Skip to main content
Erschienen in: Journal of Computational Neuroscience 1/2014

01.08.2014

A thalamo-cortical neural mass model for the simulation of brain rhythms during sleep

verfasst von: F. Cona, M. Lacanna, M. Ursino

Erschienen in: Journal of Computational Neuroscience | Ausgabe 1/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Cortico-thalamic interactions are known to play a pivotal role in many brain phenomena, including sleep, attention, memory consolidation and rhythm generation. Hence, simple mathematical models that can simulate the dialogue between the cortex and the thalamus, at a mesoscopic level, have a great cognitive value. In the present work we describe a neural mass model of a cortico-thalamic module, based on neurophysiological mechanisms. The model includes two thalamic populations (a thalamo-cortical relay cell population, TCR, and its related thalamic reticular nucleus, TRN), and a cortical column consisting of four connected populations (pyramidal neurons, excitatory interneurons, inhibitory interneurons with slow and fast kinetics). Moreover, thalamic neurons exhibit two firing modes: bursting and tonic. Finally, cortical synapses among pyramidal neurons incorporate a disfacilitation mechanism following prolonged activity. Simulations show that the model is able to mimic the different patterns of rhythmic activity in cortical and thalamic neurons (beta and alpha waves, spindles, delta waves, K-complexes, slow sleep waves) and their progressive changes from wakefulness to deep sleep, by just acting on modulatory inputs. Moreover, simulations performed by providing short sensory inputs to the TCR show that brain rhythms during sleep preserve the cortex from external perturbations, still allowing a high cortical activity necessary to drive synaptic plasticity and memory consolidation. In perspective, the present model may be used within larger cortico-thalamic networks, to gain a deeper understanding of mechanisms beneath synaptic changes during sleep, to investigate the specific role of brain rhythms, and to explore cortical synchronization achieved via thalamic influences.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Amzica, F., & Steriade, M. (2000). Neuronal and glial membrane potentials during sleep and paroxysmal oscillations in the neocortex. The Journal of Neuroscience, 20(17), 6648–6665.PubMed Amzica, F., & Steriade, M. (2000). Neuronal and glial membrane potentials during sleep and paroxysmal oscillations in the neocortex. The Journal of Neuroscience, 20(17), 6648–6665.PubMed
Zurück zum Zitat Bazhenov, M., Timofeev, I., Steriade, M., & Sejnowski, T. J. (2002). Model of thalamocortical slow-wave sleep oscillations and transitions to activated States. The Journal of Neuroscience, 22(19), 8691–8704.PubMed Bazhenov, M., Timofeev, I., Steriade, M., & Sejnowski, T. J. (2002). Model of thalamocortical slow-wave sleep oscillations and transitions to activated States. The Journal of Neuroscience, 22(19), 8691–8704.PubMed
Zurück zum Zitat Bhattacharya, B. S., Cakir, Y., Serap-Sengor, N., Maguire, L., & Coyle, D. (2013). Model-based bifurcation and power spectral analyses of thalamocortical alpha rhythm slowing in Alzheimer’s Disease. Neurocomputing, 115, 11–22. doi:10.1016/j.neucom.2012.10.023.CrossRef Bhattacharya, B. S., Cakir, Y., Serap-Sengor, N., Maguire, L., & Coyle, D. (2013). Model-based bifurcation and power spectral analyses of thalamocortical alpha rhythm slowing in Alzheimer’s Disease. Neurocomputing, 115, 11–22. doi:10.​1016/​j.​neucom.​2012.​10.​023.CrossRef
Zurück zum Zitat Cona, F., & Ursino, M. (2013). A multi-layer neural-mass model for learning sequences using theta/gamma oscillations. International Journal of Neural Systems, 23(3), 1–18.CrossRef Cona, F., & Ursino, M. (2013). A multi-layer neural-mass model for learning sequences using theta/gamma oscillations. International Journal of Neural Systems, 23(3), 1–18.CrossRef
Zurück zum Zitat Cona, F., Zavaglia, M., & Ursino, M. (2012). Binding and segmentation via a neural mass model trained with Hebbian and anti-Hebbian mechanisms. International Journal of Neural Systems, 22(02), 1–20. doi:10.1142/S0129065712500037.CrossRef Cona, F., Zavaglia, M., & Ursino, M. (2012). Binding and segmentation via a neural mass model trained with Hebbian and anti-Hebbian mechanisms. International Journal of Neural Systems, 22(02), 1–20. doi:10.​1142/​S012906571250003​7.CrossRef
