic gates using photonic crystal waveguide for optical computing applications. Opt. Eng. 59(5), 1–11 (2020)
37.
Zurück zum Zitat Rao, D.G.S., Palacharla, V., Swarnakar, S., Kumar, S.: Design of all-optical D flip-flop using photonic crystal waveguides for optical computing and networking. Appl. Opt. 59(23), 7139–7143 (2020)CrossRef Rao, D.G.S., Palacharla, V., Swarnakar, S., Kumar, S.: Design of all-optical D flip-flop using photonic crystal waveguides for optical computing and networking. Appl. Opt. 59(23), 7139–7143 (2020)CrossRef
38.
Zurück zum Zitat Swarnakar, S., Kumar, S., Sharma, S., Singh, L.: Design of XOR /AND gate using 2-D photonic crystal principle. Proc. SPIE 10130, 1–11 (2017) Swarnakar, S., Kumar, S., Sharma, S., Singh, L.: Design of XOR /AND gate using 2-D photonic crystal principle. Proc. SPIE 10130, 1–11 (2017)
39.
Zurück zum Zitat Rathi, S., Swarnakar, S., Kumar, S.: Design of one-bit magnitude comparator using photonic crystals. J. Opt. Commun. 40(4), 1–5 (2017) Rathi, S., Swarnakar, S., Kumar, S.: Design of one-bit magnitude comparator using photonic crystals. J. Opt. Commun. 40(4), 1–5 (2017)
40.
Zurück zum Zitat Swarnakar, S., Kumar, S., Sharma, S.: Design of all-optical half-subtractor circuit device using 2-D principle of photonic crystal waveguides. J. Opt. Commun. 40(3), 195–203 (2017)CrossRef Swarnakar, S., Kumar, S., Sharma, S.: Design of all-optical half-subtractor circuit device using 2-D principle of photonic crystal waveguides. J. Opt. Commun. 40(3), 195–203 (2017)CrossRef
41.
Zurück zum Zitat Swarnakar, S., Kumar, S., Sharma, S.: All-optical half-adder circuit based on beam interference principle of photonic crystal. J. Opt. Commun. 39(1), 13–17 (2016) Swarnakar, S., Kumar, S., Sharma, S.: All-optical half-adder circuit based on beam interference principle of photonic crystal. J. Opt. Commun. 39(1), 13–17 (2016)
43.
Zurück zum Zitat Taflove, A., Hagness, S.C.: Computational electrodynamics: the finite-difference time-domain method. Artech House, Boston, London (2000)MATH Taflove, A., Hagness, S.C.: Computational electrodynamics: the finite-difference time-domain method. Artech House, Boston, London (2000)MATH
44.
Zurück zum Zitat Pal, A., Ahmed, M.Z., Swarnakar, S.: An optimized design of all-optical OR, XOR, and NOT gates using plasmonic waveguide. Opt. Quant. Electron. 53(84), 1–13 (2021) Pal, A., Ahmed, M.Z., Swarnakar, S.: An optimized design of all-optical OR, XOR, and NOT gates using plasmonic waveguide. Opt. Quant. Electron. 53(84), 1–13 (2021)
45.
Zurück zum Zitat Al-Musawi, H.K., Ali, K., Janabi, A., Al-abassi, S.A.W., Abusiba, N.A.H., Al-Fatlawi, N.A.H.Q.: Plasmonic logic gates based on dielectric-metal-dielectric design with two optical communication bands. Optics 223, 1–14 (2020) Al-Musawi, H.K., Ali, K., Janabi, A., Al-abassi, S.A.W., Abusiba, N.A.H., Al-Fatlawi, N.A.H.Q.: Plasmonic logic gates based on dielectric-metal-dielectric design with two optical communication bands. Optics 223, 1–14 (2020)
Metadaten
Titel
The design, analysis, and simulation of an optimized all-optical AND gate using a Y-shaped plasmonic waveguide for high-speed computing devices
verfasst von
Surya Pavan Kumar Anguluri
Srinivas Raja Banda
Sabbi Vamshi Krishna
Sandip Swarnakar
Santosh Kumar
Publikationsdatum
06.08.2021
Verlag
Springer US
Erschienen in
Journal of Computational Electronics / Ausgabe 5/2021
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-021-01748-x

Weitere Artikel der Ausgabe 5/2021

Journal of Computational Electronics 5/2021 Zur Ausgabe