Zurück zum Zitat Contreras, D., & Steriade, M. (1995). Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships. The Journal of Neuroscience, 15(1 Pt 2), 604–622.PubMed Contreras, D., & Steriade, M. (1995). Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships. The Journal of Neuroscience, 15(1 Pt 2), 604–622.PubMed
Zurück zum Zitat Contreras, D., & Steriade, M. (1996). Spindle oscillation in cats: the role of corticothalamic feedback in a thalamically generated rhythm. The Journal of Physiology, 490(Pt 1), 159–179.PubMedCentralPubMed Contreras, D., & Steriade, M. (1996). Spindle oscillation in cats: the role of corticothalamic feedback in a thalamically generated rhythm. The Journal of Physiology, 490(Pt 1), 159–179.PubMedCentralPubMed
Zurück zum Zitat Contreras, D., Timofeev, I., & Steriade, M. (1996). Mechanisms of long-lasting hyperpolarizations underlying slow sleep oscillations in cat corticothalamic networks. The Journal of Physiology, 494(Pt 1), 251–264.PubMedCentralPubMed Contreras, D., Timofeev, I., & Steriade, M. (1996). Mechanisms of long-lasting hyperpolarizations underlying slow sleep oscillations in cat corticothalamic networks. The Journal of Physiology, 494(Pt 1), 251–264.PubMedCentralPubMed
Zurück zum Zitat Crunelli, V., Errington, A. C., Hughes, S. W., & Tóth, T. I. (2011). The thalamic low-threshold Ca2+ potential: a key determinant of the local and global dynamics of the slow (<1 Hz) sleep oscillation in thalamocortical networks. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 369(1952), 3820–3839. doi:10.1098/rsta.2011.0126.CrossRef Crunelli, V., Errington, A. C., Hughes, S. W., & Tóth, T. I. (2011). The thalamic low-threshold Ca2+ potential: a key determinant of the local and global dynamics of the slow (<1 Hz) sleep oscillation in thalamocortical networks. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 369(1952), 3820–3839. doi:10.​1098/​rsta.​2011.​0126.CrossRef
Zurück zum Zitat Destexhe, A. (2009). Self-sustained asynchronous irregular states and Up-Down states in thalamic, cortical and thalamocortical networks of nonlinear integrate-and-fire neurons. Journal of Computational Neuroscience, 27(3), 493–506. doi:10.1007/s10827-009-0164-4.PubMedCrossRef Destexhe, A. (2009). Self-sustained asynchronous irregular states and Up-Down states in thalamic, cortical and thalamocortical networks of nonlinear integrate-and-fire neurons. Journal of Computational Neuroscience, 27(3), 493–506. doi:10.​1007/​s10827-009-0164-4.PubMedCrossRef
Zurück zum Zitat Golshani, P., Liu, X. B., & Jones, E. G. (2001). Differences in quantal amplitude reflect GluR4- subunit number at corticothalamic synapses on two populations of thalamic neurons. Proceedings of the National Academy of Sciences of the United States of America, 98(7), 4172–4177. doi:10.1073/pnas.061013698.PubMedCentralPubMedCrossRef Golshani, P., Liu, X. B., & Jones, E. G. (2001). Differences in quantal amplitude reflect GluR4- subunit number at corticothalamic synapses on two populations of thalamic neurons. Proceedings of the National Academy of Sciences of the United States of America, 98(7), 4172–4177. doi:10.​1073/​pnas.​061013698.PubMedCentralPubMedCrossRef
Zurück zum Zitat Hobson, J. A., & Pace-Schott, E. F. (2002). The cognitive neuroscience of sleep: neuronal systems, consciousness and learning. Nature Reviews Neuroscience, 3(9), 679–693. doi:10.1038/nrn915.PubMedCrossRef Hobson, J. A., & Pace-Schott, E. F. (2002). The cognitive neuroscience of sleep: neuronal systems, consciousness and learning. Nature Reviews Neuroscience, 3(9), 679–693. doi:10.​1038/​nrn915.PubMedCrossRef
Zurück zum Zitat Jansen, B. H., & Rit, V. G. (1995). Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns. Biological Cybernetics, 73(4), 357–366. doi:10.1007/BF00199471.PubMedCrossRef Jansen, B. H., & Rit, V. G. (1995). Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns. Biological Cybernetics, 73(4), 357–366. doi:10.​1007/​BF00199471.PubMedCrossRef
Zurück zum Zitat Jones, E. G. (2007). The thalamus (2nd ed.). Cambridge: Cambridge University Press. Jones, E. G. (2007). The thalamus (2nd ed.). Cambridge: Cambridge University Press.
Zurück zum Zitat Kellaway, P., & Frost, J. D. (1983). Biorhythmic modulation of epileptic events. In T. A. Pedley & B. S. Meldrum (Eds.), Recent advances in epilepsy (Vol. 1, pp. 139–154). London: Churchill-Livingstone. Kellaway, P., & Frost, J. D. (1983). Biorhythmic modulation of epileptic events. In T. A. Pedley & B. S. Meldrum (Eds.), Recent advances in epilepsy (Vol. 1, pp. 139–154). London: Churchill-Livingstone.
Zurück zum Zitat Lam, Y. W., Nelson, C. S., & Sherman, S. M. (2006). Mapping of the functional interconnections between thalamic reticular neurons using photostimulation. Journal of Neurophysiology, 96(5), 2593–2600. doi:10.1152/jn.00555.2006.PubMedCrossRef Lam, Y. W., Nelson, C. S., & Sherman, S. M. (2006). Mapping of the functional interconnections between thalamic reticular neurons using photostimulation. Journal of Neurophysiology, 96(5), 2593–2600. doi:10.​1152/​jn.​00555.​2006.PubMedCrossRef
Zurück zum Zitat Lumer, E. D., Edelman, G. M., & Tononi, G. (1997a). Neural dynamics in a model of the thalamocortical system. II. The role of neural synchrony tested through perturbations of spike timing. Cerebral Cortex, 7(3), 228–236.PubMedCrossRef Lumer, E. D., Edelman, G. M., & Tononi, G. (1997a). Neural dynamics in a model of the thalamocortical system. II. The role of neural synchrony tested through perturbations of spike timing. Cerebral Cortex, 7(3), 228–236.PubMedCrossRef
Zurück zum Zitat Lumer, E. D., Edelman, G. M., & Tononi, G. (1997b). Neural dynamics in a model of the thalamocortical system. I. Layers, loops and the emergence of fast synchronous rhythms. Cerebral Cortex, 7(3), 207–227.PubMedCrossRef Lumer, E. D., Edelman, G. M., & Tononi, G. (1997b). Neural dynamics in a model of the thalamocortical system. I. Layers, loops and the emergence of fast synchronous rhythms. Cerebral Cortex, 7(3), 207–227.PubMedCrossRef
Zurück zum Zitat Massimini, M., & Amzica, F. (2001). Extracellular calcium fluctuations and intracellular potentials in the cortex during the slow sleep oscillation. Journal of Neurophysiology, 85(3), 1346–1350.PubMed Massimini, M., & Amzica, F. (2001). Extracellular calcium fluctuations and intracellular potentials in the cortex during the slow sleep oscillation. Journal of Neurophysiology, 85(3), 1346–1350.PubMed
Zurück zum Zitat McCormick, D. A., & Prince, D. A. (1985). Two types of muscarinic response to acetylcholine in mammalian cortical neurons. Proceedings of the National Academy of Sciences of the United States of America, 82(18), 6344–6348.PubMedCentralPubMedCrossRef McCormick, D. A., & Prince, D. A. (1985). Two types of muscarinic response to acetylcholine in mammalian cortical neurons. Proceedings of the National Academy of Sciences of the United States of America, 82(18), 6344–6348.PubMedCentralPubMedCrossRef
Zurück zum Zitat Miller, K. D., Pinto, D. J., & Simons, D. J. (2001). Processing in layer 4 of the neocortical circuit: new insights from visual and somatosensory cortex. Current Opinion in Neurobiology, 11(4), 488–497.PubMedCrossRef Miller, K. D., Pinto, D. J., & Simons, D. J. (2001). Processing in layer 4 of the neocortical circuit: new insights from visual and somatosensory cortex. Current Opinion in Neurobiology, 11(4), 488–497.PubMedCrossRef
Zurück zum Zitat Pavlides, C., & Winson, J. (1989). Influences of hippocampal place cell firing in the awake state on the activity of these cells during subsequent sleep episodes. The Journal of Neuroscience, 9(8), 2907–2918.PubMed Pavlides, C., & Winson, J. (1989). Influences of hippocampal place cell firing in the awake state on the activity of these cells during subsequent sleep episodes. The Journal of Neuroscience, 9(8), 2907–2918.PubMed
Zurück zum Zitat Pirini, M., & Ursino, M. (2010). A mass model of interconnected thalamic populations including both tonic and burst firing mechanisms. International Journal of Bioelectromagnetism, 12(1), 26–31. Pirini, M., & Ursino, M. (2010). A mass model of interconnected thalamic populations including both tonic and burst firing mechanisms. International Journal of Bioelectromagnetism, 12(1), 26–31.
Zurück zum Zitat Roberts, J. A., & Robinson, P. A. (2012). Corticothalamic dynamics: structure of parameter space, spectra, instabilities, and reduced model. Physical Review E, 85(1 Pt 1), 011910.CrossRef Roberts, J. A., & Robinson, P. A. (2012). Corticothalamic dynamics: structure of parameter space, spectra, instabilities, and reduced model. Physical Review E, 85(1 Pt 1), 011910.CrossRef
Zurück zum Zitat Robinson, P. A., Rennie, C. J., & Rowe, D. L. (2002). Dynamics of large-scale brain activity in normal arousal states and epileptic seizures. Physical Review E, 65(4 Pt 1), 041924.CrossRef Robinson, P. A., Rennie, C. J., & Rowe, D. L. (2002). Dynamics of large-scale brain activity in normal arousal states and epileptic seizures. Physical Review E, 65(4 Pt 1), 041924.CrossRef
Zurück zum Zitat Sanchez-Vives, M. V., & McCormick, D. A. (2000). Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nature Neuroscience, 3(10), 1027–1034. doi:10.1038/79848.PubMedCrossRef Sanchez-Vives, M. V., & McCormick, D. A. (2000). Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nature Neuroscience, 3(10), 1027–1034. doi:10.​1038/​79848.PubMedCrossRef
Zurück zum Zitat Sherman, S. M. (2001). Tonic and burst firing: dual modes of thalamocortical relay. Trends in Neurosciences, 24(2), 122–126.PubMedCrossRef Sherman, S. M. (2001). Tonic and burst firing: dual modes of thalamocortical relay. Trends in Neurosciences, 24(2), 122–126.PubMedCrossRef
Zurück zum Zitat Sherman, S. M., & Guillery, R. W. (2002). The role of the thalamus in the flow of information to the cortex. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 357(1428), 1695–1708. doi:10.1098/rstb.2002.1161.CrossRef Sherman, S. M., & Guillery, R. W. (2002). The role of the thalamus in the flow of information to the cortex. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 357(1428), 1695–1708. doi:10.​1098/​rstb.​2002.​1161.CrossRef
Zurück zum Zitat Sherman, S. M., & Koch, C. (1986). The control of retinogeniculate transmission in the mammalian lateral geniculate nucleus. Experimental Brain Research, 63(1), 1–20.PubMedCrossRef Sherman, S. M., & Koch, C. (1986). The control of retinogeniculate transmission in the mammalian lateral geniculate nucleus. Experimental Brain Research, 63(1), 1–20.PubMedCrossRef
Zurück zum Zitat Shouse, M. N. (2001). Physiology underlying relationship of epilepsy and sleep. In D. S. Dinner & H. O. Lüders (Eds.), Epilepsy and sleep (pp. 43–62). San Diego: Academic Press.CrossRef Shouse, M. N. (2001). Physiology underlying relationship of epilepsy and sleep. In D. S. Dinner & H. O. Lüders (Eds.), Epilepsy and sleep (pp. 43–62). San Diego: Academic Press.CrossRef
Zurück zum Zitat Shouse, M. N., da Silva, A. M., & Sammaritano, M. (1996). Circadian rhythm, sleep, and epilepsy. Journal of Clinical Neurophysiology, 13(1), 32–50.PubMedCrossRef Shouse, M. N., da Silva, A. M., & Sammaritano, M. (1996). Circadian rhythm, sleep, and epilepsy. Journal of Clinical Neurophysiology, 13(1), 32–50.PubMedCrossRef
Zurück zum Zitat Skaggs, W. E., & McNaughton, B. L. (1996). Replay of neuronal firing sequences in rat hippocampus during sleep following spatial experience. Science, 271(5257), 1870–1873.PubMedCrossRef Skaggs, W. E., & McNaughton, B. L. (1996). Replay of neuronal firing sequences in rat hippocampus during sleep following spatial experience. Science, 271(5257), 1870–1873.PubMedCrossRef
Zurück zum Zitat Steriade, M. (1993). Cellular substrates of brain rhythms. In E. Niedermeyer & F. Lopes da Silva (Eds.), Electroencephalography: Basic principles, clinical applications, and related fields (pp. 27–62). Baltimore: Williams and Wilkins. Steriade, M. (1993). Cellular substrates of brain rhythms. In E. Niedermeyer & F. Lopes da Silva (Eds.), Electroencephalography: Basic principles, clinical applications, and related fields (pp. 27–62). Baltimore: Williams and Wilkins.
Zurück zum Zitat Steriade, M. (2000). Corticothalamic resonance, states of vigilance and mentation. Neuroscience, 101(2), 243–276.PubMedCrossRef Steriade, M. (2000). Corticothalamic resonance, states of vigilance and mentation. Neuroscience, 101(2), 243–276.PubMedCrossRef
Zurück zum Zitat Steriade, M. (2003). The corticothalamic system in sleep. Frontiers in Bioscience: a Journal and Virtual Library, 8, d878–d899.CrossRef Steriade, M. (2003). The corticothalamic system in sleep. Frontiers in Bioscience: a Journal and Virtual Library, 8, d878–d899.CrossRef
Zurück zum Zitat Steriade, M., Domich, L., Oakson, G., & Deschênes, M. (1987). The deafferented reticular thalamic nucleus generates spindle rhythmicity. Journal of Neurophysiology, 57(1), 260–273.PubMed Steriade, M., Domich, L., Oakson, G., & Deschênes, M. (1987). The deafferented reticular thalamic nucleus generates spindle rhythmicity. Journal of Neurophysiology, 57(1), 260–273.PubMed
Zurück zum Zitat Steriade, M., Dossi, R. C., & Nuñez, A. (1991). Network modulation of a slow intrinsic oscillation of cat thalamocortical neurons implicated in sleep delta waves: cortically induced synchronization and brainstem cholinergic suppression. The Journal of Neuroscience, 11(10), 3200–3217.PubMed Steriade, M., Dossi, R. C., & Nuñez, A. (1991). Network modulation of a slow intrinsic oscillation of cat thalamocortical neurons implicated in sleep delta waves: cortically induced synchronization and brainstem cholinergic suppression. The Journal of Neuroscience, 11(10), 3200–3217.PubMed
Zurück zum Zitat Steriade, M., Contreras, D., Dossi, R. C., & Nuñez, A. (1993a). The slow (< 1 Hz) oscillation in reticular thalamic and thalamocortical neurons: scenario of sleep rhythm generation in interacting thalamic and neocortical networks. The Journal of Neuroscience, 13(8), 3284–3299.PubMed Steriade, M., Contreras, D., Dossi, R. C., & Nuñez, A. (1993a). The slow (< 1 Hz) oscillation in reticular thalamic and thalamocortical neurons: scenario of sleep rhythm generation in interacting thalamic and neocortical networks. The Journal of Neuroscience, 13(8), 3284–3299.PubMed
Zurück zum Zitat Steriade, M., Nuñez, A., & Amzica, F. (1993b). Intracellular analysis of relations between the slow (< 1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram. The Journal of Neuroscience, 13(8), 3266–3283.PubMed Steriade, M., Nuñez, A., & Amzica, F. (1993b). Intracellular analysis of relations between the slow (< 1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram. The Journal of Neuroscience, 13(8), 3266–3283.PubMed
Zurück zum Zitat Steriade, M., Amzica, F., & Contreras, D. (1996). Synchronization of fast (30-40 Hz) spontaneous cortical rhythms during brain activation. The Journal of Neuroscience, 16(1), 392–417.PubMed Steriade, M., Amzica, F., & Contreras, D. (1996). Synchronization of fast (30-40 Hz) spontaneous cortical rhythms during brain activation. The Journal of Neuroscience, 16(1), 392–417.PubMed
Zurück zum Zitat Suffczynski, P., Kalitzin, S., Pfurtscheller, G., & Lopes da Silva, F. H. (2001). Computational model of thalamo-cortical networks: dynamical control of alpha rhythms in relation to focal attention. International Journal of Psychophysiology, 43(1), 25–40.PubMedCrossRef Suffczynski, P., Kalitzin, S., Pfurtscheller, G., & Lopes da Silva, F. H. (2001). Computational model of thalamo-cortical networks: dynamical control of alpha rhythms in relation to focal attention. International Journal of Psychophysiology, 43(1), 25–40.PubMedCrossRef
Zurück zum Zitat Timofeev, I., Contreras, D., & Steriade, M. (1996). Synaptic responsiveness of cortical and thalamic neurones during various phases of slow sleep oscillation in cat. The Journal of Physiology, 494(Pt 1), 265–278.PubMedCentralPubMed Timofeev, I., Contreras, D., & Steriade, M. (1996). Synaptic responsiveness of cortical and thalamic neurones during various phases of slow sleep oscillation in cat. The Journal of Physiology, 494(Pt 1), 265–278.PubMedCentralPubMed
Zurück zum Zitat Timofeev, I., Grenier, F., & Steriade, M. (2001). Disfacilitation and active inhibition in the neocortex during the natural sleep-wake cycle: an intracellular study. Proceedings of the National Academy of Sciences of the United States of America, 98(4), 1924–1929. doi:10.1073/pnas.041430398.PubMedCentralPubMedCrossRef Timofeev, I., Grenier, F., & Steriade, M. (2001). Disfacilitation and active inhibition in the neocortex during the natural sleep-wake cycle: an intracellular study. Proceedings of the National Academy of Sciences of the United States of America, 98(4), 1924–1929. doi:10.​1073/​pnas.​041430398.PubMedCentralPubMedCrossRef
Zurück zum Zitat Wang, X. J., Golomb, D., & Rinzel, J. (1995). Emergent spindle oscillations and intermittent burst firing in a thalamic model: specific neuronal mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 92(12), 5577–5581.PubMedCentralPubMedCrossRef Wang, X. J., Golomb, D., & Rinzel, J. (1995). Emergent spindle oscillations and intermittent burst firing in a thalamic model: specific neuronal mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 92(12), 5577–5581.PubMedCentralPubMedCrossRef
Zurück zum Zitat Wilson, M. A., & McNaughton, B. L. (1994). Reactivation of hippocampal ensemble memories during sleep. Science, 265(5172), 676–679.PubMedCrossRef Wilson, M. A., & McNaughton, B. L. (1994). Reactivation of hippocampal ensemble memories during sleep. Science, 265(5172), 676–679.PubMedCrossRef
Metadaten
Titel
A thalamo-cortical neural mass model for the simulation of brain rhythms during sleep
verfasst von
F. Cona
M. Lacanna
M. Ursino
Publikationsdatum
01.08.2014
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 1/2014
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-013-0493-1

Weitere Artikel der Ausgabe 1/2014

Journal of Computational Neuroscience 1/2014 Zur Ausgabe

Premium Partner